
Abstract
Event distribution middleware supports the integration of
distributed applications by accepting events from
information producers and disseminating applicable
events to interested consumers. In this paper we present a
flexible new model, the Information Flow Graph (IFG), for
specifying the flow of information in such a system. We
illustrate the use of the IFG for: (1) content-based
publish/subscribe; (2) stateless event transformations that
consolidate events from diverse sources; and (3) stateful
event interpretation functions for deriving trends,
summaries, and alarms from published events and for
defining equivalent event sequences. We introduce two
techniques for efficient implementation of such systems:
(1) a flow graph rewriting optimization which allows
stateless IFGs to be converted to a form which can exploit
efficient multicast technology developed for content-based
publish/subscribe systems; and (2) an algorithm for
converting a sequence of events to the shortest equivalent
sequence of events with respect to an event interpretation
function.

1 Introduction

Event distribution middleware is growing in
importance with the need to glue together heterogeneous,
distributed, and dynamically changing components of
large information systems. The middleware performs the
function of collecting messages from producers, filtering
and transforming them as necessary, and routing them to
the appropriate consumers. This approach is currently
being applied in domains such as finance, process
automation, and transportation. The Gryphon project at
IBM Research is advancing the technology of event
distribution middleware and extending its range of
application.

Using subject-based publish/subscribe systems as a
starting point, Gryphon has introduced the following
extensions:

1. Content-based publish/subscribe. Rather than
treating events as uninterpreted data with a single
“subject” field, we associate schemas with event
streams, and express subscriptions as predicates over
all fields in the event.

2. Stateless event transformations. To support
scenarios where events from multiple publishers are
similar but not identical, Gryphon supports
transformations on events. These operations are
stateless in the sense that they do not depend upon
prior events.

3. Event stream interpretations. To support
subscribers who are interested not only in published
events but also in events such as summaries, trends,
and alarms, derived from a sequence of related
events, the Gryphon model supports several
“stateful” operations as well (operations whose
results depend on the event history). State can also
be used to express the “meaning” of an event
stream, and by implication, the equivalence of two
event streams.

In this paper, we describe Gryphon’s approach to event
distribution middleware based on the concept of
information flow graphs (IFGs). We show that IFGs not
only are a flexible and powerful model for expressing
event flows, but also can be efficiently implemented on a
distributed network of event brokers.

Section 2 defines the IFG model. The motivations for
content-based subscription, and efficient and scalable
algorithms developed by the Gryphon project for matching
events to subscriptions and delivering them are omitted
here, since they are discussed in detail in [1] and [3].
Section 3 introduces motivating examples of stateless and
stateful event transformations. Section 4 discusses the
implementation problems of the IFG approach, and then
presents an overview of two implementation techniques we
have developed to address these problems. Section 5
discusses related work, the current status of this work, and
concludes.

Information Flow Based Event Distribution Middleware

Guruduth Banavar1, Marc Kaplan1, Kelly Shaw2, Robert E. Strom1, Daniel C. Sturman1, and Wei Tao3

3Dept. of Computer Science
University of Utah
tao@cs.utah.edu

2Dept. of Computer Science
Stanford University

kashaw@cs.stanford.edu

1IBM T. J. Watson Research Center
Hawthorne, NY

{banavar, kaplan, strom, sturman}
@watson.ibm.com

2 The Information Flow Graph

 In Gryphon, an event system is modeled as an
information flow graph. Figure 1 illustrates such an IFG
for a collection of stock services. An IFG contains the
following components:
y Information spaces. They are either event histories

(circles, e.g. NYSE) or states (squares, e.g. MaxCur).
Event histories are lists of events. They grow
monotonically over time as events are added. States
capture selected information about event streams, and
are typically not monotonic. The type of an
information space is defined by an information
schema. In this paper, we assume that each event is a
typed tuple. For instance, the NASDAQ information
space is a sequence of events having the schema
[issue: string, price: integer, capital: integer]. The MaxCur
information space is a state represented as a keyed
relation associating the name of a stock issue with its
maximum price and current price. Certain event
histories, represented as unfilled circles, are sources
or sinks; these represent the information providers
and consumers.

y Dataflows. These are directed arcs (arrows)
connecting nodes in the graph. The graph is required
to be acyclic. Sources must have only out-arcs and
sinks in-arcs. State nodes must have only a single
in-arc. The arcs determine how the contents of the
information spaces change as events enter the
system.

