
RESOURCE MANAGEMENT IN SINGLE-CHIP

MULTIPROCESSORS

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Kelly A. Shaw

March 2005

c© Copyright by Kelly A. Shaw 2005

All Rights Reserved

ii

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

William J. Dally
(Principal Adviser)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Margaret Martonosi

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Oyekunle A. Olukotun

Approved for the University Committee on Graduate

Studies.

iii

Preface

iv

Technology advances will soon enable billion transistor chips, permitting large

quantities of both logic and memory to be placed on a single die. Increasing on-

chip wire delays, however, are shrinking the chip area reachable in a single clock

cycle. In response, computer architects are redesigning on-chip structures to reduce

the distance signals must travel in one clock period. Single-chip multiprocessors are

one proposed architecture for dealing with the multi-cycle communication latencies

affecting future chips. These chips are organized into a grid of nodes, where each

node contains a processor and a portion of the total on-chip memory. Although these

nodes function independently, they interact via shared memory through a network

with the property that latency increases linearly based on Manhattan distance.

This dissertation examines how to efficiently map applications onto single-chip

multiprocessors given these chips’ constraints and opportunities. The small amount

of per-node storage limits how much data can be placed on any given node, while the

ample processing resources and high bandwidth, low-latency on-chip communication

create a large number of quickly accessible locations where data and threads can re-

side. In order to achieve high performance on these chips, applications must balance

the competing goals of improving locality and of distributing resource demands across

the chips’ many nodes. I present two symbiotic approaches for managing these chips’

resources. The first technique, migration of data and threads, reacts to dynamic

resource demands and communication patterns to avoid resource hot-spotting and

improve locality. The second approach proactively eliminates communication by ex-

ecuting computation at the location of its most frequently accessed data, its anchor.

Finally, I show how these techniques can be used in conjunction with well-established

techniques, like caching, to further improve application performance.

v

Acknowledgement

vi

This dissertation would not have been possible without the help and encourage-

ment of a large group of people. I would like to begin by thanking my advisor, Bill

Dally, for helping to shape my understanding of computer architecture research. One

particularly valuable lesson Bill has taught me is the importance of considering tech-

nology’s impact on the research you’re proposing. Over the years, he has also helped

me understand that research is really a progression of your ideas, where new ideas

grow out of the understanding you gained from earlier ideas. Most importantly, I

learned from Bill how to have confidence in my research.

Margaret Martonosi of Princeton University has been a wonderful mentor and

friend to me since 1996. I cannot thank her enough for the time she has dedicated

to helping me work through my thesis research. Her enthusiasm as we discussed

my research results always motivated me to work harder and faster to get the next

results. I will forever be grateful to her for always making time for me and for her

encouragement, compassion, and understanding.

I would also like to thank Kunle Olukotun for serving on my Reading Committee

and Mendel Rosenblum for serving on my Orals Committee. I had the good fortune

of also working with Kunle, Mendel, and Christos Kozyrakis as a teaching assistant.

I learned a great deal from all three of them about teaching and appreciate their

willingness to let me develop my own teaching skills, using the students in their

classes as my test subjects.

Carla Ellis of Duke University has been a huge supporter and friend to me since

college. She has been there whenever I have been unsure of the best path to take,

encouraging me to do my best and reassuring me of my abilities. Carla has also been

a great hiking buddy and explorer; I am always curious if we’re going to somehow or

another get ourselves into trouble when we get together.

I also would like to thank Dan Sturman and Tushar Chandra, who I worked with at

IBM’s TJ Watson Research Lab. Although I only worked with them for a summer,

they’ve both kept tabs on me throughout the years. I particularly want to thank

Tushar for helping me realize the many choices open to me once I left Stanford.

Much of what I learned in graduate school was from the other students in the

vii

CVA research group. I would like to thank Andrew Chang, Whay Sing Lee, Li-

Shiuan Peh, Mattan Erez, and Abhishek Das in particular for their friendship and

guidance. Andrew and Whay were my thesis (and life) coaches as well as being great

friends. Graduate school was never the same once they finished. Not only did Li-

Shiuan brighten up my days with gossip, she helped me gain perspective on graduate

school and didn’t mind me crashing at her place in Princeton. Mattan taught me

tons about interacting with people different from me, spent many hours helping me

with my research, and also livened up my afternoons with silly conversations in the

office. Finally, Abhishek was the best officemate I could have had for my last years

of graduate school. Thanks for all the cheers when things went well.

I was lucky to have three other graduate students to meet with on a weekly basis

to discuss our research, life as a graduate student, and life in general. I owe a great

deal to Beth Seamans, Bob Kunz, and Ayodele Thomas for their support through the

last few years of graduate school. Their many suggestions improved my research and

my abilities as a researcher. Their encouragement helped see me through to the end.

Beth, in particular, helped me through each of the graduate school hurdles, starting

my first year.

I need to thank Tim Purcell and Vicky Wong for getting me through my qualifying

exams and not minding my dictatorial way of running our meetings. The same

appreciation goes to Sameer Qureshi, Silas (Marner) Boyd-Wickizer, Howard Tsai,

and Lance Hammond for putting up with me during my teaching stints at Stanford.

I could never have completed my research without help from the system admin-

istrators in the Computer Systems Lab. Not only did Charlie Orgish, Kevin Colton,

and Joe Little keep things running, but they came to my rescue many times through-

out the years. Somehow they would always find a way for me to get my work done.

Without the help of the many administrators in the Computer Science Depart-

ment, I would never have managed to navigate the quagmire of Stanford bureaucracy.

I’d like to thank Pamela Elliott, Kathi DiTommaso, Indira Choudhury, Peche Turner,

Jam Kiattinant, Suzanne Bigas, Thea (the key lady), and the rest of the second floor

administrators for all of their help and goodwill.

I also need to thank the many friends I made during graduate school who just made

viii

life fun. Liadan Boyen, Greg Humphreys, and Jessica Humphreys have been steadfast

friends for years. They’ve listened to me complain, laughed at my silliness and my

foibles, and been there whenever I needed a shoulder to lean on. Rachel Weinstein

brought hilarity back to the office hallway during my last years at Stanford. She also

inspired me to make things better for younger women at Stanford. I’ve had some

great times hanging out with Ravi Soundararajan, Janet Wu, Andrew Chang, and

Whay S. Lee outside of Stanford. Aarati Martino, Diane Tang, Aaron Stump, Qi Sun,

Suzanne Rivoire, Rebecca Schultz, and Marija Vrljic also brought levity and frivolity

to my years at Stanford.

The people I met in California who were not affiliated with Stanford reminded

me that life existed outside of graduate school. I cannot thank them enough for the

reminders! In particular, I’d like to thank the Sun ladies - Val Henson, Val Bubb, and

Tabriz Leman. They gave me a glimpse of being young, smart, *and* female in the

Bay area. My yoga lady friend Heidi Kikiwada forever impressed me by how good a

person she is; she also took me to Giants games! Volunteering with Lorraine Michelle

at the Support Network for Battered Women gave me the opportunity to help others

and reminded me that I had lots of useful skills. Although I only volunteered for three

months, Lorraine’s easy way of encouraging people and making them feel great has

had a profound effect on how I try to treat people. Additionally, I’d like to thank my

British neighbor, Micky Willmott, for just being herself on our daily train commute.

Thanks also to Tom Kruse and Vikram Asrani.

I’m thankful to my college buddies for their friendship over the years. These

people include Andy David (my trumpet buddy), Lenore Ramm, Eric Gramond (my

Frenchman), Billee Jo Kelder, Jen Yates, Jeanette Bennett, Jon Snitow (my friend

from Princeton), and Rob (Wob) Flowers. I also have to thank Rachel Pottinger and

Steve Wolfman. I’ve known them both since the beginning of freshman year. Over

the years, they’ve been my friends, roommates, work partners, and unofficial tutors.

I’ve learned from observing them each individually as well as from observing them as

a couple. They’ve been there for me every time I needed them, and they inspire me

to try to be the person I want to be.

ix

I’d like to thank my family for their support. My sisters and brothers have pro-

tected, supported, and encouraged me throughout my life. As they added people to

our family, those people joined in and brought new joy to my life and taught me new

things about myself and about life. There is not enough space to do justice to all that

I have to be grateful for from my family, so I will just list my siblings from oldest to

youngest and specify their families. My oldest sister Lisa Brideau and her husband

Norman have two adorable children, Jessica and Justin. My brother Ronald DeGraw

and his wife Heidi have a really cute daughter named Lizzie. My brother Russell

DeGraw and his wife Tracy have two children, Skylar and Braden. My sister Cathy

Smith has three sons, Freddie, Shahiem, and Billique. My twin sister Marianne Shaw

is married to Steven Rubenstein. Steven and their two dogs, Greta (the Weimaraner)

and Lola (the Redbone Coonhound), have added oodles of entertainment to my life.

Steven’s large and confusing family has also been extremely welcoming and supportive

during my years of graduate school.

Finally, I have to add a very special thank you to my sisters Lisa and Marianne.

They have been the constants in my life (along with my teddy bear). They have

always encouraged me to be the best I can be, they have stepped in whenever I

needed help, and they have let me be who I am even when they didn’t necessarily

approve. This dissertation is dedicated to them. Without them, I would not be here.

