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Abstract

Data mining applications discover useful information or
patterns in large sets of data. Because they can be highly
parallelizable and computationally intensive, data mining
applications have the potential to take advantage of the
large numbers of processors predicted for future multi-core
systems. However, the potential performance of these ap-
plications on this emerging platform is likely to be impeded
by their intensive memory usage. In addition to accessing
memory frequently, some of these applications exhibit ex-
ceedingly large working set sizes. Storing these large work-
ing sets on chip in their entirety may be prohibitively ex-
pensive or infeasible as these working set sizes continue to
grow with problem size. Greater insight into the character-
istics of these working sets is needed in order to determine
alternative approaches to storing the entire working set on-
chip.

In this paper, we examine the memory system character-
istics of a set of applications from the MineBench data min-
ing suite. We analyze these applications in an architecture
independent manner in order to gain greater understand-
ing into the composition of the data working set; in par-
ticular, we document the duration and frequency of active
and idle periods for working set data. We find that working
set data may be reused repeatedly throughout a program’s
execution, but each use is for a short period of time. The re-
sulting long idle periods may enable alternate techniques to
be used instead of caching in order to obtain good memory
performance. We show that for several of these applica-
tions, simple prefetching schemes may alleviate the need to
cache the large working sets.

1. Introduction

As the quantity of data collected each year has grown,
the importance of data mining applications, which extract
patterns from this data, has grown correspondingly. Data
mining technology can be found in a wide variety of fields

including medicine, marketing, finance, entertainment, and
security. Data mining applications interest computer archi-
tects not only because of their growing relevance, but be-
cause they exhibit characteristics that distinguish them from
existing workloads including integer (SPEC INT), floating
point (SPEC FP), multimedia (MediaBench), and decision
support (TPC-H) applications [8]. In general, data mining
applications are unique because they combine high data de-
mands with high computational demands.

Given that data mining applications exhibit these unique
characteristics, the demands they will place on the resources
of future chips, specifically multi-core chips, cannot easily
be predicted. Consequently, recent work analyzes the differ-
ent demands created by these applications in greater depth.
Two of these studies, [3] and [5], conclude that these ap-
plications require large lower level caches to compensate
for large, data working set sizes (32MB or more). How-
ever, this brute force approach to memory organization for
data mining applications is not scalable given that working
set sizes can be expected to continue to grow with problem
size. Additionally, storing large quantities of data on-chip
may not be feasible for systems where power is an impor-
tant concern.

In this paper, we examine how data in the working
set is used over program execution for a set of applica-
tions from the MineBench [7] data mining benchmark suite.
MineBench consists of complete applications exhibiting a
variety of algorithms used to learn from data sets ranging
from grocery purchases to DNA sequences, with each al-
gorithm potentially exhibiting different resource demands.
Our goal is to better understand how data is used in order to
suggest alternative memory organizations and/or data man-
agement policies to extremely large capacity, lower level
caches. We use an architecture independent approach to
show that while data may be reused throughout the major-
ity of a program’s execution, most data will be used for a
small period of time (hundreds to thousands of instructions)
before remaining unused for extended periods (millions or
tens of millions of instructions). Thus, data usage is not
exactly streaming in that data will be reused over a pro-



gram’s lifetime, but the brief periods of active use suggest
that there is little benefit to storing data beyond short pe-
riods of time if the entire working set cannot be retained.
We show that some, but not all, of these applications are
amenable to data prefetching as a mechanism for reduc-
ing latency and reducing storage capacity, assuming suffi-
cient off-chip bandwidth. These results suggest that exist-
ing techniques may potentially be deployed to obtain good
memory performance for data mining applications on chips
with smaller on-chip storage capacities.

This paper proceeds by first discussing recent work on
characterizing the resource demands of data mining appli-
cations. Section 3 then describes the methodology used for
our analysis. We analyze how working set data is used in
Section 4, analyze the potential uses of prefetching in Sec-
tion 5, and then conclude.

2. Related work

The growing importance of data mining workloads has
instigated examination of the hardware demands exhibited
by these applications, particularly on shared memory multi-
processor systems. As part of this process, Narayanan et
al. have provided a data mining application suite called
MineBench [7]. The fifteen applications in this suite in-
clude algorithms for clustering, classification, association
rule mining, optimization, and structured learning.