There are four types of dataflows, indicated by the
labels on the arcs:
y Select. This arc connects two event histories having

the same schema. Associated with each select arc is
a predicate on the attributes of the event type
associated with the information space. An example

of a predicate is the expression (issue=”IBM” &
price<120). All events in the information space at the
source of the arc which satisfy the predicate are
delivered to the information space at the destination
of the arc.

y Transform. This arc connects any two event histories
which may have different event schemas ES and ED.
Associated with each transform arc is a rule for
mapping an event of type ES into an event of type ED.
For example, the transform arc connecting the space
NASDAQ to the space Combined is labeled with the
rule
[issue:i, price:p, capital:c] W [name: NAS(i), price:p, volume:c/p]
which maps the issue to a name using the function
NAS, and derives volume as capital divided by price.
Whenever a new event arrives at the space at the
source of the arc, it is transformed using the rule and
delivered to the space at the destination of the arc.

y Collapse. This arc connects an event history to a
state. Associated with each collapse arc is a rule for
collapsing a sequence of events to a state. The rule
maps a new event and a current state into a new
state. For example the following rule defines the
collapse arc from the space Combined to the space
Maxcur:

 [n, p, v], «n: p > maxP, curP¬ � s W «n: p, p¬ � s
[n, p, v], «n: p > maxP, curP¬ � sW «n: maxP, p¬ � s

This rule contains two patterns: in each, the tuple in
the state is found whose key matches the name field n
of the event [n, p, v]. If the price p in the event is
greater than the current max price maxP, the first
pattern is triggered, and the state is updated by
replacing maxP and curP with p. Otherwise, the
second pattern is triggered, and only curP is replaced.
Given an initial state (in this example, a maximum
and current price of zero for all stocks), the state at

AvgDrop

Figure 1: An info rmat ion flow graph.

NYSE

{name: AvgP, drop}

 [name, price, volume]

[issue, price, capital]

[issue, price, volume]

 {name: maxP, curP}

NASDAQ

Combined
[name, price, volume]

[name, avg, drop]

MaxCur

Expand

Select
Select

Select
Select

Select Select

Select

Select

Select

Select

Transform

Transform

Collapse

Collapse

Expand

MaxCurEv

AvgDropEv

1

2

3

4

5

Maxcur is updated each time a new event is added to
Combined.

y Expand. This is the inverse of Collapse. This arc
links a state to an information space. Associated
with each arc is a collapse rule. When the state at the
source of the arc changes, the destination space is
updated so that the sequence of events it contains
collapses to the new state. Notice that unlike the
other dataflows, expand is non-deterministic. For a
given state, there may be many possible event
sequences which map to the state, or there may be
none. The non-determinism is further constrained by
the need for information spaces to be observably
monotonic: that is, an expansion may not
“undeliver” an event already delivered to a consumer.
We restrict the language to avoid the case in which
there is no possible event sequence, but we exploit
the non-determinism to give flexibility to the
implementation to deliver one of a set of equivalent
event sequences.

In addition to the above four operations, there are two
operations implicit in the graph. Fan-in to an event history
produces a merge of the events --- there is
non-determinism here too, as multiple interleavings are
possible. Fan-out from an event history replicates the
events.

3 Motivating Examples of IFGs

Consider regions 1 and 2 of the stock event system
shown in Figure 1. Each of the regions has an
information space, a collection of producers, and a
collection of consumers with content-based selections on
the events of the information spaces NYSE and NASDAQ.
These regions are examples of “pure content-based
pub/sub” systems. The consumers with content-based
selections correspond to subscribers.

Region 3 represents a service attempting to integrate
the two spaces NYSE and NASDAQ. These exchanges
have different conventions for issue names; therefore it is
desirable to map the local issue names to a common name
via some conversion table. Furthermore, one exchange
delivers trades using price and volume, the other using
price and total capital (price times volume). It is therefore
necessary to map these into either one of the two formats
or a common format. The result is a new information
space Combined, containing the union of the two original
information spaces, but in a common format, enabled by
the use of stateless event transforms. Subscribers to the
new service can deal with this new space and need not
even be aware of the existence of the original suppliers.

