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Abstract—A major challenge to the creation of chip mul-
tiprocessors is designing the on-chip memory and communi-
cation resources to efficiently support parallel workloads. A
variety of cache organizations, data management techniques,
and hardware optimizations that take advantage of specific
data characteristics have been developed to improve application
performance. The success of these approaches depends on
applications exhibiting the presumed data characteristics.

Data mining applications are a growing class of applications
that discover patterns in large sets of collected data. Because
these applications tend to be highly parallelizable, they repre-
sent an important workload for chip multiprocessors. However,
the memory intensive nature of these applications means
that they will stress these chips’ memory and communication
resources.

In this paper, we examine the data usage characteristics
of a set of parallel data mining applications to determine
the applicability of existing chip multiprocessor approaches to
these applications. We show diversity of characteristics across
and within these applications, making some techniques more
applicable than others. We also discuss software approaches
that could be used to either provide information to the hard-
ware or assist the hardware in dynamically discovering data
characteristics needed for the deployment of these techniques.

I. INTRODUCTION

Data mining applications extract useful information or
patterns from large sets of raw data. They are currently used
in a variety of fields including marketing, finance, scientific
discovery, security, and entertainment. As the amount and
type of collected data continue to grow, the importance and
prevalence of data mining applications will grow. These
applications tend to be both compute and memory intensive
[1][2][3]. Their computation is largely parallelizable, making
them a natural fit for the increasing number of processors
being placed on single chips. Their tendency to have large
working set sizes [4] and frequent sharing of data between
parallel threads [5], however, has the potential to limit their
performance on future chip multiprocessors.

One challenge for using chip multiprocessors is generating
large quantities of parallel computations that can utilize the
increasing number of processors. An equally important issue
is designing a chip’s supporting memory and communication
infrastructure to achieve high performance. Research has
generated a wide range of techniques that exploit specific
data characteristics in order to address this issue. This body

of work includes approaches that determine how to organize
and manage on-chip caches [6][7][8][5] and how to reduce
data access latencies through prefetching or reducing on-chip
network overheads [9][10]. Other work has addressed how
to exploit data characteristics to improve the performance
of mechanisms which make it easier to program future chip
multiprocessors [11].

This paper analyzes parallel applications from the
MineBench data mining suite [12] to determine whether they
exhibit characteristics exploited by a set of approaches devel-
oped for improving the performance of applications on chip
multiprocessors. Our architecture independent examination
of data usage enables us to observe the type, frequency,
and predictability of data accesses and data sharing. Our
approach also enables us to explore ways in which informa-
tion about data characteristics can be conveyed by software
to the hardware in order to help target the use of these
optimizations.

The contributions of this work include an analysis of
the data access characteristics of a set of parallel data
mining applications. Our examination shows diversity in
the data characteristics across applications as well as within
applications. The benefits obtained by existing approaches,
therefore, vary across and within applications. This suggests
that future chips will need to dynamically choose which of a
set of optimization techniques should be applied to a specific
application based on the application’s characteristics. We
propose software techniques that can help identify or help
hardware dynamically identify which data these techniques
should be applied to.

The remainder of this paper is organized as follows. We
describe a subset of the chip multiprocessor performance
improving approaches in Section II and describe the existing
characterization of data mining workloads in Section III.
After describing our methodology in Section IV, we present
our analysis in Section V. In Section VI, we discuss ways
to help hardware identify data characteristics. Finally, we
conclude in Section VII.

II. EXISTING DESIGNS AND OPTIMIZATIONS

A variety of techniques have been created for chip mul-
tiprocessors in order to improve the performance of the



memory and communication subsystems. Frequently, these
optimizations are based upon some key attribute about how
data is used. In this section, we briefly present a small subset
of existing approaches in order to understand which features
of data access patterns are being exploited. In Section V,
we then characterize data mining applications with respect
to these key characteristics.