x

Contents

Preface iv

Acknowledgement vi

1 Introduction 1

1.1 Technology Trends . 3

1.2 Single-Chip Multiprocessors . 5

1.3 Single-Chip Multiprocessor Challenges 8

1.4 Contributions . 9

1.5 Roadmap . 10

2 Application Characterization 12

2.1 An Example Application: barnes-hut 13

2.1.1 Description . 13

2.1.2 Resource Demands . 14

2.2 Two Program Decomposition Styles 16

2.2.1 Heavyweight threads . 16

2.2.2 Lightweight threads . 17

2.2.3 Comparison . 18

2.3 Resource demands . 18

2.3.1 Computation . 18

2.3.2 Communication . 20

2.4 Communication patterns . 21

2.4.1 Inherent application communication patterns 21

xi

2.4.2 Description of object interaction parameters 22

2.4.3 Graphing Object Relationships 24

2.5 Conclusions . 26

3 Application Descriptions 27

3.1 Application Description . 28

3.1.1 raytrace . 28

3.1.2 nbody . 31

3.1.3 barnes-hut . 31

3.1.4 equake . 32

3.2 Decomposition into Threads and Data Objects 33

3.3 Resource Demands . 34

3.3.1 Cumulative Application Demands 35

3.3.2 Variability . 36

3.4 Communication Patterns . 42

3.5 Summary . 47

4 Reactive Approach - Migration 48

4.1 Impact of Object Placement on Runtime Information 49

4.1.1 Observable communication patterns 50

4.1.2 Nodes’ resource demands . 52

4.2 Migrating Based on Directed Forces 52

4.2.1 Movement Policy . 53

4.2.2 Invocation Policy . 60

4.3 Exploring Migration Potential . 61

4.3.1 Repulsion Forces . 64

4.3.2 Adding Attraction Forces to Repulsion Forces 65

4.4 Examining Larger Applications . 71

4.4.1 Real applications: execution time improvement 72

4.4.2 Performance impact of migration as processor speed increases 74

4.5 Directory Traffic . 74

4.6 Conclusions . 76

xii

5 Proactive Approach - Anchors 77

5.1 Moving Computation to Data . 78

5.2 An Example: Barnes-Hut . 80

5.2.1 Benefits: Reduced and Clarified Communication 81

5.2.2 Performance Limiting Overheads 83

5.2.3 Cost-Benefit Analysis . 84

5.3 Analyzing the Impact of Changing Costs 84

5.3.1 Synthetic Benchmark Description 85

5.3.2 Communication Benefits from Using Anchors 85

5.3.3 Impact of Remote Invocation Costs 92

5.3.4 Summary . 95

5.4 Benefits of using anchors on full applications 96

5.4.1 Adding Subthreads and Anchors to Applications 96

5.4.2 Application Results . 97

5.5 Anchors Plus Migration . 100

5.6 Conclusions . 104

6 Comparison to Caching 105

6.1 Communication Produced by Caches 107

6.1.1 Communication Description 107

6.1.2 Directory Overhead . 110

6.1.3 Potential Improvements beyond Caching 110

6.2 Workload Characterization . 112

6.3 Combining Migration with Caches . 116

6.3.1 Data Migration . 116

6.3.2 Thread Migration . 119

6.4 Anchors and Caches . 121

6.4.1 General Comparison . 121

6.4.2 Anchors versus Caching . 124

6.4.3 Caching and Anchors . 128

6.5 Application Summary . 130

xiii

6.6 Conclusions . 131

7 Related Work 132

7.1 Technology Trends . 133

7.2 Single-Chip Multiprocessors . 134

7.3 Migration . 135

7.3.1 Thread Migration . 135

7.3.2 Data Migration . 136

7.4 Thread Decomposition . 137

7.4.1 Executing computation at data’s location 137

7.4.2 Compiler optimizations . 138

7.5 Conclusions . 138

8 Conclusions 139

8.1 Thesis Summary . 140

8.2 Future Directions . 142

Bibliography 143

xiv

List of Tables

1.1 Ongoing projects assuming multi-cycle chip latencies 5

1.2 Baseline architecture for single-chip multiprocessors 7

1.3 Differences between multi-chip and single-chip multiprocessors 8

2.1 Explicit object relationships . 21

2.2 Implicit object relationships . 22

2.3 Explicit and implicit relationships in barnes-hut 22

3.1 Application descriptions . 29

3.2 Cumulative breakdown of application events 35

3.3 Variation in applications’ thread lifetimes 36

3.4 Cumulative data reference frequencies 40

3.5 Application communication patterns 44

3.6 Summary of application characteristics 47

4.1 Description of synthetic benchmarks 61

4.2 Summary of application characteristics 71

5.1 Synthetic benchmarks’ defining parameters. 86

6.1 Impact of caching on number of data requests reaching memory . . . 117

6.2 Recommended techniques for each application 130

xv

List of Figures

1.1 Chip area reachable in single clock cycle 4

1.2 Baseline single-chip multiprocessor 6

2.1 Organization of data in barnes-hut 15

2.2 Decomposition of thread from barnes-hut into clusters 23

3.1 Data structures in raytrace . 30

3.2 Thread lifetimes in raytrace . 38

3.3 Thread lifetimes in barnes-hut . 39

3.4 Thread lifetimes in equake . 39

3.5 Data access frequencies in raytrace 41

3.6 Data access frequencies in barnes-hut 41

3.7 Data access frequencies in equake . 42

3.8 Working set similarity among threads in raytrace 46

3.9 Working set similarity among threads in equake 46

4.1 Communication distance in single-chip multiprocessors 50

4.2 Communication patterns among data and threads 51

4.3 Creation of migration forces from attraction and repulsion forces . . . 53

4.4 Example calculation of attraction forces 55

4.5 Impact of single-hop locality improvement 55

4.6 Example calculation of repulsion forces 58

4.7 Possible outcomes of combining attraction and repulsion forces 59

4.8 Example migration based on attraction and repulsion forces 60

xvi

4.9 Initial placement of objects in resource-imbalance benchmark 62

4.10 Execution times for resource-imbalance using migration 63

4.11 Execution times for single-unshared using migration 65

4.12 Execution times when data have clear communication patterns 67

4.13 Execution times when threads have clear communication patterns . . 69

4.14 Execution times when no objects have clear communication patterns . 70

4.15 Application execution times using migration 73

4.16 Execution times for raytrace as processor speed increases 75

5.1 Decomposition of thread into clusters 79

5.2 Application of anchor technique to thread 79

5.3 Clarification of communication patterns achieved by using anchors . . 82

5.4 Execution times of single-nosubthreads using anchors 87

5.5 Communication demands of single-nosubthreads using anchors 88

5.6 Distance between data and the center of its references 88

5.7 Temperature graph of the optimal locations for data 89

5.8 Execution times for multithreading benchmarks using anchors 90

5.9 Communication demands of multithreading benchmarks using anchors 90

5.10 Execution times of single-nosubthreads-compute using anchors 91

5.11 Impact of state size on anchor technique 92

5.12 Impact of remote invocation latency on anchor technique 94

5.13 Impact of number of nodes executhing threads on anchor technique . 95

5.14 Execution times for raytrace using anchor technique 97

5.15 Execution times of barnes-hut using anchor technique 98

5.16 Execution times for nbody using anchor technique 99

5.17 Temperature graph showing optimal data placements in barnes-hut . 99

5.18 Communication demands for nbody using anchor technique 100

5.19 Final locations of data when using anchor and migration techniques . 101

5.20 Execution times when using anchor and migration techniques 102

5.21 Execution times when migration state exchange frequency varies . . . 103

6.1 Remote request protocol in cacheless system 108

xvii

6.2 Remote request protocol in system with caching 109

6.3 Example object placement created when using anchors and migration 111

6.4 Execution times at different cache sizes and multithreading levels . . 113

6.5 Breakdown of messages into memory and cache coherence types . . . 114

6.6 Communication demands as cache size varies 115

6.7 Execution times using data migration in system with caching 118

6.8 Execution times using thread migration in system with caching 120

6.9 Number of messages sent in systems with and without caches 123

6.10 Comparison of execution times for caching and anchor technique . . . 125

6.11 Comparison of communication for caching and anchor technique . . . 127

6.12 Execution times when caching and anchor techique used 129

6.13 Communication demands when caching and anchor technique used . . 130

xviii

Chapter 1

Introduction

1

CHAPTER 1. INTRODUCTION 2

The computer industry has enjoyed doubling transistor counts every 18 months

for more than 20 years. This growth in capacity has enabled manufacturers to place

larger data structures and increasingly complex processors on individual chips. The

resulting generations of processors run at faster clock speeds and require more chip

area. These phenomenal advances, however, have begun to be plagued by two new

trends, namely increasing on-chip wire delays and tapering performance gains from

additional exploitation of instruction level parallelism. In a given clock cycle, smaller

fractions of chips can be reached, a consequence of increasing transistor counts and

wire delays. At the same time, dedicating larger chip areas to single, complex pro-

cessor cores obtains only small performance speedups.

Faced with these new constraints, researchers have begun examining new ways

to design chips. By strategically decomposing long wires into a series of short wires

connected by repeaters, wire delays become proportional to the number of short

wires traversed. However, even these constant delays inhibit the use of global control

traditionally used in uniprocessor chip design. Designers, consequently, are creating

chip architectures with decentralized control which are simply parallel architectures

on individual chips.

Single-chip multiprocessors are one approach to using the abundant on-chip tran-

sistor counts while accounting for constant, across-chip wire delays. Instead of placing

a few complex, superscalar cores on a single chip, many single-issue, in-order cores

and memory populate the same total area. These chips are organized into a grid of

nodes, where each node contains a processor and a portion of the total on-chip mem-

ory. Although these nodes function independently, they interact via shared memory

through a network where latency increases linearly based on Manhattan distance.

The challenges facing users of these single-chip multiprocessors resemble those

encountered in earlier multiprocessor systems, namely load balancing and locality.

However, single-chip multiprocessors differ significantly enough from earlier multipro-

cessors in terms of per processor storage and remote communication latencies that

solutions that improved performance in earlier systems have limited applicability in

this new domain.

CHAPTER 1. INTRODUCTION 3

This thesis examines how to efficiently map applications onto single-chip multi-

processors given these chips’ constraints, limited on-chip storage, and opportunities,

ample processing resources and high bandwidth, low-latency on-chip communication.

By analyzing application information about communication patterns and resource

demands available at compile and runtime, we create techniques that improve ap-

plication performance by making better decisions about the placement of data and

threads across the chip. In particular, we present a strategy which simultaneously

reduces communication demands and distributes resource demands. We also show

that results from our application analysis can be used statically to create new thread

decompositions which enable improved data and thread mappings on single chip mul-

tiprocessors. Finally, we show how these techniques can be used in conjunction with

well-established techniques, like caching, to further improve application performance.

1.1 Technology Trends

Advances in chip transistor capacities have enabled increasingly complex, faster, and

more powerful processors to be manufactured. Transistor densities, however, repre-

sent an important, but not comprehensive, factor in chip performance; wires connect-

ing transistors influence performance as well. In fact, the relative performance impact

of wire delays is growing. As wire widths have decreased, wire resistances have in-

creased, creating larger signal propagation delays. Combined with growing transistor

capacities and chip sizes, the fraction of chip area reachable at a given clock rate is

decreasing as seen in Figure 1.1.

One approach to reducing the impact of wire delays includes breaking long wires

into a series of short wires connected by repeaters. Instead of delay growing quadrati-

cally with wire length, it grows linearly. This design approach to on-chip interconnect

results in multi-cycle chip latencies. Consequently, global control of chips becomes

more difficult to achieve, making uniprocessor architectures less appealing.

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Chip area reachable in single clock cycle taken from Matzke’s “Will
Physical Scalability Sabotage Performance Gains”[36]. c©1997 IEEE

CHAPTER 1. INTRODUCTION 5

Table 1.1: Ongoing projects assuming multi-cycle chip latencies.

Project Description

Smart Memories A single chip is divided into tiles which each include a processor,
reconfigurable memory, and a network interface. The project
is exploring the usefulness of providing reconfigurability on a
larger scale. They have made the on-tile memory reconfigurable
and allow multiple adjacent tiles to function together as a single
processing entity.

MIT RAW The RAW project divides a chip into many small tiles, each
containing a processor, memory, configurable logic, and a pro-
grammable switch. Communication between tiles is fast and
generally orchestrated by the compiler although a slower dy-
namic network exists when communication can not be scheduled
statically.

TRIPS This project at the University of Texas divides a single-chip into
two large grid processors. Each grid processor contains an array
of executing nodes. Nodes in the array are connected to their
nearest-neighbors but can send messages to any other node in
the array. The goal of this architecture is to allow these arrays
to be reconfigured in order to provide the appearance of different
types of architectures suited for different application types.

1.2 Single-Chip Multiprocessors

Computer architects must accomodate these multi-cycle latencies in their designs.

One approach being taken is to decompose chips into multiple regions, where all

structures in a given region can be reached in a single cycle. Communication between

regions takes multiple cycles depending on the distance between these regions. The

intuition behind this chip design is that each region operates independently, enabling

the region to run at a fast clock rate. In order for this approach to achieve high

performance, however, multi-cycle communication latenices must be either tolerated

or minimized.

Table 1.1 lists three projects currently incorporating this type of chip design. In

CHAPTER 1. INTRODUCTION 6

Switch

6 Flits / cycle

4 virtual

channels

Injection/Ejection

1 Flit / cycle

b) Node

1 GHz

CPU

1 MB

Mem

Network

Interface

1 cycle

1
 c

y
c
 le

8 Nodes

8
 N

 o
 d

 e
 s

a) Chip c) Router

Figure 1.2: Baseline single-chip multiprocessor

this thesis, we define a single-chip multiprocessor to include the recurring features of

these architectures, namely

• chips consist of multiple, independent processing nodes,

• each processing node contains limited storage which is globally accessible, and

• communication takes 1 cycle between adjacent nodes and increases linearly with

Manhattan distance.

Our conclusions apply to all of these chips regardless of additional architecture

dependent features.

Figure 1.2 and Table 1.2 depict the parameters of our baseline architecture. A

single chip contains 64 nodes organized in an 8x8 grid. Each node contains a processor

core similar to a MIPS R5000, a portion of the on-chip memory, and a network

CHAPTER 1. INTRODUCTION 7

Table 1.2: Baseline architecture for single-chip multiprocessors

Parameter Value

Nodes 64
Processor Single-issue, in-order, 1GHz CPU

CPI=1 for all non-memory instructions
Hardware Thread Contexts 8
Per Node Memory 1 MB
Node Memory Access Time 0 cycles
On-chip Network 8x8 mesh
Flit Size 8B (equal to read request)
Per Node Physical Channels 6 (N, S, E, W, injection, ejection)
Injection Channel Buffers 16 Messages
Ejection Channel Buffers Infinite
Virtual Channels Per Physical Channel 4
Per Virtual Channel Buffers 8
Hop Latency 1 cycle
Off-chip Memory Access Time 50 cycles

interface to the on-chip network. Specifically, each node includes a single-issue, in-

order processor with 8 hardware thread contexts. The processor clock rate is relatively

slow, 1 GHz. We assume a zero cycle latency for switching between thread contexts.

64MB of memory are divided equally among nodes on the chip, and each processor

can access the memory on its node within a single cycle.

A mesh network connects the nodes together. Consequently, each node has six

channels, one to each of its neighbors and one each for injection and ejection. Nodes

can buffer up to 16 messages to be injected into the network. The channels con-

necting nodes are 8B wide, the size of a memory request, and operate at the same

rate as the processor. Table 1.2 specifies the additional parameters determining net-

work bandwidth. With respect to latency, the mesh network allows adjacent nodes to

communicate in one processor cycle and the communication latency to remote nodes

equals the number of nodes traversed times the clock cycle, without contention. Al-

though not modeled in detail, off-chip DRAM can be accessed with a fixed latency of

50 cycles.

CHAPTER 1. INTRODUCTION 8

Table 1.3: Key differences between multi-chip and single-chip multiprocessor systems

Parameter Multi-chip Single-chip

Cache Multiple Levels (32KB L1
/ 1 MB L2)

Single Level (32-64KB)

Local Memory 32+ MB 1MB
Remote Memory Access 100s cycles 10s cycles (distance de-

pendent)

1.3 Single-Chip Multiprocessor Challenges

Single-chip multiprocessors resemble the multi-chip multiprocessors examined exten-

sively in the 1990s. Obtaining high performance in both of these systems requires

distribution of work across all of the available processors. Additionally, reducing

remote memory access times is essential to keeping these processors busy.

Despite these similarities, single-chip multiprocessors exhibit several distinct char-

acteristics from multi-chip multiprocessors. First, the amount of storage available at

each processor is significantly smaller than in a multi-chip system. Because a fixed

area can be reached in a single clock cycle, a fixed amount of storage can be reached

in a single cycle. Second, the on-chip communication network connecting process-

ing nodes differs substantially from the off-chip networks used in multi-chip designs.

Nodes on a single chip interact via a high-bandwidth, low latency network. Com-

munication between neighboring nodes is fast (1 clock cycle) and latencies between

distant nodes increase linearly with Manhattan distance. In contrast, multi-chip re-

mote accesses took 100s of clock cycles regardless of the destination node’s physical

proximity to the requesting node. Finally, although single-chip multiprocessors have a

high-bandwidth network, their network usage frequency is likely to outpace between-

chip transfers simply due to the limited amount of per node storage. Nodes will need

to collectively share all on-chip memory. Contention for network resources, therefore,

will become a concern in these systems.

Table 1.3 summarizes the key differences between single- and multi-chip multi-

processors. These differences motivate re-exploration of techniques that distribute

CHAPTER 1. INTRODUCTION 9

resource demands and reduce remote memory latencies. Techniques that improved

performance in the multi-chip domain do not necessarily suit the single-chip environ-

ment. For example, extensive caching enables multi-chip multiprocessors to reduce

memory access latencies, however, the limited per-node storage in single-chip systems

makes this approach infeasible on the same scale.

1.4 Contributions

In this thesis, we examine the two main challenges to achieving high performance in

parallel architectures: distributing resource demands and reducing communication la-

tency. These goals frequently conflict, making their simultaneous fulfillment difficult.

The large number of nodes on a single chip combined with the linearly increasing la-

tency function for communication among those nodes insure this conflict will strongly

influence single-chip multiprocessor performance.

Consequently, the first component of this research examines how the underlying

architecture impacts the interactions between application objects, a generic term used

to encompass both threads and data. We create a framework for characterizing the

resource demands of these objects in terms of computation, communication, and

storage and characterizing the inherent communication patterns among these objects.

This framework provides an architecture-independent view of the possible application

traits. We use this framework to pinpoint which application traits will perform poorly

on single-chip multiprocessors.

The second component of this research presents a simple migration strategy which

simultaneously distributes resource demands and reduces communication latency.

The technique builds specifically on the distinctive communication properties of single-

chip multiprocessors. In the network we consider, communication latencies between

adjacent nodes are small but increase linearly with Manhattan distance. Interact-

ing data and threads can therefore be placed on nearby nodes without incurring large

communication latency penalties. We use this property to design a migration strategy

which moves data and threads to nearby nodes in order to alleviate nodes’ resource

demands and/or reduce an object’s communication distance. Our strategy represents

CHAPTER 1. INTRODUCTION 10

these two conflicting goals as directed forces. When combined, the resulting migration

force specifies the neighboring node which best satisifies both of these goals.