Region 4 represents a collection of subscribers to
Combined who are interested in particular stock events,
but whose requirements on guaranteed delivery are
weaker. It should be pointed out that an event history,
such as Combined, has a total order. Even though the
total order depends upon non-deterministic factors, such as
the order in which events from NYSE and events from
NASDAQ are merged, the dataflow semantics discussed in
the previous section guarantee that all subscribers to
Combined receive the events in the same order.
Guaranteeing this total order adds to the cost of the
delivery protocol.

However, the subscribers to region 4 have a weaker
requirement: they are interested only in tracking the
maximum price and current price of each stock issue.
They cannot ignore ordering entirely (otherwise they
might swap today’s price of IBM with yesterday’s price),
but they can ignore the order between today’s IBM price
and today’s HP price. And under appropriate conditions,
messages may be dropped altogether. These subscribers
express this requirement by defining an event
interpretation — a mapping of the event sequence into a
state which captures precisely the information relevant to
these consumers, namely the current and maximum price
of each issue.

The collapse arc converts the event sequence from
Combined into a state representing this event
interpretation. The expand arc converts the state back into
an event sequence. The associated rule on this arc is the
identical rule from the collapse arc. Therefore, the events
in MaxCurEv can be any sequence of events whose
interpretation is the same as the interpretation of the
events in Combined. A trivial solution is to treat the
collapse and expand as a null operation and deliver
exactly the same events to Combined and to MaxCurEv.
However, the non-determinism of expand permits cheaper
solutions, in which some events can be dropped or
permuted. One instance where this flexibility is important
occurs when the subscriber disconnects from the network
without terminating the subscription and later reconnects.
Rather than bombarding the subscriber with all the events
which would have been delivered during the disconnect
period, the system instead delivers a much shorter
equivalent system that preserves the specified
interpretation: the current and maximum price of each
stock. In the next section, we show an algorithm for
computing the minimal event sequence after a disconnect
and reconnect.

Once the collapse operation has been introduced, it is
possible to use it not only for equivalent event sequences,
but also for deriving new types of events from the state. In
region 5, we show a collapse operation introduced to
compute a state AvgDrop which tracks for each stock

issue, the average price and the magnitude of the largest
recent price drop. From that state, we can introduce an
expand operation to produce a new event space named
AvgDropEv. Consumers wishing to be alerted to “alarms”
such as a drop exceeding 20 can then subscribe to this
derived event space.

4 Implementation Techniques

IFGs are logical descriptions of the flow of events in a
system. Ultimately, this description must be realized on a
physical network of message brokers. The problem of
mapping an arbitrary logical IFG to a physical broker
network is nontrivial. If done naively, the performance of
efficient content-based routing systems (such as the one in
[3]) cannot be exploited at all.

In this section, we present solutions to two
implementation problems.

The first problem is the consolidation of transform
operations at the periphery and select operations at the
interior, so that we can use existing techniques for
efficient content-based subscription as the basis for an
implementation of an IFG with both selects and
transforms.

The second problem is how to implement expand by
producing the shortest event sequence corresponding to a
given change in state.

4.1 Reordering Selects and Transforms

Our approach to efficient realization of IFGs is to
reduce an arbitrary IFG to one that can be efficiently
implemented on a content-based routing system. The
basic idea is to rewrite the IFG so that all the select
operations are lumped together and moved closer to
publishers, and all the transform operations are lumped

together and moved closer to the subscribers. (Because
transforms may destroy information, they cannot, in
general be pushed ahead of selects.) This will allow us to
use the content-based routing protocols described in [3] to
implement the select operations within the broker network,
then perform the transform operation at the periphery of
the broker network. Furthermore, we may be able to
optimize away transform operations on events that would
be eliminated by later select operations.

Rewriting the IFG can be done by an automated system
so that, while users specify information flows as a series of
selects and transforms that closely matches the way they
think about the flow and processing of events, the system
can optimize the processing of information flows.

The rules for rewriting graphs are described below.