A. Cache design and management

One challenge in designing chip multiprocessors is de-
termining how to organize and manage the on-chip cache
resources. Because physical proximity to data in an on-chip
cache impacts access latency [13], designs and management
strategies must balance the desire to minimize access latency
and the need to store as much unique data as possible on
the chip to avoid off-chip accesses. A set of studies have
examined whether private or shared caches should be used
for level two caches and lower on chip, with their results
being largely dependent on the workload characteristics.
Huh et al. explore how the fraction of shared versus private
cache capacity impacts access latency and cache misses
[6]. They find that sharing caches between a small number
of processors provides the best performance for a set of
commercial and scientific applications. In contrast, the high
level of data sharing and large data set sizes in data mining
bioinformatics workloads suggest that a single shared last
level cache will perform better than private caches [5].

Other studies have explored how to manage data in shared
caches via placement, migration, and replication of data.
Again, the results for these techniques depend on workload
characteristics. For example, Beckmann and Wood show that
migration of data in shared caches results in heavily shared
data being equally far from processors as it clusters in the
center banks of the shared cache [7]. Thus, applications with
large amounts of data sharing may encounter higher access
latencies with this approach. Another technique, victim
replication, provides replication of data in order to reduce
access latencies by storing level one cache victims within
local level two cache slices [14]. The replica is placed in
a location that is either free, contains a block that has no
sharers, or is an existing replica. Benefits of this approach
depend on the availability of sufficient cache capacity to
have space for replicas as well as access patterns that benefit
from the retention of data evicted from the level one cache.

For commercial workloads, Beckmann et al. [15] find that
a small number of shared read-only blocks account for a
large fraction of level two cache requests. Consequently, they
present a hardware approach that replicates shared read-only
blocks in the level two cache. In contrast, Hardavellas et
al. find that shared data is primarily read-write data in the
server workloads they examine [8]. They show that blocks
can be classified into three categories, namely instructions,
private data, and shared data. In addition to being read-write
data, shared data is generally shared across all processors.

They present an approach where the OS classifies pages
into these categories. They then place data on the chip in a
way that minimizes access latency while maximizing storage
capacity; private data is placed near the requesting core,
instructions are replicated strategically, and shared read-
write data is distributed evenly across the chip and not
replicated in order to avoid coherence traffic.

B. Predictability of data accesses

1) Using prediction to reduce access latency: When
applications’ data accesses occur in predictable patterns,
a variety of techniques for reducing data access latencies
can be used. Beckmann and Wood establish that stride-
based prefetching can be as effective as data migration in
improving the performance of commercial workloads [7].

Wenisch et al. extend the idea of predictability to mean
the predictability of streams of data accessed by successive
processors [9]. They show that shared data tends to be ac-
cessed in sequences which are repeated at other processors.
They find that proactively streaming data to a processor
repeating an earlier pattern can reduce cache misses in a
set of scientific, commercial, and server workloads.

Circuit-switched coherence is another technique that ex-
ploits this predictable pair-wise sharing of data [10]. In
this router protocol design, virtual circuits are dynamically
created to connect processor pairs. This reduces router
latency overhead on remote accesses between the processor
pairs connected via the virtual circuits.

2) Reducing storage capacity demands: Because on-chip
cache resources are limited and potentially shared, tech-
niques which limit the retention of data in caches if that data
is unlikely to be reused either before being evicted or within
a certain time frame can potentially improve cache perfor-
mance. Recent work has shown that level two cache miss
rates can be improved by preventing or limiting the amount
of data retained for applications with streaming data accesses
or working sets larger than the level two cache capacity
[16]. For shared caches, different data retention policies can
be applied to different processes in order to maximize the
use of the shared capacity [17]. Other approaches like cache
decay can target the same types of data in order to reduce
the used capacity in a cache by turning off lines that have
remained idle for long periods of time [18].