Because our migration strategy relies on dynamically visible communication pat-

terns, it cannot always improve an object’s locality despite the presence of locality

inherent in the application; the mapping of objects onto the architecture obscures

the relationships between objects. Often this occurs because different threads use

the same set of data at different points in time; thus, there are connections between

the data being used, but the observable connections are between each data object

and the requesting threads, not among the data objects. The best solution for ob-

taining good performance, therefore, requires avoiding these types of mappings. We,

therefore, analyze which application traits and mapping strategies obscure inherent

application locality.

In the third component of our research, we present and evaluate a technique

called anchors which statically modifies the application to prevent obfuscation of

these inherent communication patterns. Specifically, application code is changed to

expose these patterns. Threads are decomposed into sub-threads based on the clusters

of data those threads use over time. Each sub-thread then executes at the location

of a representative, or anchor, chosen from the associated data cluster. Doing so

insures that communication patterns among data, not just between data and threads,

become visible to potential optimizations like our migration strategy. A larger set of

applications can therefore be shaped to perform well on single-chip multiprocessors.

1.5 Roadmap

The presentation of our research begins with the introduction of our application

characterization framework in Chapter 2. We present the basic terminology used

throughout the remainder of the thesis. In particular, we specify the resource demands

exhibited by both threads and data and delineate the different types of communication

relationships exhisting among these objects. In Chapter 3, we describe the synthetic

benchmarks and applications used in our studies and explain how each application

fits into our framework.

CHAPTER 1. INTRODUCTION 11

Chapter 4 describes our force-based migration strategy. After giving a detailed

description of the migration algorithm, we use synthetic benchmarks to analyze the

performance of this migration technique on different application characteristics and

mappings. We then proceed to analyzing the performance of full applications. Based

on our analysis, we explain the limitations and possible improvements for this tech-

nique.

Our anchor approach provides a solution for limitations of the migration strategy.

Chapter 5 presents simple equations to explain the intuition behind anchors and then

explores how different parameters impact the costs of applying this technique. We

use full-sized applications to show how static approaches like anchors become even

more important to improving performance as processors become relatively faster than

communication networks.

Finally, we show how these two techniques compare to existing techniques for

reducing communication latency. We show that these techniques can be used to im-

prove performance on single-chip multiprocessors incorporating caches on each node

in addition to being used on cacheless systems. Chapter 6 uses full-length applications

to explore the impact of the different system designs and application characteristics

on the usefulness of the three approaches. We finish by discussing related work in

Chapter 7 and concluding in Chapter 8.

Chapter 2

Application Characterization

12

CHAPTER 2. APPLICATION CHARACTERIZATION 13

The single-chip multiprocessor architecture explored in this work exhibits several

characteristics that need to be accounted for when decomposing applications into

threads and data and when distributing those threads and data across the nodes of

a chip. First, these chips offer large quantities of parallel processing resources. Not

only can a single thread execute independently on each node, but executing additional

threads per node will mask remote memory access latencies. Second, individual nodes

contain limited memory but can quickly access remote on-chip memory via the fast

and high bandwidth communication network. Third, these architectures can create

lightweight threads quickly (around 11 cycles) and can switch between threads quickly

[28].

In this chapter, we present a framework used to help decompose applications into

threads and data and then distribute the threads and data across the chip. We

describe the information available in each application that can be used to create

informed data and thread placements. For each application we examine, we extract

the resource demands exhibited by individual threads and data and the architecture-

independent communication links among data and threads. This information is used

throughout the rest of this dissertation to improve data and thread placements so that

unevenly distributed resource demands are avoided and communication demands are

reduced.

2.1 An Example Application: barnes-hut

Throughout this chapter, we use the barnes-hut application to illustrate which in-

formation we extract from applications and explain why we use that information in

our framework. We first describe the application’s organization and then discuss its

resource demands and its inherent communication patterns.

2.1.1 Description

barnes-hut is an optimized version of the n-body problem. N-body problems simulate

the influence that each body exerts on all of the other n-1 bodies in a system. For

CHAPTER 2. APPLICATION CHARACTERIZATION 14

example, galaxy simulation calculates how different bodies’ masses and velocities

affect one another’s locations and velocities. The further bodies are apart from one

another, or the less mass they have, the smaller impact they have on one another.

barnes-hut exploits this property to reduce the amount of computation performed;

multiple distant bodies are treated as a single body. Consequently, the effects of

fewer bodies on a specific body’s location and velocity must be computed than in the

n-body case.

Figure 2.1 graphically depicts this difference between the applications for a given

body G. Despite the distance between G and bodies E4, E5, and E6, Figure 2.1(a)

shows computation must occur between G and all six other bodies when a generic

n-body algorithm is applied. In Figure 2.1(b), however, only 4 computations must

be calculated; the bodies E4, E5, and E6 are treated as a single body due to their

distance from G.

barnes-hut organizes the n bodies into a tree structure, called an octree, that

allows each node in the tree to have up to eight children. The octree’s internal nodes

represent a portion of the entire application space that includes several bodies; the

octree’s leaves represent individual bodies in the system. Bodies are positioned in

the octree as children of the internal nodes that encompass their locations. Figure

2.1(c) shows the octree organization of the bodies in Figure 2.1(b). Internal nodes

(Ii) represent the total mass, location, and velocity of the bodies in their subtrees.

When a single internal node will have the same effect as the combination of all the

elements in its subtree, the values at the internal node are used for computation.

2.1.2 Resource Demands

We now look at how our organization of barnes-hut into threads and data determines

the computation and communication demands generated.

For each body Ei, we compute its next location and velocity based on all of the

bodies with which it interacts. We quantify a body’s computational demands as the

number of bodies with which it interacts. In Figure 2.1(c), body G must calculate its

position by looking at E1, E2, E3, and I2. E3, on the other hand, must incorporate

CHAPTER 2. APPLICATION CHARACTERIZATION 15

distant

G

E
5

E
1

E
2

E
6

E
4

G

E
4
E

5
E

6

E
1

E
2

E
3

E
1

E
2

I
0

E
3 I

1
G

E
5

E
6

E
4

I
2

(a) n-body (b) barnes-hut

(c) octree for (b)

E
3

distant

Figure 2.1: (a) shows an example graph for an n-body problem. The impact of all
bodies (Ei) on body G must be calculated. Because bodies E4, E5, and E6 are distant
from body G, barnes-hut calculates their effect on G as a single entity as seen in (b).
(c) shows the organization of (b) into an octree which includes internal nodes, Ii.

CHAPTER 2. APPLICATION CHARACTERIZATION 16

all of the bodies into its calculations because it is not particularly distant from any

of the other bodies in the system. Because the amount of processing required to

calculate each body’s location and velocity at the next timestep varies for each body,

it is difficult to equally distribute work across processors.

The number of data accesses, and therefore the communication demands, for com-

puting a body’s new position and velocity depend on the number of bodies included

in its calculation. The amount of communication incurred, therefore, varies across

the n bodies. Because of the tree structure placed on the n bodies, the inter-body

communications exhibit temporal locality; as each thread traverses the tree, the ele-

ments of the tree will be accessed in the same order, adding predictability to the data

accesses.

2.2 Two Program Decomposition Styles

Before proceeding with our extraction of information about resource demands and

locality, we first need to discuss how single-chip multiprocessors impact decisions

about decomposing applications into threads. Computation can be decomposed into

small numbers of heavyweight threads that execute for long periods of time or into

many lightweight threads that exist for short periods of time. The method used

for attributing resource demands and communication to individual threads and data

differs depending on which decomposition style is chosen.

2.2.1 Heavyweight threads

One way of decomposing a program into threads is to create one thread per processor

and divide the work equally among those threads. Computations that share similar

data can be computed by a single thread to improve locality. The n bodies in barnes-

hut can be divided equally among the processor threads; bodies near one another

in the octree are computed by the same thread. This approach is particularly useful

when thread creation, context switching, and inter-processor communication latencies

are large.

CHAPTER 2. APPLICATION CHARACTERIZATION 17

Several limitations exist for this approach. First, distributing work equally may

be difficult in applications where sharing patterns change over time or are unknown

statically. For example, as bodies move over time in barnes-hut, they will move away

from previously close bodies and towards previously distant bodies. As a result,

threads will have unequal amounts of work and may end up having reduced data

locality despite good initial static placements. Second, attempts to take advantage of

idle resources will be thwarted by the limited number of threads and the threads’ as-

sociated data footprints. A single thread may have a large amount of work remaining,

but it cannot be doled out to other processors. Additionally, these threads frequently

accumulate large quantities of state (data); this state must be moved with the thread

to obtain the best performance.

2.2.2 Lightweight threads

An alternate approach to creating one thread per processor is to create one thread

per independent computation. An independent computation is defined as a series of

instructions and data accesses that complete one logical action in the application.

In barnes-hut, we can associate one thread with a single body’s computation for

a given timestep. In this scenario, N threads, where N represents the number of

independent computations and may be larger than the number of processors, can

execute in parallel. These threads can be moved between processors to take advantage

of idle resources. Additionally, because lightweight threads’ data footprints generally

remain small, the cost of moving thread state remains manageable.

Applications written in this fashion, however, perform poorly on systems with high

thread creation and communication latencies. Limited communication bandwidth

may restrict thread movement. Additionally, the locality inherent in the original

application can easily be lost if associations between threads and their data are not

maintained. For example, the data locality created by the octree structure in barnes-

hut can be easily lost as each body is assigned to its own thread.

CHAPTER 2. APPLICATION CHARACTERIZATION 18

2.2.3 Comparison

The single-chip multiprocessors used for our studies can execute applications de-

composed either way. In order to take advantage of the available on-chip parallel

resources, however, we focus on applications with many lightweight threads, each

associated with a single independent computation. The remainder of this chapter fo-

cuses on extracting information about resource demands and locality for a set of such

applications. We can use this information to determine how to both initially place

and dynamically move data and threads on a single-chip multiprocessor to achieve

high performance.

2.3 Resource demands

In single-chip multiprocessors, both computation and communication resource con-

tention can significantly degrade application performance. An imbalanced thread

distribution limits the overall speedup gained by using parallel processors. Hot spots

in the network can cause communication latencies to explode, causing applications

expecting small on-chip latencies to flounder. Because data and threads contribute to

the overall demands for these resources, we discuss how to attribute resource demands

to both of these program abstractions.

2.3.1 Computation

The use of lightweight threads that only exist long enough to complete a single in-

dependent computation poses problems for detecting and responding to dynamic

knowledge about processor demands. When threads are associated with independent

computations, multiple threads may be used to perform the same calculations at dif-

ferent times during the application’s execution. In barnes-hut, for example, different

threads will perform movement calculations for a single body during different time

steps. At each new timestep, new threads are created and placed according to the

application’s original thread placements; consequently, all previous thread redistri-

butions will be lost between timesteps. To obtain the benefits of thread migration

CHAPTER 2. APPLICATION CHARACTERIZATION 19

experienced by long-running threads, we must explicitly make connections between

short-lived threads that perform the same computation on the same data at different

points in the application’s execution.

The data operated on by these threads outlives thread creations and deletions,

making it an ideal mechanism for creating connections between these threads. Con-

sequently, we associate independent computations with the data they use. This as-

sociation is similar to the associations created between computation and data in

object-oriented code. Consider the scenario in which an object Foo contains private

data bar which is modifed by Foo’s method UpdateBar().

object foo {

...

UpdateBar(...){

...

bar = ...

}

private:

bar;

}

The computation in UpdateBar() is clearly associated with a specific instance of

object Foo and, in particular, that instance’s data element bar. Similarly, in barnes-

hut, we associate the computation performed for a given body with the data rep-

resenting that body. This establishes a single entity that represents the total work

performed by all of the body’s threads over time.

One way of deciding where to execute these short-lived threads is to execute each

thread at the location of the data with which the computation is associated. We can

use the information gathered about the amount of computation associated with data

to distribute data across nodes. Furthermore, we can insure that data is distributed

so that the total amount of computation per node is roughly equal. In barnes-hut, the

amount of computation performed to calculate each body’s next location and velocity

CHAPTER 2. APPLICATION CHARACTERIZATION 20

varies depending on the body’s relative location to other bodies in the system. Placing

several bodies that require less computation on the same node as a body that requires

the maximum amount of computation prevents that node from being assigned more

than its share of total computation.

2.3.2 Communication

In addition to processor demands, both threads and data also have communication

demands. Because communication is dependent on data storage locations, we decom-

pose communication demands into two components: network resources and memory.

Memory stores data while network resources enable communication of that data be-

tween threads and data.

Any time a thread performs a load or store, creates a new thread, or performs

synchronization, it may require network resources. In contrast, data does not perform

actions but instead has actions performed on it. Just as data can be associated with

the computation that accesses it, we associate data with the network resources used

to access that data. Consequently, every load or store to a specific data element may

contribute to that data’s network demands.

Both threads and data require memory to store their associated data. For a thread,

the quantity of storage needed is the size of its stack and any additional private data.

For data, the storage demands are equal to its size.

When executing applications, we can use communication resource demands to

avoid resource contention caused by co-locating many frequently communicating data

and threads on the same node. For example, the bodies and internal nodes at the top

of barnes-hut ’s octree are likely to be accessed frequently; to avoid network contention,

they should not all be placed on a single node. Similarly, distributing threads and

data with large memory sizes across multiple nodes improves the likelihood that all

of the data associated with these objects will fit in local memory.

CHAPTER 2. APPLICATION CHARACTERIZATION 21

Table 2.1: Explicit object relationships created by direct communication between
objects.

Object Object Mechanism

T T Synchronization
T T Thread creation
T D Memory reference

2.4 Communication patterns

The preceding resource-centric characterization of threads and data provides infor-

mation which can help avoid overloaded architecture resources. However, it fails to

describe the complete set of relationships between these entities. These relationships

define the inherent locality within an application and, therefore, enable us to evaluate

the communication demands resulting from a given placement of data and threads.