Several studies characterizing the resource demands of
data mining applications established that these applications
are both compute and memory intensive. Zambreno et al.
found that most of the applications in MineBench execute
a significantly high number of floating point operations [9].
Ghoting et al. similarly showed that the applications they
studied were compute intensive, either issuing high num-
bers of floating point or integer operations [2]. These stud-
ies also found that these applications experience high level
two data cache miss rates, primarily due to the use of large
data sets. Ozisikyilmaz et al. show that this combination
of high compute and memory intensity results in a cluster-
ing algorithm distinguishing data mining applications from
existing workloads, including SPECInt, SPECFP, Media-
Bench, and TPC-H [8]. Additionally, they show that there
is high variability in the characteristics displayed by the
MineBench applications.

Although Choudhary et al. explore creating special hard-
ware to handle the compute intensity of these applications
[1], most subsequent studies have explored the implications
of data mining applications’ memory demands. The use of
large data sets which cause high level two data cache miss
rates resulted in Ghoting et al. concluding that data mining
applications exhibit poor temporal locality [2]. Jaleel et al.
discovered that temporal locality across threads could po-
tentially be exploited to increase cache hit rates by increas-

ing the total storage capacity of a system through the use of
shared versus private caches [3]. Similarly, Li et al. used
cache sensitivity analysis to show that cache hit rates can be
improved by creating very large, lower level caches that can
contain the very large working set sizes (up to 256MB) for
these applications [5]. Finally, Ghoting and Li conclude that
good spatial locality enables performance improvement via
hardware prefetching for some data mining applications.

The work in this paper builds on prior work characteriz-
ing memory demands. Using architecture independent anal-
ysis, we reconcile the discrepancy between [2] and [3] and
[5] regarding temporal locality. Specifically, we show that
although temporal locality exists in these applications’ data
working sets, most data experience very short periods of
use separated by very long idle periods; consequently, these
applications can appear to have streaming access patterns,
meaning little temporal locality, if the memory system can-
not capture enough of the working set. We also consider
whether prefetching can potentially be used instead of high
capacity, on-chip storage to maintain good memory perfor-
mance; our architecture independent analysis removes the
specific system bandwidth availability issues experienced
in earlier work from impacting this analysis.

3. Methodology

3.1. Simulator

Pin [6] is used to dynamically instrument the binaries
used in this study. In order to characterize memory access
behavior, we have Pin pass instruction addresses, memory
access types, effective addresses, and data sizes to a Pin tool
we created; this is done for user-level instructions executed
by the application. This Pin tool accumulates access statis-
tics for 64B memory lines in order to allow an architecture
independent analysis of how data is used.

3.2. Workload

We have chosen to study eight of the applications in the
MineBench suite compiled with gcc4.2. Table 1 specifies
the applications and the parameters used. This subset in-
cludes applications that perform clustering, classification,
and association rule mining. 1

Although most of the MineBench applications can be run
with multiple threads via OpenMP pragmas, we have lim-
ited our study to examining memory behaviors when only a
single thread is executed. While this decision prevents ob-
servation of data sharing across threads, it makes it possible
to understand the demands created by individual threads.

1This subset was chosen for run time considerations; the non-studied
applications have run times an order of magnitude longer than these eight.



Application Parameters
Apriori -i data.ntrans 1000.tlen 10.nitems 1.npats 2000.patlen 6 f offset file 1000 10 1 P1.txt

-s 0.0075 -n 1
Bayesian -d F26-A64-D250K bayes.dom F26-A64-D250K bayes.tab F26-A64-D250K bayes.nbc
Eclat -i ntrans 2000.tlen 20.nitems 1.npats 2000.patlen 6 -e 30 -s 0.0075
HOP 61440 particles 0 64 64 16 -1 1
K-means -i edge -b -o -p 1
ScalParC F26-A32-D250K.tab 250000 32 2 1
SVM-RFE outData.txt 253 15154 30
Utility real data aa binary real data aa binary P1.txt product price binary 0.01 1

Table 1. Application execution parameters
Although individual threads in parallelized executions of
these applications my work on smaller portions of the data
set than a thread in a single-threaded version, we expect in-
dividual threads’ data sets to grow as problem sizes grow.