3) Improving performance of other mechanisms: One
of the difficulties of writing code for multiprocessors is
understanding the memory consistency model supported by a
given machine. BulkSC provides a mechanism for providing
the appearance of sequential consistency to programmers
even though the hardware may provide a relaxed consistency
model [11]. In this technique, large chunks of instruc-
tions are committed atomically, reducing the overhead of
maintaining sequential consistency. One of the performance
optimizations for this approach is to reduce or eliminate
the amount of tracking of reads and writes to private data



Application Parameters
Apriori -i data.ntrans 1000.tlen 20.nitems 1.npats 2000.patlen 6 -f offset file 1000 20 1 P8.txt

-s 0.0075 -n 8
HOP 61440 particles 0 128 128 16 -1 8
SVM-RFE outData.txt 253 15154 15
ScalParC para F26-A32-D125K/F26-A32-D125K.tab 125000 32 2 8
K-means -i color -b -o -p 8
Fuzzy K-means -i texture100 -o -f -p 8

Table I
APPLICATION EXECUTION PARAMETERS

when determining whether to commit chunks of instructions.
This approach works for both statically declared private
data and for data that remains used by a single thread for
extended periods of time. Although not mentioned in [11],
one presumes similar optimizations could be used on shared
data that was known to be accessed in a read-only fashion.

This paper examines data mining applications with the in-
tent of understanding how data is used in order to determine
the applicability of these different designs and optimization
techniques. Specifically, we examine

• sharing levels,
• read/write behavior,
• duration and frequency of idle periods,
• predictability of data accesses, and
• predictability of pairwise communication.

III. RELATED WORK

A. Data mining characteristics

The computationally intensive nature of data mining ap-
plications make them amenable to running on chip multi-
processors, but their memory intensive characteristics have
the potential to limit their performance. In order to study
these applications, Narayanan et al. have provided a data
mining application suite called MineBench [12]. MineBench
contains fifteen applications, twelve of which are parallel,
that implement algorithms for clustering, classification, as-
sociation rule mining, optimization, and structured learning.

Work on understanding the characteristics of data mining
applications has categorized them as both compute and
memory intensive. Ghoting et al. [2] and Zambreno et al. [1]
found that data mining applications execute a large number
of floating point or integer operations and experience high
level two cache miss rates due to the use of large data
sets. Ozisikyilmaz et al. show that the combined compute
and memory intensiveness of MineBench applications make
these applications distinctly different from existing work-
loads including SPECInt, SPECFP, MediaBench, and TPC-
H [3].

The large working set sizes of data mining applications
result in poor level two cache performance [2]. Li et al. show
that increasing lower level cache capacities can improve
the memory system performance of these applications [4].
Shaw shows that the benefits of increased cache capacity
come from the repeated reuse of data after long periods

of idleness [19]. Jaleel et al. show that bioinformatic data
mining workloads benefit from the greater total capacity of a
single shared lower level cache compared to private caches
due to the large working set sizes [5]. They additionally
show that these parallel applications include large quantities
of data shared by multiple threads.

In this work, we extend these characterizations of data
mining applications to include analysis of whether existing
optimizations will be appropriate for data mining applica-
tions. While some of our examination overlaps with this
earlier work, such as observing the sharing level for data,
our architecture independent analysis enables us to study
a larger set of data characteristics than explored in earlier
work on parallel applications. Our approach also enables us
to consider whether software can assist hardware in being
able to exploit specific data characteristics.

IV. METHODOLOGY

A. Workload

We examine six parallel applications from the MineBench
[12] data mining suite. 1 These applications are written
in C/C++ and parallelized using OpenMP. We compile
them using gcc 4.2 for a 64 bit x86 machine running
Linux. Table I shows the applications executed as well as
their corresponding command line arguments. As this work
analyzes complete application executions, we chose medium
size inputs when possible and small inputs when even the
medium size inputs resulted in excessive instruction counts.

B. Simulation infrastructure

We use Pin [20] to dynamically instrument the application
executables in order to collect information about instruction
execution and memory accesses. The Pintool we created for
analysis keeps track of a global time, attributing one cycle of
time to each instruction executed. Threads execute in parallel
with global times synchronized at the beginning and end of
parallel sections of code as well as barriers.