In this section, we characterize the communication patterns that result from both

explicit and implicit relationships among data and threads. For the remainder of this

thesis, we will refer to data and threads generically as objects.

2.4.1 Inherent application communication patterns

Whenever communication occurs between two objects, an explicit relationship exists

between these objects. Table 2.1 summarizes the instances of explicit communication

between objects. When two threads synchronize with one another or a thread accesses

data, these objects are explicitly linked.

However, threads and data are also implicitly linked in many more complex ways,

as shown in Table 2.2. Threads that use the same data have an implicit relationship

via that data. Similarly, data used by the same thread are connected to one another

via the thread. These implicit relationships shape the global communication structure

of an application.

CHAPTER 2. APPLICATION CHARACTERIZATION 22

Table 2.2: Implicit object relationships created by communication to two objects via
an intermediate object.

Object Object Mechanism

T T Data used by multiple threads
D D Data used by same thread

Table 2.3: Explicit and implicit relationships in Figure 2.2 at cluster i
Relationship Object Object

Explicit T bi.velocity
T bi.mass
T bi.location

Implicit bi.velocity bi.locality
bi.velocity bi.mass
bi.locality bi.mass
b0 bi

2.4.2 Description of object interaction parameters

Having enumerated the set of possible implicit and explicit relationships between

threads and data, we can now see how these relationships interact. In particular, we

are interested in how these relationships define communication links among objects.

In general, a thread can be viewed as a sequence of instructions executing on a se-

ries of data. During different parts of a thread’s execution, it may operate on different

groups of data. For example, Figure 2.2 shows a thread, T , executing computation

for a single body, b0, in barnes-hut. The thread calculates the impact of four distinct

bodies on b0. We call the data used in each body calculation a cluster. Clusters

represent data used together for a given time interval. In Figure 2.2, each cluster

lasts for the interval associated with calculating the impact of a body bi on b0.

Decomposing threads in this manner exposes the different relationships and com-

munication patterns between objects. The explicit thread/data relationship exists

between a thread and the data in its associated cluster for the duration of a given

CHAPTER 2. APPLICATION CHARACTERIZATION 23

Do_Work(b
1
)

Do_Work(b
2
)

Do_Work(b
3
)

Do_Work(b
4
)

Thread T (b
0
)

Do_Work(body b)

{

 compute(b.mass, b.velocity, b.location);

}

T
IM

E

Figure 2.2: The thread associated with body b0, thread T , accesses four different
bodies when calculating b0’s next location and velocity. Because the thread accesses
these bodies at non-overlapping time intervals, we say the thread uses four distinct
sets, or clusters, of data.

CHAPTER 2. APPLICATION CHARACTERIZATION 24

time interval. Table 2.3 depicts the explicit relationships in Figure 2.2. Addition-

ally, the cluster concept allows us to recognize which data have implicit relationships

due to use by threads in a single time interval. In our example, there are implicit

relationships among all data within a cluster as shown in Table 2.3. There also im-

plicit relationships among body b0’s and body bi’s mass, velocity, and location data.

Finally, the overlap of data in distinct clusters exposes the implicit relationships be-

tween multiple threads via shared data. Implicit relationships would exist between

thread T and any other threads that access any of these four bodies.

2.4.3 Graphing Object Relationships

Based on these associations, programs can be described with a graph showing both

implicit and explicit edges connecting the vertices that represent data and threads.

This graph of object relationships can be used to guide placement decisions. We

define four dependent parameters that help characterize the structure of a program’s

relationship graph. The parameters are cluster size, object access frequency, time

interval size, and correlation between objects. For each of these parameters, there is

a sweet spot. Making these parameters too large results in patterns being obscured;

when they are too small, little useful association information can be gleaned.

Time interval

The time period used to classify clusters impacts the number of items in a cluster. The

larger the interval, the more data accessed by a thread and, consequently, included in

the cluster. Fortunately, programs frequently have existing abstractions, like threads,

function calls, loops, and conditional statements, that create boundaries between data

set changes. In our example, shifts to new elements of the octree delineated by calls

to DoWork() mark possible cluster boundaries.

Cluster size

The size of the cluster determines both the likelihood of data being shared by multiple

threads and the amount of data that must be placed on nodes near one another to

CHAPTER 2. APPLICATION CHARACTERIZATION 25

improve locality. For example, a time interval equal to a single thread’s duration in

barnes-hut creates a single cluster, effectively discarding temporal locality created by

the octree. All data accessed by the thread would be included in the cluster, making

it difficult to fit the entire cluster in a single node’s memory.

Communication frequency between objects

The communication frequency or percentage of communication suggests the strength

of relationships between objects and can be used to weight edges in our relationship

graph. Objects that communicate frequently with one another have a strong relation-

ship while infrequent communication implies a weak relationship. Exploiting stronger

relationships will reduce communication demands more significantly than optimizing

locality between objects with weak relationships.

Correlations between objects

The correlation between objects across multiple time intervals/clusters describes how

tightly woven the objects in a program are. For example, if all threads access all data,

as in a naive version of the n-body problem, implicit relationships exist between all

threads and between all data; this is in addition to explicit thread/data relationships.

This close interconnection does not expose particular links between objects that can

be exploited when making placement decisions. In contrast, some data may always

be used with another set of data and may only be accessed concurrently by a small

set of threads; here, the correlations among the data and between threads and data

would be high. For example, the impact of all bodies in the same galaxy would

be individually calculated, while all bodies in a separate, distant galaxy would be

aggregated into a single force calculation. Consequently, good placement strategies

can reduce communication demands.

By graphing the relationships among data and threads, we can determine which

placements minimize the number of edges that will cause inter-node communications.

The graph becomes a tool that enables us to see patterns beyond a single thread/data

pair; these patterns can be exploited to reduce communication demands.

CHAPTER 2. APPLICATION CHARACTERIZATION 26

2.5 Conclusions

In this chapter, we have described the information available for use in optimizing per-

formance of applications on single-chip multiprocessors. The next chapters describe

when this information is available for use, either statically or dynamically, and how

we can incorporate this information to improve application performance.

Chapter 3

Application Descriptions

27

CHAPTER 3. APPLICATION DESCRIPTIONS 28

Throughout this thesis, we use four applications and multiple synthetic bench-

marks to evaluate both the single-chip multiprocessor environment and our perfor-

mance optimizations. In this chapter, we describe each of these applications based on

the framework presented in Chapter 2. We describe each application’s decomposition

into threads, its resource demands, and its communication patterns. Our analysis

enables us to pinpoint in later chapters which application traits are well-suited for

this architecture and our optimizations.

3.1 Application Description

We begin by describing the problem each application solves. Table 3.1 presents a

high-level description of the work performed by each applicaton. The first application,

raytrace, renders a picture from a given viewpoint by sending rays of light through a

scene. The second application, nbody, simulates the movement of particles over time,

where the particles can be any number of logical entities such as molecules or galaxies.

barnes-hut solves the same problem as nbody, however, it exploits key properties of

the problem to reduce the amount of computation performed compared to nbody. The

last application, equake, is taken from the SpecOMP 2001 benchmark suite [40]. It

uses a finite element method to simulate the propagation of seismic waves resulting

from an earthquake.

3.1.1 raytrace

The raytrace application takes as input a file describing the locations and colors of

geometry in a given scene and the position of the viewer looking at the scene. The

application then creates a file which depicts the portions of the scene visible from the

viewer’s position. The application sends rays out from the viewer’s location in order

to detect what the viewer can see; the color associated with the ray’s origin in the

final picture depends on which scene geometry the ray intersects with as it travels

through the scene.

The 3-dimensional scene being viewed is divided logically into a set of small three

CHAPTER 3. APPLICATION DESCRIPTIONS 29

Table 3.1: Application descriptions

Application Description Input Output

raytrace Computer graphics application
which renders a picture repre-
senting the scene components
visible from a specific eye loca-
tion.

Scene geometry
and eye location

128x128 pixel
image

nbody Models the impact of n particles
on one another’s location and
velocity over time. For each par-
ticle, it calculates interactions
with all n-1 other particles, re-
gardless of distance or particle
mass.

1024 particles
with randomly
assigned mass
and velocity.
Particle locations
have a uniform
distribution.

Particle loca-
tions after 1
timestep

barnes-hut Like nbody, models the impact
of n particles on one another’s
location and velocity. It speeds
up computation by grouping
distant particles together and
approximating their combined
effect as a single particle.

1024 particles
with randomly
assigned mass
and velocity.
Particle locations
have a normal
distribution.

Particle loca-
tions after 1
timestep

equake Simulates the propagation of
seismic waves through large
basins by using a finite element
method.

Uses the test
input dis-
tributed with
SpecOMP2001
which includes
an unstructured
grid topology,
seismic event
characteristics,
and the structure
of sparse system
matrix.

Displacements
at the earth-
quake epi-
center and
hypocen-
ter after 4
timesteps

CHAPTER 3. APPLICATION DESCRIPTIONS 30

Bitmap

Triangles by voxel

1st vertices

2nd vertices

3rd vertices

Triangle colors

Figure 3.1: The picture shows how the different data structures in raytrace are ac-
cessed when the ray intersects with a triangle.

dimensional volumes called voxels. Information about the scene geometry is stored

as triangles, where each triangle has three vertices and a color associated with it.

The application stores this information in four arrays indexed by triangle number;

three arrays store the triangles’ vertices and one array stores the triangles’ colors. A

bitmap specifies whether any triangles are located in each voxel. Another list keeps

track of all triangles within each voxel. An array stores the pixels for the final two

dimensional picture.

Rays traverse the scene by moving from one voxel to another in their path. Figure

3.1 shows how the data structures are accessed. As a ray enters a voxel, the bitmap

is used to determine if any triangles are located in this voxel. If the voxel includes

any triangles, the list of triangles in this voxel is traversed, checking to see if the ray

intersects with any. If the ray does intersect with a triangle in the voxel, the color

from the geometry is written into the output data array. If the ray does not intersect

with any triangles, it proceeds to the next voxel in its path. By organizing the scene

and data in this manner, intersections only need to be computed for voxels that the

ray travels through.

The input scene geometry used for our experiments is taken from the game Quake;

we generate a 128x128 pixel image.

CHAPTER 3. APPLICATION DESCRIPTIONS 31

3.1.2 nbody

A brief overview of nbody problems was presented in Chapter 2 when we introduced

the barnes-hut application. In this application, the movement of particles is simulated

over time. Each particle has mass, location, and velocity components. Every particle

affects every other particle’s location and velocity in the next timestep. In general,

particles that are further away in space and particles that have less mass have a smaller

impact on a given particle’s movement. In this application, the location and velocity

of every particle are recalculated at discrete timesteps based on the interaction of all

other particles. Although this computation can be performed in nlog(n) time, where

n is the number of particles in the system, the most straight-forward implementation,

which is used in our application, takes n2 time.

Each logical particle is represented by a particle data structure; this structure

contains fields specifying the particle’s location in the three dimensional space, its

three dimensional velocity vector, and its mass. The data set for the entire application

consists of two arrays: one array of particles for the current timestep and another

array for the next timestep. The computation uses the current timestep’s array of

particles to calculate the next timestep’s array values.

For our experiments, we model a single timestep for a 1024 particle system. The

particles’ initial locations are distributed uniformly.

3.1.3 barnes-hut

We presented the barnes-hut application in Chapter 2. Like nbody, barnes-hut simu-

lates the movement of bodies over time. Unlike nbody, however, barnes-hut exploits

the fact that the strength of particle interactions falls off dramatically as the distance

between particles increases. Consequently, a group of distant particles can be viewed

as a single particle representing the location, mass, and velocity of all of the particles

in the group; we do this by using a multipole expansion of the potential field for the

distant particles. Because a single group particle will represent many particles, fewer

computations must be performed during each timestep than in the nbody application.

CHAPTER 3. APPLICATION DESCRIPTIONS 32

In order to use this problem-dependent observation, the work per timestep is bro-

ken into two unequal phases: computing the effects of particles on one another and

building the structures needed to group particles together.

Like nbody, each particle in barnes-hut is represented by a particle data structure

which includes the particle’s three dimensional coordinates, three dimensional velocity

vector, and mass. There are two arrays of particles, one for the current timestep and

one for the next timestep. Unlike nbody, however, there are also two additional tree

structures, called octrees, that organize the particles in the current and next timestep.

The top node in each of these trees represents the entire application space, with each

of its (up to) eight child nodes representing one eighth of that space; at each level

of the tree, the space associated with a node’s subtree is one eighth of the size of its

parent node’s space. An internal node in this tree provides a single representation for

all of the particles located within its subtree. When a particle calculates the impact

of all other particles on its location and velocity, it traverses the octree starting at

its current location. At each non-leaf node, the computation decides whether or not

the particles contained in that node’s subtree can be represented as a single body or

if each of the particles’ impacts must be calculated separately.

In this application, we simulate a single timestep for 1024 particles. We randomly

assign particles’ locations from a normal distribution. This approach creates a dis-

tribution of particles such that groups of particles are distant enough from certain

particles to be accounted for collectively.

3.1.4 equake

equake simulates the propagation of seismic waves caused by an earthquake. It con-

sists of a single large loop which corresponds to timesteps. This loop contains a series

of inner loops. The inner loops tend to occur in pairs: one to initialize data and one

to perform computation on that data. Although the loops require synchronization

among themselves, the individual computations in all but one of the inner loops are

independent of one another. (This one non-parallel loop merges results created by

earlier parallel threads into the global data arrays.) Data in equake is organized into

CHAPTER 3. APPLICATION DESCRIPTIONS 33

large global data arrays of relatively small elements. In addition to these global ar-

rays, each thread of control is allocated local arrays to store their temporary results;

these results are then merged back into the global arrays after all threads of control

complete.

We use the test input accompanying the SpecOMP2001 code distribution. We

only execute four timesteps in order to limit our simulation times to twenty-four

hours.

3.2 Decomposition into Threads and Data Objects

The decomposition of applications into data and thread objects impacts the num-

ber of possible thread and data mappings onto our architecture. In order to insure

sufficient thread parallelism to keep all processors busy, we assign each logical compu-

tation to its own thread. These threads are distributed equally among all processors.