4. Working set characterization

In order to gain a deeper understanding of how data is
used throughout a program’s lifetime, we examine memory
usage patterns without considering a specific memory sys-
tem. Table 4 confirms the data intensity of these applica-
tions shown in similar studies. For these applications, the
average number of data references per instruction ranges
from 0.29 to 0.73. While the division of these memory ref-
erences between stack and non-stack locations varies, read
accesses of non-stack data dominate write accesses (3-93
times as many reads as writes).

Application Stack Non-stack Memory
(R/W) (R/W) (MB)

Apriori 0.21 / 0.09 0.32 / 0.06 100.4
Bayesian 0.25 / 0.18 0.12 / 0.02 0.07
Eclat 0.33 / 0.06 0.30 / 0.04 22.6
HOP 0.17 / 0.04 0.13 / 0.02 3.4
K-means 0.12 / 0.04 0.25 / 0.11 1.5
ScalParC 0.25 / 0.15 0.12 / 0.04 113.3
SVM-RFE 0.04 / 0.02 0.23 / 0.002 44.9
Utility 0.15 / 0.10 0.22 / 0.004 503.0

Table 2. References/instruction and memory
footprints

Table 4 also shows the memory footprints for these ap-
plications. The sizes vary greatly for these applications with
the Bayesian application using less than 0.07MB of mem-
ory while the Utility application usage exceeds 500MB.

4.1. Working set sizes

We obtain an understanding of how the working set size
compares to the total memory footprint by examining how

long non-stack data are used during program execution.
(The number of memory blocks used for stack data is min-
imal, so we do not analyze stack data use.) To determine
the length of time data is used throughout a program, called
its lifetime, we track the time between the data’s first and
last access. Figure 1(a) shows a chart of the percentiles of
data lifetimes. For each application, we normalize the per-
centiles to the program duration. For ScalParC, the data
lifetime for the 25th percentile is 72% of the program’s ex-
ecution, the 50th is 82%, the 75th percentile is 89%, and the
100th percentile is 99%. This means that more than 75% of
the non-stack data in ScalParC is used for more than 72%
of the program’s duration.

From Figure 1(a), we observe that K-means, ScalParC,
and SVM-RFE use more than 75% of their non-stack data
for more than 70% of each program’s duration. The work-
ing set sizes for these applications would therefore be nearly
as large as the total memory footprint for these applica-
tions. In contrast, Apriori, Bayesian, Eclat, and HOP ex-
hibit a great deal of selectivity in how long data continues
to be used throughout program execution. For example,
more than 25% (but less than 50%) of the non-stack data
in the Bayesian application have lifetimes that span most of
the program’s execution while a separate 25% or more of
the data have lifetimes that persist for less than 1% of the
program’s execution. Consequently, these applications will
have working set sizes significantly smaller than their total
memory footprints and working set sizes which will poten-
tially change over time. Finally, most of the data in the
Utility application have exceptionally short lifetimes with a
small percentage persisting for the program’s entirety; this
application exhibits the memory characteristics of a stream-
ing memory application where data is used briefly and then
discarded.

This architecture independent analysis confirms that
temporal locality does exist for this subset of MineBench
applications. It also shows that several of these applications
have very large working set sizes. If we combine infor-
mation about total memory footprint sizes and working set
sizes, we observe that some applications like ScalParC and
SVM-RFE have large working sets. Despite their selectiv-
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(b) Active usage

Figure 1. Data lifetimes(a) and total active use(b)
ity, Apriori and Eclat will have moderately large working
set sizes. In contrast, Utility will have a small working set
size despite its large memory footprint. Thus, some of these
applications, but not all, can benefit from large capacity, on-
chip storage.

4.2. Active Data Usage

In the previous section, we showed that each of these ap-
plications has a set of non-stack data that is used throughout
the entire program execution. Depending on the applica-
tion, the size of this set varies from a small portion of the
non-stack data to practically all of the non-stack data ac-
cessed by the program. This data contributes directly to the
working set size calculated when cache sizes are continu-
ally increased until no benefits are accrued from increased
cache size as in [5]. However, this data may not be actively
used throughout the program’s lifetime; it may remain idle
for long periods, using valuable storage resources. In this
section, we examine the duration and frequency of periods
of active use of working set data.