Selects can be pushed ahead of transforms.
For any dataflow in which a transform TA is followed

by select SA, there is an equivalent dataflow of the form
SB followed by TB. To see how, observe that the predicate
of SA must be a function of constants and the function
outputs of TA. We can construct a predicate for SB that

NYSE

NASDAQ

CombinedP

LargeTrades
P

S
Combined

LargeTradesS

T1

T2
S1; T4

S1; T5

S1; T6

Id

Id

Figure 3: Final optimized IFG

S1

LargeTrades

NYSE NASDAQ

Combined

T1 T2

T3

NYSE NASDAQ

T1 T2

T3

S
Combined

LargeTrades
S

Combined
P

S1
LargeTradesP

Id

Id

Id

Id

NYSE

NASDAQ

CombinedP

LargeTradesP

S
Combined

LargeTrades
S

T1

T2

T1; T3; S1

T2; T3; S1

T3; S1

Id

Id

Figure 2: E xample of graph rewriting

2a: Original graph 2b: External I/S splitting 2c: Publisher to subscriber paths

will choose the same messages as SA, by simply
substituting the appropriate functions of TA for the
attributes in the predicate of SA.

For example (in all of the examples in this section, the
semicolon is used to mean “followed by” in an information
flow):

TA: [x1, x2] => [y1=f1(x1,x2,c1), y2=f2(x1,x2,c2)];
SA: (p(y1,y2,d))
can be rewritten as:
SB: (p(f1(x1,x2,c1), f2(x1,x2,c2),d));
TB: [x1,x2] => [y1=f1(x1,x2,c1), y2=f2(x1,x2,c2)]
where x1,x2,y1,y2 are attribute names, and c1,c2,d are

constants.

Selects and Transforms can be combined.
Observe that a sequence of selects is just a conjunction

of predicates. Thus, selects SA: (p(...)) followed by SB: (q(...))
can be rewritten as SC: (p(...) & q(...)).

Similarly, we can perform variable substitutions from a
first transform into a second. For example:

[x,y] => [y1:=f1(x1,x2,c1), y2:=f2(x1,x2,c2)];
[y1,y2] => [z1:=g1(y1,y2,d1), z2:=g2(y1,y2,d2)]
can be rewritten as
[x,y]=> [z1:=g1(f1(x1,x2,c1),f2(x1,x2,c2),d1),z2:=
 g2(f1(x1,x2,c1),f2(x1,x2,c2),d2)]
By applying the above rewriting rules, any sequence of

selects and transforms can be reduced to a single select
followed by a single transform. For example, starting with
the sequence [T T S T S T], we push selects ahead of
transforms to get [S S T T T], and combine selects and
transforms to get [S T].

Once a dataflow has been reduced so that all paths
from publishers to subscribers may be represented by a
[Select;Transform] pair, the single select can be further
optimized. A straightforward application of the rewriting
rules may cause many common subexpressions to appear
within the combined predicate. A smart implementation
can discover those, just like any good compiler, and avoid
recomputation of sub-functions. Likewise, the final, single
transform will likely contain many common
subexpressions and many of those will have already been
computed for the select. A smart implementation can
cache them and/or tag each selected message with them as
auxiliary attributes.

Externalizing I/S nodes as terminal nodes.
As we combine and rearrange the select and transform

operations specified by an IFG, we may eliminate or
change the meaning of the non-terminal I/S nodes.
However, the users who specify IFGs may wish to use a
non-terminal or internal I/S node as a publication and/or
subscription point. (e.g., the node labeled Combined in

Figure 1.) To avoid losing such I/S nodes due to
rewriting an IFG:
1. For each internal node that may be used as a

publication point we add an explicit terminal node
with an identity arc that connects to the internal
node.

2. For each internal node that may be used as a
subscription point we add an explicit terminal node
with an identity arc from the internal node to the
terminal node.

Thus, all publication and subscription points are
represented by the terminal nodes of the IFG. All arcs and
internal nodes can be subjected to rewriting rules and
optimizations.

Rewriting the entire IFG.
Consider an IFG, G1, with all interesting publication

and subscription points externalized. We can construct an
equivalent IFG, G2, as follows. For each publication and
subscription point in G1, add a like-named publication or
subscription point to G2. For each possible pair (p,s) of
publication and subscription points in G1, if there is a path
from p to s in G1 consisting of arcs labeled with
transforms and/or select operations:

p =>(ts1; ts2; ...; tsk) =>s
then add a single arc from p to s in G2 that is labeled with
the (select;transform) pair of operations that is equivalent
to (ts1; ts2; ...; tsk), as given by the above rewrite rules.

Example
Consider the IFG for stock services shown in Figure

2a. It is similar to Figure 1, integrating two independent
stock markets NYSE and NASDAQ into the combined
information space Combined. In this example, the
messages from both sources must first undergo a lookup
conversion (T1 and T2). A capital field is then added to
each message which is the product of the number of shares
in the trade and the price per share (T3). The new
value-added information space Large Trades is derived
from Combined by using a select operation (S1), which
selects those trades involving over a million dollars.