The Pintool instruments user-level instructions, tracking
information about data on a 64 byte memory block basis.
Additionally, it collects information about how read and

1Of the 12 parallel applications in MineBench, two do not compile with
gcc 4.2 and three execute hundreds of billions of instructions on even their
smallest inputs, making analysis of complete application runs intractable.
The remaining application fails to execute when run on Pin using Pintools
that perform locking in the Pintool.



write system calls impact data being tracked. Data collected
for each memory access includes the thread performing the
access, the address and size, and whether the access is a
read or write.

V. RESULTS

We begin our analysis by examining general application
characteristics. Table II shows the instruction count, execu-
tion time, frequency of reads and writes, total memory foot-
print, and shared memory footprint for these applications. As
documented in other studies of data mining applications, the
number of memory accesses per instruction is high for all
of the applications with most of the applications exhibiting
higher fractions of reads versus writes. The total memory
footprint sizes range from less than one to hundreds of
megabytes. On-chip storage capacity, therefore, has the po-
tential to impact performance for some of these applications.

Application Instrs. Time Acc./Instr. Memory Shared
(bil.) (bil.) (R/W) (MB) (MB)

Apriori 21.68 2.83 0.36 / 0.11 199.0 55.6
SVM-RFE 42.67 13.09 0.25 / 0.03 60.0 58.9
HOP 3.19 0.52 0.26 / 0.04 10.5 2.9
ScalParC 12.02 1.57 0.27 / 0.14 285.3 57.7
KMeans 59.24 7.62 0.26 / 0.03 1.8 1.0
Fuzzy 12.65 1.87 0.28 / 0.10 0.8 0.6

Table II
OVERALL CHARACTERISTICS

As one of the goals of this work is to understand how data
is shared among threads, we removed all instructions that
deallocate memory (i.e. delete and free) in the applications.
The reason for this is that the memory allocator does not
necessarily account for previous usage of data by a specific
thread when reallocating blocks of memory. Consequently,
memory blocks that are reallocated will potentially appear
to be shared data when in fact they are not. Figure 1 shows
how the number of non-shared and shared blocks change
with this modification. This modification reduces the number
of shared blocks in Apriori, HOP, and ScalParC. It does,
however, increase the number of non-shared data blocks
for all applications. The results we observe for non-shared
data, therefore, must be tempered with the understanding
that some of those blocks would be reused when a thread-
aware memory allocator is used. We use these modified
applications throughout the remainder of this paper.

Figure 1. Impact of removing memory deallocation

Figure 2. Levels of sharing

A. Levels of Sharing

Figure 2 depicts a breakdown of memory blocks in terms
of the number of threads that access them. The fractions of
blocks that are shared range from 10% of the blocks for
ScalParC to 98% of all blocks in SVM-RFE. As seen in
Table II, these fractions can amount to significant shared
memory footprints depending on the total memory footprint
size.

The distribution of the number of threads accessing each
shared block also varies depending on the algorithm. Fuzzy
KMeans has 52% of its blocks accessed by two threads
where 96% of those blocks have the main thread as one of
its accessors. Similarly, KMeans and Apriori have significant
fractions of blocks accessed by two threads including the
main thread. Applications where threads work independently
and then the main thread combines their independent results
will produce these types of sharing patterns. In contrast,
SVM-RFE has most of its data accessed by all threads
because most of the input set is used by all threads. HOP
and ScalParC have a range of threads accessing their shared
data.

The degree of sharing exhibited in the applications has
implications for cache organization. For applications like
SVM-RFE and ScalParC that have large amounts of memory
shared between most threads, it may be better to have lower
level cache resources organized as a single shared cache.
Data replication in private caches may place too high of
demands on total cache capacity for these applications. Other
applications that have fewer numbers of threads sharing most
shared blocks and smaller shared memory footprints like
HOP may benefit from caches shared by small numbers of
threads or data replication. As much of the sharing between
two threads in KMeans and Fuzzy KMeans involves the
main thread, caches shared by small numbers of processors
may provide little benefit.