Additionally, depending on which is more appropriate within each application, we

perform data placements based on divisions of data into logical entities or individ-

ual memory lines. Our goal is to keep associated data (for example, data in a class

instance) together while limiting the size of each datum that must be mapped; our

architecture’s small per-node memory makes it imperative that we not waste storage

space on unused data. In the remainder of this subsection, we describe the thread

and data decompositions used in each application.

In the raytrace application, rays travel through space, intersecting with scene

geometry. Each ray’s computation can be performed independently. Consequently,

each ray’s computation is performed by exactly one thread. raytrace’s data set can

be decomposed into a small number of logical structures discussed in Section 3.1.1.

Because of the large number of elements stored in these structures and because the

individual elements are relatively small, we use arrays for the underlying storage of

data in these logical structures. Hence, we map data onto the architecture based

on memory lines versus logical structures, and we refer to memory lines as the data

objects in this application.

The work performed in the nbody application corresponds to calculations of each

CHAPTER 3. APPLICATION DESCRIPTIONS 34

particle’s location and velocity based on interactions with all other particles in the

system. The computation of a given particle’s next location and velocity is completely

independent of the computations performed for all other particles in a given timestep.

Therefore, we create a new thread for each particle’s calculation at each timestep.

Each thread traverses the particles in array order starting at the particle following

its associated particle. Unlike the raytrace application, data in nbody is structured as

particle objects. The size of each particle object can exceed typical memory line sizes,

causing us to map data based on particle object boundaries. In nbody, therefore, data

objects are defined to be the particle data structures.

Because barnes-hut closely resembles nbody, our decomposition of it into threads

and data resembles our decomposition of nbody. For each particle’s location calcula-

tion in a given timestep, we create a new thread. During the octree rebuilding phase

of each timestep, we also associate a unique thread with each particle’s insertion into

the new octree. The data in the application consists of particle data structures and

tree node data structures. Both of these data structures include enough data to re-

quire multiple data lines; however, they are not allocated as arrays of data structures.

The tree nodes are created on an as-needed basis as particles are inserted into the tree.

Consequently, we use these tree nodes and particle data structures as the elements,

or data objects, that must be mapped onto the architecture.

Because the control in equake consists of a series of inner loops, where each loop

iteration can be performed independently, we assign a new thread to each inner loop

iteration. The application’s data is decomposed based on memory lines since it is

predominantly organized as arrays or primitive types (e.g. doubles).

3.3 Resource Demands

The next component in our analysis requires examination of each application’s com-

putation, communication, and synchronization characteristics. In this section, we

want to establish two things. First, we want to know which resource demands may

act as performance bottlenecks in each application. Second, we want to know if vari-

ance in these resource demands might lead to imbalanced resource demands on a

CHAPTER 3. APPLICATION DESCRIPTIONS 35

Table 3.2: Cumulative breakdown of application events

Event raytrace nbody barnes-hut equake

instrs 136,608,131 224,610,302 223,073,339 202,418,788
memory instrs 6,064,376 14,692,352 13,566,436 40,534,324
comp-to-mem 22.5 15.3 16.4 5.0
synchronization 0 0 28,738 100,956
comp-to-synch NA NA 7,762 2,005

single-chip multiprocessor.

3.3.1 Cumulative Application Demands

Table 3.2 shows cumulative breakdowns of events for the four applications. By com-

paring the number of memory instructions to total instructions executed, we identify

which applications may potentially suffer from remote communication latencies. ray-

trace executes a memory instruction to read-only data that is neither on the stack nor

global (e.g. pointers to global arrays) every 22.5 instructions. In contrast, barnes-hut

and nbody issue memory requests every 15 and 16 instructions respectively, and every

fifth instruction in equake performs a memory request. Consequently, we expect ray-

trace to be the least negatively impacted by communication demands compared to the

other applications, and we expect equake to be severely affected by communication

latencies.

Similarly, due to communication latencies accrued by accessing remote synchro-

nization primitives, frequent synchronization events may negatively impact perfor-

mance due to communication latencies accrued by accessing remote synchronization

primitives. This performance penalty is in addition to any processor cycles left idle

due to serialization of threads on these primitives. Table 3.2 includes the number

of synchronization events executed in each application when a single thread executes

on each processor; these numbers do not reflect synchronization required for thread

creation and deletion. Only barnes-hut and equake include user-level synchroniza-

tion. Both the distance of communication between synchronizing threads and any

CHAPTER 3. APPLICATION DESCRIPTIONS 36

Table 3.3: Variation in thread lifetimes

raytrace nbody barnes-hut equake

Threads 16,384 1,024 2,048 117,728

Instructions
Avg Thread Lifetime 8,337 219,346 214,212 / 3,633 1,719
Min Thread Lifetime 3,028 219,346 54,947 / 485 58
Max Thread Lifetime 48,521 219,346 326,094 / 12,195 65,672
Std. Dev. Thread Lifetime 4,015 0 87,082 / 1,243 6,071

Memory References
Avg Thread Lifetime 370.1 14,348 12,664 / 584 344
Min Thread Lifetime 100 14,348 3,574 / 90 6
Max Thread Lifetime 3,096 14,348 19,089 / 1,202 14,588
Std. Dev. Thread Lifetime 262.2 0 4,888 / 102 1,354

network contention will increase this latency, potentially making synchronization a

performance bottleneck for these two applications.

3.3.2 Variability

While cumulative statistics provide insight into the relative performance impact of

communication, synchronization, and computation, they do not describe whether

demands are distributed equally across the chip’s nodes. We examine the number of

threads created in each application and the variance in thread lifetimes to determine

whether distributions that randomly assign equal numbers of threads to nodes will

result in processor load imbalance; the larger the variability in thread lifetimes, the

more likely processor load imbalance will ensue. Similarly, we examine the reference

frequencies of all data objects to determine whether a random distribution of data

across nodes would result in imbalanced communication demands.

Threads

Table 3.3 presents the minimum, average, maximum, and standard deviation of thread

lifetimes in terms of both instructions and memory references. (Note: Because threads

CHAPTER 3. APPLICATION DESCRIPTIONS 37

perform only one independent computation during their lifetime, these numbers are

equivalent to the number of instructions and memory references between barrier syn-

chronizations when heavyweight threads are used.) The number of threads created

and their respective lifetimes differ significantly among the applications. raytrace con-

sists of a large number of relatively short-lived threads in comparison to nbody ’s and

barnes-hut ’s small number of long-lived threads. equake creates the largest number

of threads which, on average, live for relatively short periods of time. The variance in

thread lifetimes and thread data references, expressed by the standard deviations val-

ues in Table 3.3, distinguish which applications may suffer from unequally distributed

processor demands. All threads execute the same number of instructions and memory

references in the nbody application; consequently, all processors will initially be as-

signed equal quantities of computation. In contrast, the remaining three applications

display high variance in instruction and memory reference counts. Figures 3.2- 3.4

show histograms for these applications’ thread instruction lifetimes.

Threads in raytrace range from executing slightly more than 3,000 instructions

to executing more than 48,000 instructions. Figure 3.2 shows that despite this wide

variance, three quarters of the threads execute fewer than 9,000 instructions. If the

remaining one quarter of threads are disproportionately allocated to a small number

of nodes, processor load imbalance would surely result.

Although the threads in barnes-hut also display a range of thread lifetimes, it is

important to note a key characteristic created by the application’s structure. Figure

3.3(a) shows that threads in barnes-hut can be divided into two distinct groups.

Table 3.3 shows that threads in the first group execute 3,633 instructions on average

while the average for the second group is 214,212 instructions. These two groups

coincide with the two phases of computation per timestep: rebuilding the octree and

determining particles’ next timestep values. Since these two phases do not overlap,

we must isolate the threads in each phase to determine whether thread variability

exists within a given phase. Threads created for calculating particles’ next timestep

values have larger variances in instruction count lifetimes than those created in the

rebuilding phase. In Figure 3.3(b), we use a larger x-axis scale to illuminate the

variance in thread lifetimes for these threads. Consequently, while both phases of

CHAPTER 3. APPLICATION DESCRIPTIONS 38

0 2 4 6 8

Cycles (1,000)

0

1000

2000

3000

4000
N

um
be

r
of

 T
hr

ea
ds

(a)

0 1 2 3 4

Cycles (10,000)

1

10

100

1000

10000

N
um

be
r

of
 T

hr
ea

ds

(b)

Figure 3.2: Of the 16K threads created in raytrace, one quarter execute more than
the average number of instructions per lifetime as seen in (a). However, (b) shows
that some threads execute more than 40,000 instructions.

execution may suffer from processor load imbalance, the first phase of computation -

calculating next timestep values - will result in larger imbalances.

Like barnes-hut, equake can be decomposed into five distinct phases. The first

phase consists of 7,294 threads which each execute 58 instructions. The second phase

includes 256 threads that execute 65,672 instructions. Like these two phases, the fifth

phase contains threads that execute identical numbers of instructions, 7,294 threads

executing 1,012 instructions. Threads in the third and fourth phases have variable

instruction lifetimes; however, the variance is small. Consequently, while equake may

have some processor load imbalance in these two phases, the third phase in particular,

the application is less likely than raytrace and barnes-hut to suffer from imbalanced

processor demands.

Data

To examine the communication demands created by the placement of data across the

nodes of a single-chip multiprocessor, we examine the reference frequencies of data

objects in the four applications. Applications with large discrepancies in the number

of accesses of data objects may suffer from network contention if a large fraction of

highly accessed data reside on a small set of nodes.

CHAPTER 3. APPLICATION DESCRIPTIONS 39

0 2 4 6 8

Cycles (10,000)

0

200

400

600

800

1000

N
um

be
r

of
 T

hr
ea

ds

(a)

0 2 4 6 8

Cycles (50,000)

0

200

400

600

800

1000

N
um

be
r

of
 T

hr
ea

ds

(b)

Figure 3.3: Threads in barnes-hut can be divided into two groups as seen in (a), where
each group is associated with one of the two phases of computation in the application.
In (b), we use a larger x-axis granularity to identify the instruction variance across
threads belonging to the more computationally intensive phase.

0 2 4 6 8

Cycles (1,000)

1

10

100

1000

10000

N
um

be
r

of
 T

hr
ea

ds

Figure 3.4: equake consists of five phases. Three of these phases do not have variance
in thread instruction lifetimes; all threads execute 58, 65,672, and 1012 instructions
respectively. In the two remaining phases, threads execute between 500 and 3,000
instructions, creating a small amount of variance.

CHAPTER 3. APPLICATION DESCRIPTIONS 40

Table 3.4: Cumulative data reference frequencies

raytrace nbody barnes-hut equake

Total data objects 116,914 2,048 3,279 1,137,421
Total referenced data objects 9,745 2,048 3,007 157,674

We begin our examination by looking at the percentage of the applications’ data

sets that are actually accessed. Table 3.4 shows that while the nbody application

accesses all of the data in its data set, the other three applications access their data

sets selectively. In particular, the raytrace and equake applications only access small

fractions of their entire data sets.

Figures 3.5-3.7 depict the reference frequencies for objects accessed at least once

in the different applications. We do not show histograms for the nbody application

because all particles are referenced an equal number of times; consequently, all nodes

receive equal numbers of requests, as long as particle objects are equally distributed

among the nodes. The histograms show that in the remaining three applications,

variability exists in the number of accesses to data objects.

As seen in Figure 3.5, most data objects in raytrace are requested fewer than

1,000 times over the course of the application. A select number of data objects are

accessed more frequently, including some experiencing more than 9,000 references.

When we consider this variability with the fact that 9,745 out of 116,914 objects

are not referenced at all, we conclude that imbalanced communication demands and

network contention may result from data object placements. Figure 3.7 shows that

equake resembles raytrace in that the majority of data exhibit identical reference

frequencies. However, the minority of objects with different reference frequencies may

generate unequal communication demands across the nodes. Finally, while barnes-

hut accesses most of the data in its data set, similar to the nbody application, the

frequency of accesses to its data varies greatly as seen in Figure 3.6. Therefore, unlike

nbody, it may suffer from unevenly distributed communication demands.

CHAPTER 3. APPLICATION DESCRIPTIONS 41

0 2 4 6 8

Accesses (1,000)

1

10

100

1000

N
um

be
r

of
 D

at
a

O
bj

ec
ts

Figure 3.5: Most accessed data objects in raytrace are referenced fewer than 1,000
times. However, a small fraction of the objects are accessed substantially more times.

0 2 4 6 8

Accesses (1,000)

0

500

1000

N
um

be
r

of
 D

at
a

O
bj

ec
ts

Figure 3.6: The number of references to data in barnes-hut varies greatly. More than
500 objects are accessed more than 10,000 times.

CHAPTER 3. APPLICATION DESCRIPTIONS 42

0 2 4 6 8

Accesses (100)

1

10

100

1000

10000

100000

N
um

be
r

of
 D

at
a

O
bj

ec
ts

Figure 3.7: Like raytrace, most objects in equake have identical reference frequencies;
however, a fraction of the data objects are accessed at significantly larger rates.

3.4 Communication Patterns

In the last component of our application analysis, we examine the communication

among data and thread objects. We wish to understand how closely connected these

objects are to one another. Depending on the relationships between these objects,

different mappings of objects onto a chip may result in significantly different inter-

node communication demands. When small groups of objects are strongly connected

to one another and have looser ties to the rest of the objects in the application,

we can reduce communication demands by placing objects in the connected groups

on neighboring nodes. Therefore, we want to determine whether these applications

contain these small, tightly-connected groups of objects.

For this analysis, we determine the number of clusters each thread consists of, as

well as the similarities between threads’ clusters. In particular, we want to ascertain

whether or not small sets of data are consistently used across different threads and

across time. Additionally, we want to know how large this group of data is. Table

3.5 presents the numbers used for the following discussion.

Direct Connections

The direct connections between data and threads can easily be described by two

numbers: the average number of unique data referenced by a single thread and the

CHAPTER 3. APPLICATION DESCRIPTIONS 43

average number of threads that reference each data. To gather this information, we

collect information about either the number of unique memory lines or the number

of data structures accessed, depending on how data was decomposed for the given

application. In Section 3.2, we specified that data in raytrace and equake was tracked

on a per line basis, while it was tracked on a data structure basis for nbody and

barnes-hut.