As shown in Figure 2b, we split each externally visible
I/S into two: one for publishers and another for
subscribers, e.g., Combined is split into CombinedP and
CombinedS. This step is necessary to ensure that, after
transform, all the advertised content is still available to
dynamically joining publishers and subscribers.

Next, we identify all paths in the graph of Figure 2b to
arrive at Figure 2c. For each path that has more than one
select or transform, we then apply the rewrite rules so that
1) selects are moved before transforms and 2) a series of
selects or a series of transforms are combined into a single

instance of each. In this example, we simplify three such
paths:

1. NYSE to LargeTradesS: T1; T3; S, which reduces to:
S1: (price*vol >= 1000000);
T4: [issue, price, vol] => [com=NYS(issue), cap=price*vol]

2. NASDAQ to LargeTradesS: T2; T3; S, which
reduces to:
S1: (price*vol >= 1000000);
T5: [issue, price, vol] => [com=NAS(issue), cap=price*vol]

3. CombinedP to LargeTradesS: T3; S. This reduces to:
S1: (price*vol >= 1000000);
T6: [com, price, vol] => [com, cap=price*vol]

With this, each path from a publisher to a subscriber is
of the form select followed by transform, as shown in
Figure 3.

The selects can now be implemented by an efficient
content-based routing system, and the transforms
performed before delivering to subscribers. Going one
step further, we can combine the individually derived
paths back into a single I/S, which may be implemented as
a content-based publish/subscribe system. These paths can
then be split by adding an additional select based on
message source, then tagging the transforms with a source.
 Before an event is delivered to a subscriber, it is
transformed based on the I/S to which the client
subscribed and the source of the message. Tagged
transforms can be stored in a table for lookup and
execution before the system delivers a message to a client.
New subscriptions coming into any of the subscription
points (Combined or LargeTrades) have their content
filters modified based on the filter arcs out of the root into
these spaces using a simple application of the rewrite
rules.

4.2 Expanding State to Event Streams

Suppose a mobile client subscribes to the IBM events
from the information space MaxCurEv of events
equivalent to the events in Combined using the state
MaxCur defined by the rule shown below:

[n, p], «n: p > maxP, curP¬ � s W «n: p, p¬ � s
[n, p], «n: p > maxP, curP¬ � sW «n: maxP, p¬ � s

(These are the identical rules discussed in the
illustration of collapse in Section 2, except that we are
ignoring the volume field v of events.)

 Say that a number of events have been delivered to
Combined and received by the client, who then
disconnects. Suppose that at this point, the state in
MaxCur is «IBM: 160, 140¬. While the client is disconnected,
a long series of events is published, arriving at a new state
«IBM: 200, 120¬. The mobile client then reconnects to the
system. If the system is able to exploit the knowledge of

the client’s interpretation of event sequences, it should be
able to deliver just the two events [IBM, 200] and [IBM, 120]
rather than the much longer sequence of published events.
The following table shows the original events, the
generated state, and the compressed set of delivered
events.

[IBM, 120]
[IBM, 200]

reconnect:
<IBM: 200, 120>[IBM, 120]
......
<IBM: 200, 180>[IBM, 180]
<IBM: 200, 200>[IBM, 200]

disconnect:
[IBM, 140]<IBM: 160, 140>[IBM, 140]
[IBM, 160]<IBM: 160, 160>[IBM, 160]
[IBM, 150]<IBM: 150, 150>[IBM, 150]

Delivered
Events

States
<issue: maxP,curP>

Original
Events

Given a state space S, a start state s0 and a goal state g
in S, and a collapse rule, the expansion problem is defined
as the generation of the most economical sequence of
events which, starting from s0, yields g. The expansion
problem can be converted into a shortest path graph search
problem. We represent the states in S as vertices in a
graph, and define each possible event transition as an
edge. We then label these edges with a cost. For the
purpose of this paper, we will assume each event has unit
cost 1. Figure 4 shows a fragment of the state transition
diagram for the above example (but for just IBM events --
thus, issue name has been left out of both events and
states).