In the remainder of our analysis, we will group blocks into
three groups - non-shared (1), shared between two threads
including the main thread (2 with 0), and shared by many
threads indicating all other thread combinations (Many).

B. Access Type and Frequency

In order to understand how data is shared by these
applications, we determine which of our three groups of
blocks generate the largest fraction of accesses. Figure 3



(a) 2 with 0 (b) Many
Figure 4. Thread access interleaving

Figure 3. Breakdown of accesses

depicts the fraction of accesses to each block type. We
observe that between 33 to 78% of accesses are to data that
is accessed by our Many classification. This is true even for
applications like KMeans and Apriori with small fractions
of data shared by more than two threads. Thus, accesses
to data shared among many threads are significant for all
applications.

To understand whether accesses to shared blocks by dif-
ferent threads are finely or coarsely interleaved, we examine
the average number of accesses to a block of data by a single
thread before another thread makes an access to that block
of data. Figure 4 shows these numbers for both groups of
shared data. Data shared by many threads tends to be only
accessed a few times before another thread starts accessing
that block. In contrast, data shared between two threads
(where one is the main thread) is accessed by a single thread
for significant numbers of accesses before an intervening
access by the other thread for all of the applications except
ScalParC. This category of blocks in ScalParC represents
less than 1% of blocks; based on the application’s algo-
rithm, most of these blocks would more appropriately be
categorized in the Many category, which explains the lower
number of accesses between thread changes.

These results have implications for caching and manage-
ment strategies. The interleaving of accesses to blocks shared
by many threads means that techniques like migration,
which work best when there is some form of localized or
temporary exclusive access to data, may not function well
for these applications; shared data may simply migrate to the
center of shared cache resources. Additionally, replication
strategies may be useful depending on the number of blocks
that need to be replicated, the number of times they are

replicated, and how long they need to be replicated. The
fine interleaving of accesses may also limit performance
enhancing optimizations in modeling sequential consistency
that rely on data being unshared for extended periods of
time. However, this optimization may work well for data
that is only shared between two threads where one is the
main thread since the granularity of sharing is coarser.

Since several of the optimizations discussed in Section
II make assumptions about whether data is read-only or
read-write, we present information about writes. Figure 5
shows that most writes are to non-shared data. However, the
number of writes to both classifications of shared data can
be significant.

Figure 5. Breakdown of writes

As only writes to shared data will result in coherence
traffic, we examine writes to shared data in more detail. As
most of the input data is read in from files, just about all
of the data blocks will be written at some point in time.
Consequently, we try to determine the fraction of shared
data that becomes read-only after initialization. To calculate
this, we determine the lifetime of each block, meaning the
amount of time between a block’s first and last accesses.
Figure 6 shows the fraction of shared data that is read-only
after the first 10% of their lifetimes.

For some applications like Apriori, a large fraction of
data shared by many threads becomes read-only after the
first 10% of its lifetime. However, for many applications,
a large fraction of the shared data is written during later
portions of its lifetime. This suggests that optimizations that
demand data be read-only may not be applicable to much
of the shared data in these data mining applications. These
optimizations include those that only replicate read-only



Figure 6. Read-only after initialization

data and potential performance optimizations for modeling
sequential consistency which rely on data being read-only.

Figure 7. Idle Frequency

C. Data reuse

Techniques that selectively retain data in caches rely on
data going unused for long periods of time. To gain an
understanding of how data is used throughout the duration
of the program, we analyze how often blocks go unaccessed
for more than one million cycles and the duration of time
during which blocks remain unaccessed. Combined, these
metrics will help determine whether data tends to be used
continuously throughout a program’s execution or if data is
used cyclically with long periods of idleness.

Figure 7 shows the average number of times the different
groups of data blocks remain unaccessed for more than one
million cycles. (We choose this time frame to designate
idleness based on [18] which showed that it might be
worthwhile to decay cache lines in a level two cache if
they remained idle for more than one million cycles.) Data
that goes idle multiple times is data that is used cyclically
throughout its lifetime, going idle for the period of time
between uses. This data is likely to be part of a large working
set. We observe that data shared by many threads tends to go
idle frequently for all applications except Apriori. Data that
is shared between two threads including the main thread in
Apriori, HOP, and KMeans also tends to go idle frequently.