In order to quantify how data is used throughout a
lengthy lifetime, we calculate the amount of time data is
actively used before it remains idle for periods of 1 million
cycles or longer. 2 For example, if data is accessed at times
1000; 30,000; 2,000,000; and 2,001,000, we would calcu-
late its non-idle time as being (30,000 - 1000) + (2,001,000
-2,000,000) = 30,000 cycles. In contrast, if data is repeat-
edly used every 10,000 cycles starting at time 2,000 until
time 3,000,000, it’s non-idle time would be (3,000,000 -
2,000) = 2,998,000 cycles. This metric, therefore, allows
us to distinguish data that is used continuously throughout

2This interval length was chosen based on results in [4] showing that
using a 1024K cycle cache decay interval did not severely impact level two
cache miss rates.

its lifetime from data that is used repeatedly but for brief
periods of time.

Figure 1(b) shows the percentiles of non-stack data’s
non-idle time as a fraction of total program execution time.
For example, less than 25% of the data in HOP is used for
the entire HOP program’s lifetime; 50% of the data is used
for between 0.008% and 0.01% of the program lifetime and
the remaining data is used for less than 0.008% of the pro-
gram lifetime. For all of the applications except Bayesian,
we observe that less than 25% of the data are used contin-
uously throughout the program lifetime. Most data remain
idle for the majority of their lifetimes.

This non-idle time is actually spread over a number of
reuses for most of the data with long lifetimes in these pro-
grams. Figure 2(a) shows the number of idle periods (pe-
riods of longer than 1 million cycles of data not being ac-
cessed) experienced by data. Again, the figure shows the
percentiles for the number of idle periods experienced by
non-stack data. More than 75% of the data in K-means
experience approximately the same number of more than
3,200 idle periods. In contrast, less than 25% of the data in
Apriori experience more than 2 idle periods while more than
50% of Apriori’s data experience 2 idle periods. For some
applications like Eclat, K-means, ScalParC, and SVM-RFE,
large portions of the working set data will be repeatedly
used. Depending on the length of time between these reuses
of the data, it may or may not be worthwhile in a system to
store this data on-chip to exploit this temporal locality.

We show the length of time of these idle periods in Fig-
ure 2(b). The chart shows the total percentage of idle peri-
ods lasting more than 1, 5, 10, 50, and 100 million cycles.
(Note that all idle periods last at least 1 million cycles.) For
applications like K-means and SVM-RFE, we see that long
idle periods of more than 10 million cycles exist between
the reuse of data. Given the long lifetimes of most data in
these applications, most data in these applications remain
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Figure 2. Frequency(a) and duration(b) of idle periods
idle for long periods. Since most data in ScalParC have long
lifetimes, similar observations can be made although a frac-
tion of idle periods last less than 5 million cycles. For ap-
plications like Apriori where some data is repeatedly reused
over the program lifetime while other data is discarded af-
ter a small number of reuses, we observe a sharp drop in
the number of idle periods lasting more than 1 million cy-
cles but less than 5 million cycles and a stable fraction of
idle periods lasting long periods of time. Thus, data that
are reused in Apriori are reused before 5 million idle cycles
and data that are not reused remain idle for extended periods
of time. Similarly, more than 50% of idle periods in Util-
ity persist for more than 100 million cycles because only a
small set of data has long lifetimes; they are used and then
remain idle for the remainder of the program.

4.3. Discussion

By examining the lifetimes and non-idle periods of non-
stack data, we discover a complicated picture of how data
are used in these data mining applications. While large por-
tions of the total data accessed by some of these programs
continue to be reused throughout the entire program, data
lifetimes can be decomposed into short periods of use sep-
arated by potentially long idle periods. Given the number
of idle periods experienced by data and the total non-idle
times, we can calculate the average periods of non-idle pe-
riods lasting hundreds to thousands of cycles compared to
idle periods of millions to tens of millions of cycles.

While the repeated use of data over the program life-
times may encourage storing the entire working set in on-
chip storage, the relatively short periods of active use re-
quire reconsideration of whether this approach is the best
approach for data mining applications. There are negative
consequences of storing idle data for long periods of time.
As the working set sizes of data mining applications con-

tinue to grow, this solution will have trouble scaling. Ad-
ditionally, as data centers become increasingly concerned
about power consumption, having large on-chip storage ca-
pacity may be infeasible. Cache decay algorithms like [4]
which decay lines after some preset number of idle cycles
can have large negative impacts on the level two cache miss
rates of these applications.