According to Table 3.5, threads access an average of 35.2 data objects in raytrace,

1025 in nbody, 565 in barnes-hut, and 82.5 in equake. We can generate a graph where

every thread and data object is a vertex and edges connect threads to the data objects

that they access. Each data vertex has edges connecting it to 59.2 thread vertices in

raytrace, 512.5 in nbody, 197 in barnes-hut, and 59.2 in equake.

In general, the more edges each vertex has, the more closely knit the graph be-

comes. It becomes more difficult to divide the graph into smaller subgraphs connected

via a small number of edges; this is because all vertices will be connected to a large

number of other vertices. In terms of data placement on a single-chip multiproces-

sor, when the graph is more closely-connected, it becomes difficult to distribute data

and thread objects across nodes without having large quantities of communication

(edges) between those nodes. Therefore, an initial observation based on the direct

connections among data and threads is that it may be harder to partition barnes-hut

and nbody across a chip without introducing large quantities of global communica-

tion. It should be easier to perform the same procedure on the raytrace and equake

applications.

Grouping Implicit Connections via Clusters

A graph of connections among data and threads presents a global view of how all

threads and data are connected, but it does not include temporal information; it

does not tell us if all data used by a thread are all being used at the same time. In

Chapter 2, we presented the concept of a cluster; clusters group data together based

on implicit connections created via an accessing thread and time. We now estimate

the size of the logical clusters among data used within threads.

We begin our analysis by examining the average interval of time between a thread’s

CHAPTER 3. APPLICATION DESCRIPTIONS 44

Table 3.5: Application communication patterns

raytrace nbody barnes-hut equake

Threads 16,384 1,024 2,048 117,728
Avg. Thread Lifetime (instrs) 8,337 219,346 214,211 / 3,644 1,719
Average no. unique data refer-
enced per thread

35.2 1,025 565 / 12 82.5

Average no. of threads referenc-
ing each data

59.2 512.5 197 59.2

Average interval of references
(instrs)

1081 301.8 2704 57.8

first and last reference of a single data object. Our goal is to discover the number of

data clusters comprising each thread. If individual data objects are only referenced

for a short duration, this can indicate that the thread accesses different data sets

over time. Table 3.5 shows the average interval length for all data across all threads.

By simply dividing this interval by the average thread lifetime, we create a rough

estimate of the number of logical clusters contained within the thread lifetime. For

example, the average reference interval for data is 1/8 of the average thread lifetime in

raytrace, 1/100 in barnes-hut, 1/1000 in nbody and 3/100 in equake. These numbers

imply that raytrace consists of a small number of clusters, but the threads in the

other applications are composed of large numbers of distinct logical clusters. Based

on the average number of unique data accessed by threads in each application, we

can also conclude that the average logical cluster size is quite small. The cluster size

ranges from a single data object in nbody to five data objects in barnes-hut.

Our analysis suggests that many of the implicit connections between data accessed

by the threads may be disregarded because the data are not used during overlapping

time intervals; the data only share a connection because computation was grouped to-

gether by the applications’ current thread decompositions. For example, each thread

in nbody accesses each of the data structures representing the other n-1 particles in

the application. However, the calculation of particle i’s impact on a thread’s particle

is completely independent of the calculation of particle i + 1’s impact on the thread’s

CHAPTER 3. APPLICATION DESCRIPTIONS 45

particle. Particle i and particle i + 1 have an implicit connection due to the thread

that accesses them both, but the lack of overlap in their accesses implies this connec-

tion is tenuous. Connections between these loosely connected data may be ignored

when partitioning the data; however, communication between these data and their

corresponding thread will continue to exist and must be accounted for in partitioning

strategies.

Repeatability of clusters

We are also interested in determining whether or not clusters recur. When a thread

accesses a set of data together, will other threads that access a piece of the data in

that set access all of the other data in that set as well? To answer this question,

we examined each data object and compared the data sets used by their accessing

threads. We counted the number of those threads that accessed more than 90% of

the same data; we wanted to find out if these threads had more than 90% similarity

in their data sets. Trivially, a large number of the objects in barnes-hut and nbody

met this criteria simply because an average thread accesses more than half of the

entire data set in those applications. Of greater interest are the results for the two

applications where threads access a small fraction of the total data set. In Figure 3.8,

we show the percentage of a data object’s accessing threads in the raytrace application

that have at least 90% data set similarity with the other threads accessing that same

data object. We can see that more than 4,300 (out of 9,745) data objects have 70%

of their associated threads meeting this criteria. Figure 3.9 shows that more than

half of the data objects in equake are accessed by threads that have 90% similarity

across their data sets. This implies that data is repeatedly accessed in well-defined

sets across different threads and across time. The resulting data clusters can be

treated as single entities which have strong connections to one another and weaker

connections to other data and thread objects.

CHAPTER 3. APPLICATION DESCRIPTIONS 46

0.0 0.2 0.4 0.6 0.8 1.0

% of threads w/ working set similarity of 90%

0

500

1000

1500

2000

N
um

be
r

of
 D

at
a

O
bj

ec
ts

Figure 3.8: For each data object in raytrace, we determine the fraction of its accessing
threads that have 90% or greater similarity among their working data sets.

0.0 0.2 0.4 0.6 0.8 1.0

% of threads w/ working set similarity of 90%

0

20000

40000

60000

80000

100000

N
um

be
r

of
 D

at
a

O
bj

ec
ts

Figure 3.9: For each data object in equake, we determine the fraction of its accessing
threads that have 90% or greater similarity among their working data sets.

CHAPTER 3. APPLICATION DESCRIPTIONS 47

Table 3.6: Summary of application characteristics

raytrace nbody barnes-hut equake

Decomposition - thread many few few many
Decomposition - data memory

lines
objects objects memory

lines
Performance bottlenecks proc proc /

synch
proc memory /

synch
Variability - processor yes no yes some
Variability - communication yes no yes yes
Number of logical clusters
per thread

8 1000 100 33

Data similarity across
threads

yes n/a n/a yes

3.5 Summary

Table 3.6 presents a brief summary of the application characteristics described in this

chapter. In future chapters, we explore how to overcome potential bottlenecks such

as imbalanced resource demands and how to exploit the knowledge exposed by the

cluster concept to reduce global communication demands.

Chapter 4

Reactive Approach - Migration

48

CHAPTER 4. REACTIVE APPROACH - MIGRATION 49

In the preceding two chapters, we describe the inherent characteristics of appli-

cations in general and of the particular applications used in this dissertation. This

information provides an overview of the types of object interactions and resource de-

mands exhibited by an application. The real bottlenecks for an application, however,

cannot be known until runtime. An application’s performance on a given architecture

depends on how its constituent components, threads and data, are distributed on the

architecture. Only then can we determine which resources become overutilized and

how object interactions manifest themselves into network communication.

In this chapter, we explore how to optimize application performance using only

the information available at runtime. We present a technique that uses runtime

information to quickly and frequently migrate data and threads away from overloaded

resources and towards the objects with which they communicate. Our technique

represents the two competing goals of distributing resource demands and reducing

communication distance as two directed forces. When these forces are combined, the

resulting directed force specifies the best migration destination that simultaneously

satifisfies both goals.

Before presenting our migration strategy in detail, we first discuss the application

characteristics that can be observed and quantified at runtime.

4.1 Impact of Object Placement on Runtime In-

formation

The placement of objects on a given topology determines the demands experienced

by individual nodes’ processor, memory, and network resources. Because placement

determines the frequency and distance of communication between objects, it also

dictates the demands placed on different parts of the on-chip network. In this sub-

section, we examine how, for a given topology, different object placements change

the information that can be detected and exploited by runtime optimizations. The

nodes in the single-chip multiprocessor that we study are organized as a mesh, with

messages routed along the x- and y- dimensions.

CHAPTER 4. REACTIVE APPROACH - MIGRATION 50

B

A
x = 2

y = 1

Figure 4.1: In a mesh, Manhattan distance expresses communication distance. Each
communication can therefore be decomposed into its x- and y- dimension components.

4.1.1 Observable communication patterns

Our ability to dynamically detect the inherent communication patterns between ob-

jects depends on the amount of state we are willing to collect in hardware. Although

every message contains both the sender and receiver as well as these entities’ respec-

tive node locations, retaining all of this information for every object over a given time

interval would require a great deal of storage. Additionally, processing this amount

of state to make migration decisions would take a significant amount of time.

Instead of retaining all of this state, for each object we collect the frequency of

communication along the x- and y- dimensions. Because the nodes of our single-

chip multiprocessor are organized as a mesh, we can consider each communication

to exhibit directional characteristics. For example, each communication from object

A to object B in the 4x4 mesh depicted in Figure 4.1 traverses two hops to the

east and one hop north. Each communication between objects can be described by

its origin and its x- and y- dimension components. By collecting the frequency of

communication along each dimension, we can infer the relative location of most of

the objects with which a given object interacts.

Combined, this information about the frequency and direction of communication

supplies a simple view of each object’s communication patterns. However, the penalty

CHAPTER 4. REACTIVE APPROACH - MIGRATION 51

TD

T

TT

T

D

D

D

D

T

T

T

D

D

D

(a) (b)

Figure 4.2: Communication Patterns: The highlighted data in (a) exhibits clear lo-
cality preferences; it is pulled towards the four threads. In contrast, the highlighted
thread in (b) accesses data in all four directions and, therefore, has unclear commu-
nication patterns.

for using only these two parameters, direction and frequency, to describe an object’s

communication patterns is that we cannot determine and therefore must sacrifice

much of the locality information observed in the original application. Instead of

being able to determine which specific objects communicate explicitly or implicitly,

we can only determine the relative physical position of objects that communicate with

one another.

Using this simple collection technique, we can only make one observation about

an object’s locality preferences - whether or not an object has a clear communication

pattern. An object that communicates predominately in one direction of a given di-

mension can be viewed as having a clear communication pattern while an object that

communicates equally in both directions of a given dimension has an unclear commu-

nication pattern. When objects have clear communication patterns, we can determine

which part of the chip with which they communicate; the object’s locality preferences

can be distinguished. For example, in Figure 4.2(a), all four threads access the high-

lighted data. Consequently, the data is pulled towards those threads, exhibiting a

clear locality preference. When objects have unclear communication patterns, they

CHAPTER 4. REACTIVE APPROACH - MIGRATION 52

communicate in conflicting directions in a given dimension. The highlighted thread

in 4.2(b) accesses all four data. The thread is pulled N, E, W, and S; there is no

clearly defined chip direction in which the thread communicates.

4.1.2 Nodes’ resource demands

Because processor, memory, and network contention can all significantly impact per-

formance in future chips, we want to collect runtime information for all three of these

resources. There are a number of possible metrics for gauging processor load; in

this work, we simply track the number of threads concurrently executing on a node.

The communication resource load is broken into several components: the number of

attempted injections into the network, the number of successful injections, and the

number of cycles the processor or memory were unable to send a message. Each

node’s memory load is designated by the percentage of used memory versus the total

amount of memory available.

4.2 Migrating Based on Directed Forces

Given the runtime information described in Section 4.1, how do we use it to optimize

execution time? In the approach presented here, locality and resource load distri-

bution are viewed as competing forces: attraction and repulsion forces. Attraction

forces pull interacting data and threads together, improving locality. Repulsion forces

push objects away from locations with high resource demands, reducing individual

nodes’ resource demands. To obtain the best application performance, our technique

migrates objects in a way that simultaneously improves locality and distributes re-

source load.

Figure 4.3 shows a simple example where the attraction forces pull a thread north

and west towards the data it is accessing (Figure 4.3(a)) while the repulsion forces

created by high resource demands on the shaded nodes push the thread to the north

and east (Figure 4.3(b)). Combining these forces results in the thread migrating

north (Figure 4.3(c)), improving locality while redistributing load.

CHAPTER 4. REACTIVE APPROACH - MIGRATION 53

T

(b) (c)

DD

T

(a)

Attraction force

Repulsion force Migration force

Figure 4.3: Thread T is attracted towards data D as shown in (a). In (b), the three
shaded nodes’ resources are overloaded, causing a repulsion force to the north and
east. When we combine these forces, the conflicting horizontal components cancel
out and thread T moves north as seen in (c).

In the remainder of this chapter, we show that by modeling locality and resource

demands with directed forces, we can still improve performance using the limited and

topology-dependent runtime information. We describe our technique in terms of two

distinct components: the movement policy and the invocation policy. The movement

policy determines where to migrate objects; the invocation policy determines when

and which objects to consider for migration.

4.2.1 Movement Policy

A movement policy both defines an object’s possible migration destinations and

chooses one destination from that set. The more nodes included in the destina-

tion set, the more state collected, stored, and processed. Consequently, considering

larger destination sets takes more network, memory, and computation resources than

smaller sets.

Depending on the topology and the size of the destination set, state exchange

messages and object migration messages may travel over multiple channels in the

network. For example, a migration set of 4 nodes in a mesh can be reached in one

channel traversal while multiple channels must be traversed to reach any larger set

of nodes. For a given topology, the larger the destination set, the more network

CHAPTER 4. REACTIVE APPROACH - MIGRATION 54

bandwidth used collecting state and transmitting objects. Additionally, the more

channels traversed, the longer an object spends migrating instead of doing useful

work.

The choice of the destination set impacts the construction of attraction and repul-

sion forces. Given our destination set, we only need to consider the state of possible

destinations. The movement policy we use assumes a mesh topology and permits

only single hop migrations to any neighboring node: north, south, east, or west.

Force Calculations

In general, reducing the number of hops traversed by a message reduces the distance

the communication travels and, hence, its latency. Because we do not have com-

plete locality information available statically at runtime, we use the direction of each

communication to specify where to migrate an object to improve locality.

We combine the directional information associated with each communication and

the frequency of communication information to create attraction forces for each ob-

ject. By adding the number of communications in each dimension (where communi-

cations in opposing directions cancel out) for a given object, we construct a measure

indicating how much that object’s cumulative communication distance would de-

crease if the distance for each communication in one dimension was reduced by one

hop. This measure is the magnitude of the attraction force for the given object in

that dimension. For each object, we calculate the attraction force for both the x- and

y- dimensions.

To determine these attraction forces at runtime, we collect communication statis-

tics for each object using four counters. Two of these counters are assigned to the x-

and y- dimensions. Because communication in opposite directions of a given dimen-

sion cancel out one another’s pull in that dimension, only one counter is necessary.