We now examine the duration of those idle periods. Data
that goes idle for longer periods of time may potentially be
data that can either quickly be removed from a cache or may
potentially never be inserted into a cache in order to deal
with storage capacity issues. Figure 8 depicts the fraction
of idle intervals that are at least one, five, or ten million

cycles long. The number of idle intervals is normalized to
the number of idle intervals of one million cycles.

Our first observation is that shared data accounts for
a larger number of idle intervals than non-shared data.
Additionally, while the fraction of idle periods extending
longer than ten million cycles is significantly reduced from
the number of idle periods lasting one million cycles, several
applications including ScalParC, HOP, and Fuzzy KMeans
still exhibit significant fractions of idle periods lasting longer
than ten million cycles. In particular, more than 50% of
ScalParC’s idle periods last at least ten million cycles. In
contrast, the idle periods in SVM-RFE generally last less
than 5 million cycles, making it a less likely candidate
for selective storage. We also note that the number of idle
periods for non-shared data do not decrease as significantly
as those for shared data for applications like Fuzzy KMeans
and Apriori.

The implications for these results are that it may be
possible to limit the total storage capacity needed on chip
by using techniques like cache decay or adaptive insertion
policies for some applications like ScalParC and HOP. As
the different types of data exhibit different characteristics
with respect to idle frequency and idle duration, it may also
be beneficial to tailor these techniques to specific types of
data as suggested as future work in [17]. For example, data in
ScalParC that is shared by many threads goes idle frequently
and for long periods of time, so it might be worthwhile to
prevent it from being cached. In contrast, the non-shared
data in ScalParC does not have many idle periods and less
than 25% of these idle periods last longer ten million cycles.
Consequently, you might want to insure that non-shared data
in ScalParC is retained in lower levels of cache.

D. Access predictability

The optimizations used for reducing latency involve either
prefetching data blocks to a given processor, proactively
streaming data to a processor expected to use the blocks, or
reducing the router overhead latency of communication be-
tween pairs of processors that use the same data blocks. All
of these techniques rely on data accesses being predictable.

To first understand how predictable data accesses are
within these applications without modeling caches, we
determine the predictability of data accesses for individ-
ual instructions. For each instruction, we determine the
predictability of data accesses using a simple data stride
prefetcher [21].

Table III shows statistics for instructions that access more
than one block of data per thread (Multiblock) and that have
a data address prediction accuracy greater than or equal to
90%. We show the percentage of all program data accesses
covered by these instructions as well as the percentage of
all accesses made by instructions that may access multiple
blocks. We also show the percentage of block changes
covered; block changes occur when an instruction switches
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Figure 8. Idle periods

to using a different data block.

Application Num. Insts. % Accesses % Block
(All/Multiblock) Changes

Apriori 66 9 / 24 3
SVM-RFE 206 72 / 93 96
HOP 163 33 / 44 40
ScalParC 75 8 / 10 22
KMeans 52 35 / 44 34
Fuzzy KMeans 41 31 / 40 57

Table III
PREDICTABILITY OF DATA ACCESSES

The predictability of these applications varies. The set of
instructions that have stride prediction accuracies of 90% or
higher can account from between 3 to 96% of block changes
and between 8 and 72% of the applications’ accesses. Given
the long periods of time between reuses of some shared data
discussed in Section V-C, the use of a stride-based prefetcher
may be worthwhile for these applications.

The results in Table III do not provide any information
about whether or not the data blocks being accessed are
likely in use by another processor that could potentially
forward those data blocks in a streamlined fashion. To de-
termine whether data may potentially be forwarded between
pairs of processors, we keep track of the last thread to
access each block of data. On a block change, we determine
whether the new block was last accessed by the same thread
as the previous block requested by this instruction (for
a given thread). Table IV shows statistics for instructions
that had prediction accuracies for both the address and the
previous owner of at least 90%.