Given these concerns about the quantity of storage ca-
pacity needed by these applications’ working sets and
power consumption, it might be not be possible to retain
the entire working set in a large on-chip cache. Techniques
that can prefetch data to reduce latency will be necessary.
In the next section, we analyze the predictability of mem-
ory accesses for these data mining applications.

5. Prefetching

In order to determine the likelihood that prefetching can
be used successfully without modeling a specific memory
hierarchy, we collect statistics for every instruction about
the distances between subsequent non-stack memory ref-
erences. If the distance between two memory references
is repeated between the next two memory references, we
consider the previous distance a correct predictor for what
should be prefetched; the distance is the stride. If instruc-
tions frequently have the same stride, simple prefetching
schemes may be useful in reducing cache miss rates.

For every instruction, we retain the frequency of its exe-
cution, the frequency of accesses to the same memory block
as the previous memory access, the number of correct stride
predictions (previous distance equals the next distance), and
the total number of unique strides observed for that instruc-
tion. Contiguous accesses to the same data block represent
a measure of spatial locality.

Figure 3(a) shows prediction accuracies for instructions
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Figure 3. Prefetch accuracy(a) and time before use after prefetch(b)
that access non-stack data. We calculate a single prediction
accuracy number by weighting each instruction’s prediction
accuracy by its frequency. For each application, we show
the prediction accuracy when consecutive accesses to the
same data block are not included in correctness or frequency
counts (No-Spatial) and when they are (Spatial). Because
we are interested in determining how useful prefetching will
be for instructions that access the large quantity of working
set data, Figure 3(a) includes information about instructions
that access large numbers of different data blocks (Select).
Specifically, the 10% of instructions that access the largest
number of unique non-stack data blocks are included. These
instructions are expected to frequently access different data
blocks and are therefore more likely to increase storage ca-
pacity needs. For comparison, we also show prediction ac-
curacies when all instructions that access non-stack mem-
ory blocks are included (All).

Comparison of corresponding No-Spatial and Spatial
bars in Figure 3(a) shows that all of the applications will
benefit from spatial locality gained by an instruction succes-
sively accessing the same data block. However, not all ap-
plications have instructions with infrequently changing data
access strides. ScalParC, SVM-RFE, K-means, and Util-
ity exhibit strong prediction accuracies according to Select-
Spatial, but Apriori, Bayesian, and Eclat do not. Conse-
quently, a simple hardware prefetching scheme that uses a
stride prediction table may be useful for some applications
but not others.

Given that prediction accuracies for all instructions are
similar to prediction accuracies for select instructions for all
but two of the applications when spatial locality is included,
simple prefetch hardware that prefetches on all memory re-
quests should be sufficient. In the cases of HOP and Utility,
prediction for all instructions is less accurate than the set
of select instructions because slightly more than 10% of in-

structions access a large number of unique memory blocks.
A selective prefetching scheme which prefetches memory
only for specific instructions might therefore be beneficial.

Prefetching can only reduce latency if there is adequate
time between initiation of a prefetch request and the re-
quested data’s use. For the same two sets of instructions
analyzed above, we determine the average amount of time
between accesses of different memory blocks by a given in-
struction. Figure 3(b) shows the weighted averages (based
on instruction frequency) of these times for these applica-
tions. For all of these applications, these times are 1,000
instructions or greater, both when select and all instruc-
tions are examined; this implies that sufficient time may
exist in these applications for prefetching to hide memory
latency. Consequently, it may be possible to use prefetch-
ing for some of these applications as an alternative to storing
large working sets on-chip.

6. Conclusions

The increasing importance of data mining applications
requires future chips to be able to handle these computa-
tionally and memory intensive workloads. This paper ex-
amines the characteristics of the large data working sets
documented in earlier studies. We show that data experi-
ence long idle periods, separated by brief periods of use.
These long idle periods provide opportunities for handling
data in ways that require smaller on-chip storage capacity
than approaches that attempt to store entire working sets in
large lower level on-chip caches. We also show that several
of these applications are amenable to using simple stride
prefetchers as one such alternative. These results suggest
that structures like stream buffers for multimedia process-
ing may be useful for improving the memory performance
of these applications.
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