<160,150>

<200,120>

<200,180> <200,190>

<160,140>

<200,200>

[200]

[120]
[120]

[190]

[150]

[180]

Figure 4: State transition graph for collapse

[200]

S0

g

[120]

To solve the shortest path problem, we use the known
A* algorithm [4]. This algorithm requires an estimator
function h, where h(s) is a lower estimate of the shortest
path from an arbitrary state s to state s0. Working
backwards from the goal state g toward s0, we keep a set of
candidate paths. We sort these paths based upon the
actual length from of the path from g to s plus the
estimated length h(s) from s to s0. Beginning with the
node n at the end of the best candidate path, of length f(n),
we locate that neighbor n’ of n that minimizes (f(n) + 1) +
h(n’). We extend the candidate path in the direction to n’.
(We ignore other neighbors unless and until all candidates
of at least this distance have been explored.)

The problem is to find suitable estimator functions
h(s). One can obtain an estimator h(s) for a particular
graph by constructing an exact solution for an extended
graph with a strict superset of edges. We have developed a
strategy for finding h for an important subclass of
summarization functions — those which can be converted
to the replacement form described below — by solving a
hierarchy of problems.

Let us assume that the incremental formulation of the
summarization function can be represented by a table such
as the following:

cbe3(a,b,c)
aae2(a,b,c)

bae1(a,b,c)

s3s2s1

Each row of the table corresponds to a particular
collection of events meeting a particular condition, and
having parameters, e.g. a, b, and c. Each column of the
table corresponds to a component of the state. Each blank
entry in the table indicates that the event in the
corresponding row leaves the corresponding component of
the state unchanged; each non-blank entry indicates that
the event in the corresponding row replaces the
corresponding component of the state. Not every
summarization function can be put in this form; however
many can, such as the stock example illustrated above.

If a summarization function is in replacement form,
and it contains no rows such as the second in the example
above, in which two or more columns are constrained to be
replaced by the same value, then it is in unconstrained
form. If a summarization function is in unconstrained
form, and each row changes k columns, and for any k
columns there is a row which changes those columns, then
it is in uniform unconstrained form. The exact solution to
a problem in uniform unconstrained form requires a
number of events equal to ceil(m/k), where m is the
number of state components in which the start and goal
states differ. Any problem in unconstrained form but not

uniform unconstrained form can be solved by extending it
to uniform unconstrained form, and using the exact
solution to the extended problem as an estimator for the
original problem, and then applying A*. Similarly, any
problem in constrained form can be extended to
unconstrained form by assuming that all steps except the
first (for which the constraints are known) may follow new
rules in which additional parameters have been added as
necessary to eliminate constraints.

The extension from constrained to unconstrained form,
or from unconstrained to uniform unconstrained form is
equivalent to adding edges to the state graph. The optimal
solution to the extended problem therefore serves as an
estimator for the original problem.

For example, the stock price example can be put into
the form of a constrained problem as follows:

pp <= Maxprice
ppp > Maxprice

CurpriceMaxprice

This problem can be solved by using the corresponding
unconstrained problem as an estimator:

pp <= Maxprice
qpp > Maxprice,q

CurpriceMaxprice

In this case, the estimation function is straightforward:

the estimated distance from start to goal equals the number
of issues for which the current state differs in cur price or
max price from the goal state.

In this example (see Figure 4), finding a path from s0 =
«160, 140¬ to state g = «200, 120¬, the search is
straightforward. Starting at goal state «200, 120¬, we find
that only the second row of the above matrix leads to a
predecessor state, which has the form «200, *¬. For any
value of the second state except 200, the first row is
blocked and therefore the estimated distance from the start
state is 2. For the state «200, 200¬ the estimated distance is
1. We therefore choose state «200, 200¬ as the best
candidate to continue the search. In fact, this state satisfies
the conditions for firing row one of the matrix to reach a
predecessor«*, *¬, so we can insert the start state «160, 140¬.

5 Discussion

5.1 Related Work

Many concepts in Gryphon have been synthesized from
a large base of results in group communication, databases,

programming languages, and software engineering. As
mentioned in Section 1, existing publish/subscribe
technologies were our starting points.

The basic idea of representing system behavior in
terms of the flow of data from inputs through functional
modules to output, is used extensively in software design,
see for example [7]. It is also common practice to allow
software designers to depict the structure of a system using
a high-level visual representation similar to data flow
diagrams. The tool then converts the high-level
representation into lower-level executable code.