In addition to showing the percentages of accesses and
block changes covered by these instructions, we also show
the percentage of the block changes covered by these in-
structions which are data blocks that were last accessed by a
thread that is not the current accessor. Applications like HOP
and ScalParC that have large fractions of their data blocks
that are non-shared have very few data blocks previously
accessed by a thread different than the current accessor.
Since KMeans and Fuzzy KMeans have large fractions of
data shared by two threads including the main thread, most
of their accesses will be to data the current thread last
accessed. Streaming of data between pairs of processors is
unlikely to help these applications. In contrast, SVM-RFE
has 91% of these data blocks accessed by another thread.
Since most data in SVM-RFE is shared by all threads,

repeatable patterns exist and would benefit from pairwise
streaming.

In summary, we observe that sharing levels for data vary
for these applications and that most shared data is read-write.
Additionally, some applications will benefit from capacity
limiting approaches and most applications will benefit from
some form of prefetching.

VI. DISCUSSION

The analysis from Section V shows that the applicability
of any given optimization varies across different applications
and sometimes even within a given application. For example,
one type of shared data may be predominantly read-only
after initialization while the other is not. This variability
implies that the hardware will need to determine when
certain approaches should be applied. Hardware can either
dynamically learn this information or it can be provided
with hints by software. Given that chip complexity and
power consumption are concerns for future multi-core ar-
chitectures, we ask whether software can potentially convey
information to the hardware or somehow make it easier for
hardware to dynamically classify data to determine when
optimizations can be applied.

A. Conveying information via instructions

Some optimizations can be easily tied to specific in-
structions in an application. For example, some information
could be tied to specific instructions to indicate when data
prefetching should be used or to indicate when streaming
of data should occur between multiple threads. Many of the
approaches presented in Section II, however, rely on general
characteristics of data which are established over time.

An important classification of data is based on its sharing
level. We consider whether or not instructions can be used
to indicate whether data blocks are non-shared, shared by
two threads including the main thread, or shared by many
threads. For every instruction, we track which data blocks
it accesses. For every data block, we track which threads
access it. We then determine if there is a set of instructions
that indicates the degree of sharing predictably. Meaning, do
certain instructions only access data of a certain type? Table
V shows the number of instructions used to indicate each
category of sharing and also what the coverage of blocks is
for that category using that set of instructions.



Application Num. Instrs. % Accesses % Block Changes % Block Changes
(All/Multiblock) Diff. Thread

Apriori 61 7 / 19 2 13
SVM-RFE 190 72 / 93 95 91
HOP 160 33 / 44 40 0
ScalParC 72 7 / 9 21 7
KMeans 50 9 / 7 5 0
Fuzzy KMeans 38 22 / 29 44 1

Table IV
PREDICTABLE STREAMING ACCESSES

Application Shared By 2 Many
Num. Instrs Coverage of Blocks Num. Instrs Coverage of Blocks

Apriori 1 0.38 3 0.11
SVM-RFE 0 0 15 0.97
HOP 0 0 0 0
ScalParC 0 0 22 0.93
KMeans 0 0 13 0.36
Fuzzy KMeans 0 0 8 0.34

Table V
USING INSTRUCTIONS TO DESIGNATE SHARING

We observe that sets of instructions can be used to predict
the degree of sharing for some applications. For example, a
set of fifteen instructions can predict 97% of the data blocks
shared by many threads in SVM-RFE and 22 instructions
predict 93% of these same blocks in ScalParC. However,
the coverage achieved for other applications is not as high.
Part of the reason for this is that some instructions may
predominantly access shared data, but if they access any
non-shared data, they are disqualified as indicators of shared
blocks. Allowing flexibility in our classification increases
coverage of blocks (as well as the number of instructions)
but comes at the cost of possibly miscategorizing some data.
Still, this technique could be used for some applications
where a small set of instructions was applied uniformly to
all data blocks for a certain sharing level.