Communication along one direction in a dimension will increment this counter while

communication in the dimension’s opposing direction will decrement it. For example,

assuming east is the positive direction, if an object communicated 50 times to its east

and 30 times to its west, the counter would be set to 50-30=20.

The remaining two counters collect statistics for communication from nodes that

CHAPTER 4. REACTIVE APPROACH - MIGRATION 55

100

20 T

40

T T
100+20

40+20

100

40 80

40

(a) (b) (c)

Figure 4.4: (a) depicts thread T’s communication frequency with objects on 3 other
nodes. This communication leads to the forces in (b) pulling on thread T. Thread
T’s overall attraction forces for each dimension are shown in (c).

(a) (b)

AO A

O

Figure 4.5: In (a), objects O and A communicate with one another, incurring a
communication latency of 1 hop. If object O moves in the y dimension as seen in (b),
this latency increases to 2 hops.

CHAPTER 4. REACTIVE APPROACH - MIGRATION 56

reside in the same row or column as the object. In Figure 4.5(a), object A resides

in the same row as the object O. Communication between these objects takes one

hop latency along the x dimension; there is no y dimension component. Consider

how the communication latency changes when object O moves one hop in the y

dimension as seen in Figure 4.5(b). Each communication between the two objects

will take one additional hop latency. Consequently, object A wants to discourage

object O from moving in the y dimension. Therefore, we collect statistics for the

number of communications in the same row and column as the object O. The values

for these counters will be combined (added or subtracted depending on sign) with the

counter values for their appropriate dimension counter so that the absolute value of

the dimension counter decreases by the absolute value of the row or column counter;

the row counter gets combined with the y dimension counter and the column counter

is combined with the x dimension counter.

Figure 4.4 illustrates the calculation of attraction forces for thread T. Because

migration away from the current row will increase the latency of the 20 communica-

tions to the west, a force with a magnitude of 20 opposes vertical migration. Figure

4.4(b) shows that the combined forces pull thread T north with a force of 100 and

south with a force of 20+40=60. The western and northwestern nodes also combine

to pull thread T west with a magnitude of 20+100=120, while the eastern node exerts

a force of 40. Figure 4.4(c) depicts the overall attraction forces.

While attraction forces are associated with specific objects, repulsion forces are

associated with regions of nodes; in our case, this region is a node and its four

neighbors. Nodes within a region exchange resource demand statistics at specified

time intervals. If there is contention for a node’s resources, the node is considered

overloaded. Based on the relative loads of nodes in the region, a non-zero magnitude

is assigned to nodes with overloaded resources. For each direction, we then create a

repulsion force which weights (wres) and combines the loads (lres) for several resources

and then multiplies them by a unit vector (−→vdir):

−−−−−−−−→
repulsiondir =

(

∑

wreslres

)

×−→vdir (4.1)

CHAPTER 4. REACTIVE APPROACH - MIGRATION 57

The magnitude of this force represents the strength of the force pushing objects away

from the center node to the node in the specified direction.

In the strategy used for our studies, nodes exchange information about processor

and communication resources and weight them equally. In general, we only want

to push work away from a node if that node is experiencing contention for one of

its resources. For our studies, we did not run into contention for memory so we

opted to focus on processor and communication resources. We set thresholds to

determine if these resources are overloaded and then add in some hysteresis. In order

to prevent oscillations between nodes with equal numbers of threads, we only consider

a neighboring node’s processor resources to be below our threshold if it has at least

two fewer threads than the center node in the region. Only in this case are the center

node’s processor resources considered overloaded. A node’s communication resources

are considered overloaded if 15% of the node’s injections fail or if the processor or

memory stall due to network contention more than 50% of the time.

Figure 4.6 depicts a 4x4 chip with a single region of five nodes highlighted. The

first two figures show the processor and communication demands for the nodes in

the region. The processor demands are specified in terms of the number of threads

on each node; communication demands are specified in terms of the percentage of

failed injections. The two nodes with processor demands of one thread are considered

underutilized while the two nodes with injection failure percentages higher than 15%

are considered overloaded in terms of communication demands. The last picture

shows that when both processor and communication demands are considered, only

one of the nodes (the non-shaded node) is considered underutilitized.

Force Combination

We combine attraction and repulsions forces together using vector addition, where the

resulting vector is projected along the x- and y-axes. However, we add one additional

constraint. We only want to move objects when a performance advantage will result,

i.e. decreased communication distance and/or reduced resource contention. There-

fore, we sometimes limit the impact of neighboring nodes’ repulsion forces when the

center node of a region does not exhibit resource contention.

CHAPTER 4. REACTIVE APPROACH - MIGRATION 58

14

4

4

1

02%

0

30%

20%

processor

demands

communication

demands

resource

load

Figure 4.6: For the given region, we show the processor demands in terms of number
of threads and communication demands in terms of the percentage of injections that
fail. The final figure shows that four of the nodes are considered overloaded (shaded)
when both processor and communication demands are accounted for.

The four possible combinations of attraction and repulsion forces are shown pic-

torially in Figure 4.7. For simplicity, we show calculations only for the vertical

dimension. Forces are shown by arrows and overloaded nodes are shaded.

When only one of the two forces in a dimension has non-zero magnitude, the

migration force pushes in the direction of the non-zero force as seen in Figures 4.7(a)-

(b). When both forces have non-zero magnitudes and their directions are the same,

they combine to push the object in that direction as seen in Figure 4.7(c). When

the forces conflict as seen in Figure 4.7(d), the repulsion force is subtracted from the

attraction force to obtain the migration force. Depending on the relative strengths of

the two conflicting forces, the object may migrate to either of its neighbors or remain

at its current location. This strategy allows a strongly attracted object to move to

an overloaded node if the attraction force is stronger than the repulsion force.

After the migration forces for each dimension are calculated, the force with larger

magnitude is chosen as the migration direction. The object is migrated in that direc-

tion if the expected benefit of moving the object exceeds the communication latency

incurred to move the object.

Figure 4.8 shows a simple example where tradeoffs are made between locality and

load balance. Both the thread T1 and the data D1 in Figure 4.8(a) want to migrate to

CHAPTER 4. REACTIVE APPROACH - MIGRATION 59

(a) Attraction/No Repulsion

(c) Attraction/Repulsion

(b) No Attraction/Repulsion

(d) Attraction/Conflicting Repulsion

+O

O

O

Oor or

+O

O

+O

O

O +

O

Figure 4.7: When attraction and repulsion forces do not conflict, object O is pushed
in the direction of those forces as shown in (a)-(c). However, when forces conflict,
their respective strengths determine the object’s migration direction as seen in (d).

CHAPTER 4. REACTIVE APPROACH - MIGRATION 60

(b) (c)

D
1

(a)

TD
1

T
1

T

T

T TT
1

T

T

T
D

1
T

1
T

Figure 4.8: Thread T1 and data D1 are pulled towards the intervening node in (a). As
shown in (b), processor demands in the region are already balanced. Consequently,
only D1 moves in (c).

the node between them to improve locality. However, the region’s processor demands

are already balanced as seen in Figure 4.8(b) and any migration of T1 would create

an imbalance. Figure 4.8 shows that while thread T1 does not move, locality still

improves through D1’s migration.

4.2.2 Invocation Policy

In addition to determining where to move objects, migration schemes must specify

which objects to consider for migration and how often to examine them. A static

invocation policy considers objects for migration at specified time intervals, cycling

through a list of objects. A drawback of this approach is that objects that are not used

frequently use decision slots, increasing the time between the migration of objects

that would improve performance. In contrast, a time varying policy dynamically

determines when to migrate data and which data to consider. For example, every

100th remote memory access could trigger consideration of the data accessed. Unused

objects do not waste migration opportunities with this policy because they do not

activate the trigger mechanism.

CHAPTER 4. REACTIVE APPROACH - MIGRATION 61

Table 4.1: Description of synthetic benchmarks

Name Description

resource-imbalance Threads not on the center 8 nodes repeatedly access and immedi-
ately use 4 data. For 3 of the 4 threads on each node, data is local
and unshared; for the 4th thread, data is shared and is placed at
the chip’s center. On the 8 center nodes, 4 threads execute 3 times
as many instructions and half as many loads as other threads.

single-unshared Each thread repeatedly (1000 times) accesses and then uses a sin-
gle piece of unshared data.

several-shared Each thread repeatedly (1000 times) accesses 4 shared data and
then immediately uses the data. Each group of 4 pieces of data is
accessed by the same 4 threads.

4.3 Exploring Migration Potential

In this section, we use a set of synthetic benchmarks to examine the potential impact

of our migration strategy. Using these benchmarks allows us to isolate specific appli-

cation characteristics that may interact in unique ways with our migration strategy.

The intuition gained from this study allows us to understand the effect of migration

on real applications in Section 4.4; based on these applications’ composition of char-

acteristics exhibited in the synthetic benchmarks, we can both anticipate and explain

how migration impacts each application’s performance.

Table 4.1 summarizes the basic characteristics of these synthetic benchmarks.

Four threads are executed on each node for these benchmarks. The resource demands

and relationships among threads and data, however, differ across the benchmarks.

For example, threads in resource-imbalance require different amounts of computation

and communication. In contrast, the threads in the remaining two benchmarks all

execute the same instructions as the other threads in their respective applications,

but they access different data sets. By using this set of benchmarks with different

object placements, we can study the impact of migration on both varying resource

demands and relationships among objects.

To isolate the impact of migration, we vary the simulation environment from

the baseline architecture presented in Chapter 1 for these experiments. Because

CHAPTER 4. REACTIVE APPROACH - MIGRATION 62

(b)(a)

T

T

T

T

T

T

T

T

D

D

D

D

Figure 4.9: In the resource-imbalance synthetic benchmark, the placement of data
at the chip’s center as depicted in (a) minimizes overall communication distance but
creates large network demands at those nodes. Similarly, the placement of computa-
tionally intensive threads on center nodes as depicted in (b) creates high processor
demands.

the synthetic benchmarks are relatively small and short-lived, their data sets will

completely fit into the architecture’s caching structures; therefore, we remove caches

and directories completely to emphasize the effects of migration. To see the impact of

migration on network demands, we reduce the network’s capabilities by reducing its

ability to buffer data; we reduce the number of virtual channels and buffers per virtual

channel to two each. Furthermore, we examine the impact of increasing processor

speeds relative to network speeds by reducing the physical channel bandwidth; we

accomplish this by increasing the latency between successive uses of physical channels.

Finally, the small number of objects in these benchmarks permits us to use a static

invocation policy; in this policy, nodes exchange state information every 5000 cycles

and each node initiates a new migration decision every 100 cycles.

CHAPTER 4. REACTIVE APPROACH - MIGRATION 63

0 1 2 3 4 5

Channel Initiation Interval

0

1

2

3

4

C
yc

le
s

(1
00

,0
00

)

(a) data

0 1 2 3 4 5

Channel Initiation Interval

0

1

2

3

4

C
yc

le
s

(1
00

,0
00

)
(b) thread

0 1 2 3 4 5

Channel Initiation Interval

0

1

2

3

4

C
yc

le
s

(1
00

,0
00

)

(c) both

b
c
p
cp

Figure 4.10: Execution times for the resource-imbalance benchmark. Migrating both
threads and data based on processor and communication resources reduces execution
time the most.

CHAPTER 4. REACTIVE APPROACH - MIGRATION 64

4.3.1 Repulsion Forces

The resource-imbalance benchmark allows us to examine the usefulness of incorporat-

ing both processor and communication demands in repulsion forces. In this bench-

mark, the four center nodes shown in Figure 4.9(a) experience high communica-

tion demands due to data requests while the eight nodes depicted in Figure 4.9(b)

experience high processor demands. Performance improvements, therefore, require

redistribution of processor and communication demands.

Figure 4.10 contains graphs depicting the execution times of the resource-imbalance

benchmark when data, threads, and both data and threads are migrated. In each

graph, we show the baseline (b) execution time when migration is not used and the

execution times when the repulsion force is composed of communication resource load

(c), processor resource load (p), and both communication and processor resource loads

(cp).

Each graph also depicts the impact of migration as processor speeds become rel-

atively faster than network speeds; we achieve this effect by reducing the available

network bandwidth in our system. The channel initiation interval depicted on the

x-axis specifies the amount of time required between subsequent uses of a network

channel. As this channel initiation interval increases, the channel bandwidth de-

creases since data must be sent across the channel at a slower rate; a 1 cycle interval

allows data injection every cycle, whereas a 5 cycle interval allows injection every fifth

cycle. When the channel initiation interval is 5 cycles, the processor can complete

5 instructions in the time it takes to send data across a single channel, making the

processor relatively faster than the network.

Figure 4.10(a) shows that migrating data in response to communication resource

demands, a novel feature of our migration strategy, significantly reduces execution

time. Thread migration also reduces execution time when incorporating communica-

tion resources (c) as seen in Figure 4.10(b). Adding processor resources to thread

migration decisions (cp) further reduces execution time; this is particularly true at

slower processor speeds (channel initiation interval less than 3) because computation

resources constrain performance. The largest performance improvement, however,

results from migrating both data and threads based on both communication and

CHAPTER 4. REACTIVE APPROACH - MIGRATION 65

0 1 2 3 4 5

Channel Initiation Interval

0

5

10

15

20

C
yc

le
s

 (
10

,0
00

)

(a) data

0 1 2 3 4 5

Channel Initiation Interval

0

5

10

15

20

C
yc

le
s

(1
0,

00
0)

(b) thread

0 1 2 3 4 5

Channel Initiation Interval

0

5

10

15

20

C
yc

le
s

(1
0,

00
0)

(c) both

b
a
a+r

Figure 4.11: Execution times for the single-unshared benchmark using migration
based on attraction and repulsion forces. Repulsion forces restrict thread migrations
to prevent overloading intermediate nodes.

processor resource demands (cp) as seen in Figure 4.10(c).

4.3.2 Adding Attraction Forces to Repulsion Forces

In this section, we explore the impact of incorporating locality into our migration

strategy. Because attraction forces are based on the direction and frequency of com-

munication between interacting objects, we vary communication patterns by changing

the relative positions of objects in the two locality benchmarks.