Ideas for graph rewriting and analysis of data flow
graphs have their origins in very early work in
programming languages and code optimization in
compilers [2].

Some systems commercially available today (e.g.,
NEON, [11]) claim to support arbitrary filtering and
transforming operations. However, there is scant literature
on the exact technical nature of these operations. It is not
clear that these systems support a systematic approach to
specifying the flow of events. Furthermore, there is no
evidence that these systems support efficient routing of
events by optimizing IFGs and mapping them to
distributed broker networks.

5.2 Current Status and Future Work

We have developed a Gryphon system prototype that
supports content-based publish/subscribe via efficient
matching and multi-broker networks. We have also
developed initial prototypes of tools for supporting
stateless and stateful information flows. One tool supports
the visual specification of information flow graphs and
applies the rules of Section 3 to rewrite the graph.
Another tool supports a restricted language to specify the
meaning of event sequences, using which the tool
generates equivalent, but shorter event sequences.

Several directions of work are ongoing and appear
promising. Besides extending our graph rewriting
techniques to encompass a more expressive language, we
are working on ways to efficiently map optimized IFGs
onto physical broker networks of various configurations.
We are also incorporating protocols for reliable and
ordered delivery within this framework of event
distribution middleware.

We believe that stateful operations within IFGs are the
next major step in the functionality of event distribution
middleware. We are currently exploring the breadth of
applicability of derived events and equivalent event
sequences. Finally, we are beginning to deploy this new
generation of event distribution middleware in real-world
application integration scenarios.

6 Bibliography

[1] Marcos Aguilera, Rob Strom, Daniel Sturman, Mark Astley,
Tushar Chandra. 1999. Proceedings of ACM Symposium on
Principles of Distributed Computing, 1999, Atlanta, GA.

[2] Aho, A., Sethi, R., and Ullman, J. 1985. Compilers,
Principles, Techniques, and Tools. Addison-Wesley
publishing, Reading, MA.

[3] Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J.,
Strom, R., Sturman, D. 1999. “An Efficient Multicast
Protocol for Content-based Publish-Subscribe Systems”,
Proceedings of IEEE International Conference on
Distributed Computing Systems ‘99, Austin, TX.

[4] Barr, A., and Feigenbaum, Edward A. 1986. The
Handbook of Artificial Intelligence. Volume 1.
Addison-Wesley Publishing, Reading, MA.

[5] K. P. Birman. “The process group approach to reliable
distributed computing,” pages 36-53, Communications of
the ACM, Vol. 36, No. 12, Dec. 1993.

[6] Antonio Carzaniga, Architectures for an Event Notification
Service Scalable to Wide-area Networks''. Ph.D. Thesis.
Politecnico di Milano. December, 1998. Available from
http://www.cs.colorado.edu/~carzanig/papers/

[7] Ghezzi, C., Jazayeri, M., and Mandrioli, D. 1991.
Fundamentals of Software Engineering. Prentice-Hall,
Englewood Cliffs, NJ.

[8] John Gough and Glenn Smith. “Efficient Recognition of
Events in a Distributed System,” Proceedings of ACSC-18,
Adelaide, Australia, 1995.

[9] Shivakant Mishra, Larry L. Peterson, and Richard D.
Schlichting. Consul: A Communication Substrate for
Fault-Tolerant Distributed Programs, Dept. of computer
science, The University of Arizona, TR 91-32, Nov. 1991.

[10] Object Management Group. CORBA services: Common
Object Service Specification. Technical report, Object
Management Group, July 1998.

[11] New Era of Networks (NEON). http://www.neonsoft.com.
[12] Brian Oki, Manfred Pfluegl, Alex Siegel, Dale Skeen. “The

Information Bus - An Architecture for Extensible
Distributed Systems,” pages 58-68, Operating Systems
Review, Vol. 27, No. 5, Dec. 1993.

[13] David Powell (Guest editor). “Group Communication”,
pages 50-97, Communications of the ACM, Vol. 39, No. 4,
April 1996.

[14] Bill Segall and David Arnold. “Elvin has left the building:
A publish/subscribe notification service with quenching,”
Proceedings of AUUG97, Brisbane, Austrailia, September,
1997.

[15] Dale Skeen. Vitria's Publish-Subscribe Architecture:
Publish-Subscribe Overview, http://www.vitria.com/