B. Using data addresses to convey information

Many of the existing approaches for determining how to
manage data make their decisions on a block by block basis.
However, Hardavellas et al. [8] and Ceze et al. [11] both
assume the characterization of data is either dynamically
discovered or provided at the page level. The problem with
this approach is insuring that all data within a page has the
same characteristics.

We suggest that the dynamic memory allocator (i.e.
malloc) can assist with insuring that data with similar
characteristics is placed in contiguous memory locations,
enabling classification of data on a page level. The key
to this approach is in realizing that different invocations
of the memory allocator (i.e. different calls to malloc)
allocate different types of data with different characteristics.
However, if a memory allocation call is in a loop or in a
method, the data dynamically allocated on each iteration
of the loop or each call of the function is likely to have
data characteristics (e.g. sharing level) similar to the data
previously allocated at that same code location. If the

memory allocator insures that data allocated within that
loop or function is given contiguous memory addresses,
then entire regions of memory will contain data with similar
characteristics.

We look at dynamic memory allocation points in Apriori
and HOP to illustrate this idea. We examine whether data
allocated at the same source code locations have similar
characteristics. Figures 9 and 10 show information for the
eight memory allocation points that allocate the largest
number of blocks in Apriori and HOP. For the data allocated
at each allocation point, we show the sharing level, the
fraction of data that becomes read-only after 10% of its
lifetime, and the idle frequency and duration.

We observe that the allocation point can be indicative
of sharing level. For example, the sharing level of data
allocated at the fourth allocation point in Apriori will clearly
be between two threads including main. In contrast, points
2, 3, and 6 in Apriori clearly indicate that data will be non-
shared. Data allocated by points 4, 7, and 8 in HOP should
clearly be considered shared by many threads.

Similarly, several allocation points in Apriori and HOP
indicate that their corresponding data will become read-only
after initialization. For example, data allocated at points 1,
2, 3, and 5 in Apriori and 1, 2, 5, and 7 in HOP can be
considered read-only after initialization.

Finally, we observe that data allocated at different allo-
cation points have different characteristics in terms of the
number of times they go idle for more than one million
cycles and their idle durations. For example, allocation point
7 in HOP goes idle frequently and has an average idle period
of eight million cycles. Allocation point 4 in Apriori has data
that goes idle frequently but remains idle for short periods
of time. In contrast, data from allocation points 1 and 3 go
idle for long stretches of time.

One possible approach to managing data is to restructure
how memory is allocated so that data allocated at the
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Figure 9. Apriori

same instruction in the source code is actually allocated
contiguously in memory. The results above suggest that
doing so would result in contiguous regions of data that have
similar characteristics. Information about the data character-
istics for given pages could potentially be supplied by the
application via directives to the hardware in order to inform
the hardware of potential optimization strategies that would
work on each page’s data. Alternatively, the clustering of
similar data into contiguous regions could make it easier
for hardware to dynamically learn data characteristics at a
page level instead of at a block level as there would be
less variance of characteristics within a page. We intend to
explore the performance impact of this approach in future
work.

VII. CONCLUSIONS

Data mining applications are a growing class of appli-
cations that can take advantage of the increasing numbers
of processors on chip multiprocessors. Their memory in-
tensive nature, however, implies the memory system can
significantly impact their performance.

In this paper, we examined the characteristics of data in
parallel data mining applications in order to determine the
applicability of existing memory system designs and per-
formance enhancing techniques. We showed that the degree
of sharing for data varies considerably across applications,
suggesting the need for flexible cache organizations. We also
showed that most shared data is read-write data and that most
applications can benefit from some form of data prefetching.
As some of these applications have large working sets, they
can also benefit from approaches for reducing the retention
of idle data in caches.

We also proposed a way to use the dynamic memory
allocator (i.e. malloc) to help cluster data with similar usage
characteristics into contiguous memory addresses. This ap-
proach would help enable the classification of data usage at
the page level, making it potentially easier for hardware to
determine which performance-enhancing techniques to apply
to data.
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