CHAPTER 4. REACTIVE APPROACH - MIGRATION 66

Clear Data / Clear Thread

In the single-unshared benchmark, all objects have clear communication patterns;

each thread is pulled towards the datum it accesses and each datum is pulled to

the thread that accesses it. When only threads or only data are migrated, migration

based solely on attraction forces (a) reduces execution time more than other migration

schemes as seen in Figures 4.11(a) and 4.11(b). This is because the sooner interact-

ing threads and data are co-located, the less time threads waste waiting for remote

accesses. When only data or threads are migrated, execution time suffers with the ad-

dition of repulsion forces (r) because migrating objects can be temporarily stalled by

intermediate nodes with high resource demands as seen in Figure 4.11(c). However,

when both data and threads migrate, the combination of attraction and repulsion

forces (a + r) reduces execution time more than attraction forces alone.

Clear Data / Unclear Thread

In this section, we arrange the data and threads in several-shared to create clear

communication patterns for data but unclear communication patterns for threads.

Threads using the same data are located on four neighboring nodes, while data

is randomly distributed. Consequently, data are pulled in a single direction while

threads are pulled in multiple conflicting directions. As in the single-unshared analy-

sis, Figure 4.12(a) shows that migrating data based on attraction forces (a) improves

performance. However, the addition of repulsion forces (r) does not hurt perfor-

mance; it actually improves performance at slower network speeds (channel initiation

interval of 5) by preventing network contention. The repulsion forces cause data

to be distributed across the four accessing nodes and, therefore, prevent one node’s

communication resources from becoming overloaded.

Because threads do not have clear communication patterns, attraction forces move

them towards the chip’s center to improve locality; this results in unbalanced proces-

sor load and decreased performance as shown in Figure 4.12(b). Despite the lack of

benefits from thread migration, Figure 4.12(c) shows that migrating both data and

threads based on both attraction and repulsion forces reduces execution time as much

CHAPTER 4. REACTIVE APPROACH - MIGRATION 67

0 1 2 3 4 5

Channel Initiation Interval

0

5

10

C
yc

le
s

 (
10

0,
00

0)

(a) data

0 1 2 3 4 5

Channel Initiation Interval

0

5

10

C
yc

le
s

(1
00

,0
00

)
(b) thread

0 1 2 3 4 5

Channel Initiation Interval

0

5

10

C
yc

le
s

(1
00

,0
00

)

(c) both

b
a
a+r

Figure 4.12: Execution times for several-shared when threads do not have clear com-
munication patterns but data do. Migrating both data and threads obtains the same
benefits as migrating data alone.

CHAPTER 4. REACTIVE APPROACH - MIGRATION 68

as data migration alone; processor resources inhibit thread migration while locality

and communication resources migrate data.

Unclear Data / Clear Thread

In our second placement of data and threads in the several-shared benchmark, data

accessed by the same threads are placed on four neighboring nodes while threads are

randomly distributed; this creates an initial placement in which threads have clear

communication patterns but data do not. Because threads have clear communication

patterns, thread migration based on attraction forces (a) improves performance as

shown in Figure 4.13(b). Unclear communication patterns pull data towards the

chip’s center, thus creating network contention. Figure 4.13(a) shows that adding

repulsion forces to the attraction forces used for data migration prevents this network

contention.

Figure 4.13 shows that, when threads have clear communication patterns, migrat-

ing both data and threads improves performance more than migrating either alone.

However, Figures 4.13(b)-(c), show that these benefits are greatest when threads

are migrated based solely on attraction forces; repulsion forces prevent threads from

migrating to improve locality if intermediate nodes’ resources would be overloaded in

the process.

Unclear Data / Unclear Thread

When data and threads in the several-shared benchmark are both randomly dis-

tributed, all objects communicate in conflicting directions. Because objects have

unclear communication patterns, migrating only data or only threads obtains limited

performance improvements as seen in Figures 4.14(a) and 4.14(b).

Migrating both object types based on attraction and repulsion forces achieves

larger reductions in execution time as seen in Figure 4.14(c). The combined forces

cause objects to move closer to one another while avoiding overloading nodes’ commu-

nication resources. Because communication latency is more important than processor

resources at higher channel initiation intervals, imbalanced processor demands do not

CHAPTER 4. REACTIVE APPROACH - MIGRATION 69

0 1 2 3 4 5

Channel Initiation Interval

0

2

4

6

8

10

C
yc

le
s

 (
10

0,
00

0)

(a) data

0 1 2 3 4 5

Channel Initiation Interval

0

2

4

6

8

10

C
yc

le
s

(1
00

,0
00

)
(b) thread

0 1 2 3 4 5

Channel Initiation Interval

0

2

4

6

8

10

C
yc

le
s

(1
00

,0
00

)

(c) both

b
a
a+r

Figure 4.13: Execution times for the several-shared benchmark when threads have
clear communication patterns but data does not. Thread migration is inhibited by
repulsion forces.

CHAPTER 4. REACTIVE APPROACH - MIGRATION 70

0 1 2 3 4 5

Channel Initiation Interval

0

2

4

6

8

C
yc

le
s

 (
10

0,
00

0)

(a) data

0 1 2 3 4 5

Channel Initiation Interval

0

2

4

6

8

C
yc

le
s

(1
00

,0
00

)

(b) thread

0 1 2 3 4 5

Channel Initiation Interval

0

2

4

6

8

C
yc

le
s

(1
00

,0
00

)

(c) both

b
a
a+r

Figure 4.14: Execution times for the several-shared benchmark when all objects have
unclear communication patterns. Once communication latency impacts performance
more than processor demands, migrating both threads and data based on attraction
forces achieves the best performance.

CHAPTER 4. REACTIVE APPROACH - MIGRATION 71

negatively impact execution time. However, when the availability of processor re-

sources impacts performance (channel initiation interval is 1), migrating without the

restraining effects of processor resources hurts performance.

4.4 Examining Larger Applications

In the preceding section, we showed that migrating both data and threads improves

performance as much as or more than migrating only data or only threads. However,

we also found that application characteristics determine which combinations of at-

traction and repulsion forces create the largest performance improvement. Depending

on the frequency of these different characteristics, our migration strategy may or may

not help performance.

In this section, we evaluate our migration strategy on the applications introduced

in Chapter 3. We use the architecture presented in Chapter 1 with one modification.

The architecture used for our simulations does not model directory traffic; in Section

4.5, we discuss the implications of this assumption.

In order to observe the impact of thread migration, we execute raytrace, barnes-

hut, and nbody with a multithreading level of eight threads and equake with a multi-

threading level of four threads. Table 4.2 summarizes our applications’ key charac-

teristics with respect to resource load and communication patterns.

Table 4.2: Summary of application characteristics

Name Resource Imbalance Data Threads

raytrace Lots Clear Unclear

barnes-hut Some Unclear Unclear

equake Limited Clear Unclear

nbody None Unclear Unclear

CHAPTER 4. REACTIVE APPROACH - MIGRATION 72

4.4.1 Real applications: execution time improvement

For these studies, nodes exchange state every 10,000 cycles. Upon state exchange,

threads are considered for migration. We use a time varying invocation policy for

data migration because the data set sizes are large and may be sparsely accessed.

On every 100th remote memory access, a node considers the currently accessed data

for migration. Finally, we assume that the migration decision computation takes 100

cycles and does not take away processing resources from application computation.

Figures 4.15(a)-(c) show the applications’ execution times when attraction forces

(a), repulsion forces (r), and attraction and repulsion forces (a + r) form the basis

for migration. For comparison, the baseline (b) and oracle execution times are also

shown. As a reminder, the per-m oracle emulates all memory accesses being handled

locally; the bal-p oracle models all memory accesses to be local and performs perfect

processor load balancing.

The migration strategies that rebalance processor demands improve raytrace’s

performance by 41% by migrating 3,727 threads and 26,973 data objects. Because

data have clear communication patterns, migration reduces the average distance of

communication from 5-6 hops to 2-3 hops. However, data migration by itself does

not reduce execution time despite this reduction in communication distance; com-

munication latency has little effect on the baseline execution time as shown by the

equivalent heights of the baseline and per-m bars in Figure 4.15(a). Like the results

shown in Figure 4.12(b), migrating threads based on attraction forces alone increases

execution time because processor load becomes imbalanced.

In barnes-hut, all objects have unclear communication patterns. Hence, data mi-

gration by itself does not decrease execution time. The large increases in execution

time seen in Figure 4.15(b) resulting from migrating threads based solely on attrac-

tion forces make it clear that computation resources clearly define performance for

this application. For these reasons, performing 979 thread migrations and 71,056 data

migrations reduces execution time by only 7%.

The nbody application exhibits good processor load balance so we do not expect

and do not obtain any benefits from thread migration based on repulsion forces.

Like barnes-hut, nbody ’s objects have unclear communication patterns which make

CHAPTER 4. REACTIVE APPROACH - MIGRATION 73

b
pe

r-
m

ba
l-

p a
a+

r a r
a+

r a r
a+

r

0

2

4

6

C
yc

le
s

(1
,0

00
,0

00
)

(a) raytrace

b
pe

r-
m

ba
l-

p a
a+

r a r
a+

r a r
a+

r

0

2

4

6

8

10

C
yc

le
s

(1
,0

00
,0

00
)

(b) barnes-hut

35.5 42.3

b
pe

r-
m

ba
l-

p a
a+

r a r
a+

r a r
a+

r

0

2

4

6

8

10

C
yc

le
s

(1
,0

00
,0

00
)

(c) equake

b
pe

r-
m

ba
l-

p a
a+

r a r
a+

r a r
a+

r

0

2

4

6

8

10

C
yc

le
s

(1
,0

00
,0

00
)

(d) nbody

oracles
data
thread
both

28.1 23.4

Figure 4.15: The application execution times depict the benefits accrued by different
combinations of attraction and repulsion forces when data, threads, and data and
threads are migrated.

CHAPTER 4. REACTIVE APPROACH - MIGRATION 74

migration based on attraction forces pull all objects towards the center of the chip. For

applications with these characteristics, our migration strategy is unable to improve

performance; however, it does not hurt performance either.

Because data have clear communication patterns in equake, data migration based

solely on attraction forces reduces the execution time by 29%. As with the single-

unshared benchmark, some of this performance gain is lost when communication

resources are incorporated in the migration strategy via repulsion forces. Because

threads have unclear communication patterns, thread migration does not improve

performance. Despite this, migrating both object types obtains the same performance

benefits as data migration alone.

4.4.2 Performance impact of migration as processor speed

increases

To conclude this examination of our migration strategy, we execute the computation-

ally intensive application raytrace when processors are five times as fast as our baseline

architecture. Figure 4.16 shows the execution time of raytrace when objects migrate.

Unlike in our earlier analysis, making all memory accesses local reduces the baseline

execution time; the per-m oracle shows that communication latency increasingly im-

pacts performance at faster processor speeds. Data migration based on attraction

forces is now able to improve performance by 26%. Thread migration by itself, how-

ever, provides limited performance improvement. Thus, increasing processor speeds

move applications into the realm where communication latency, both communication

distance and contention, must be reduced to improve application performance.

4.5 Directory Traffic

The simulator used in this chapter does not model directory traffic. Instead, perfect

knowledge about data’s location in memory is assumed. In general, directory traffic

can have two effects on application execution times. First, the latency of remote

memory accesses may increase because a message must first be sent to the directory

CHAPTER 4. REACTIVE APPROACH - MIGRATION 75

b
pe

r-
m

ba
l-

p a
a+

r a r
a+

r a r
a+

r

0.0

0.5

1.0

1.5

C
yc

le
s

(1
,0

00
,0

00
)

oracles
data
thread
both

Figure 4.16: Increasing processor speed results in communication impacting raytrace’s
execution time.

before proceeding to the data’s memory location. Second, these additional messages

to the directory will increase network demands and may increase latency due to

network contention.

In Chapter 6, we execute each of the four applications on the architecture pre-

sented in Chapter 1, which models directory traffic. We briefly present information

here about those executions in order to understand how directory modeling affects

our migration results. equake is the only application whose execution time changes

significantly with the addition of directory traffic; the addition of 16 million messages

due to directory traffic causes the execution time to quadruple. There are several

reasons that equake is affected and the other applications are not. First, the remote

cache of memory locations at each node reduces the need to go to a directory. The

hit rate for remote requests is only 54% for equake while it is 72% for barnes-hut,

92% for raytrace, and 97% for nbody. Second, the level of multithreading used in

equake is smaller than the other applications (only 4 versus 8 threads), making it

less latency-tolerant. Third, the frequency of memory instructions is much higher in

equake, again making it more difficult to tolerate remote memory accesses.

Given that directory traffic does not impact three of four applications, we believe

that this simplifying assumption does not affect our conclusions. For the remaining

application, equake, we expect the benefits of migration to be even larger when direc-

tory traffic is modeled. In addition to reducing communication distance and balancing

CHAPTER 4. REACTIVE APPROACH - MIGRATION 76

processor demands, we expect that the improvements in locality and distribution of

resource demands created by migration will reduce increases in network contention

created by directory traffic. This reduction in network contention will further improve

performance. For example, migrating data and threads based on attraction and re-

pulsion forces reduces the execution time of equake by 56% when directory traffic is

modeled compared to only 28% when directory traffic is not modeled.

4.6 Conclusions

Our application and benchmark studies indicate that migration improves the perfor-

mance of applications with clear communication patterns and/or resource load im-

balance, but has limited improvements on applications with unclear communication

patterns. In Chapter 5, we explore a technique called anchors which turns unclear

communication patterns into clear ones, enabling our migration strategy to work on

a larger set of applications. Additionally, we consider how our strategy complements

the use of caches in Chapter 6.

Chapter 5

Proactive Approach - Anchors

77

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 78

In Chapter 2, we described the static and dynamic information available for op-

timizing an application’s performance. The migration strategy presented in Chapter

4 exploits dynamically collected communication and resource demand statistics to

improve locality and resource usage. Unfortunately, this strategy has two limitations.

First, information about inherent communication patterns between objects can be

lost or obfuscated at runtime. Second, our gradual migration of objects to their best

location takes time and, therefore, limits the achievable performance improvements.

In this chapter, we address these two issues by introducing and evaluating a technique

called anchors. By using statically available information about inter-object commu-

nication patterns to create new thread decompositions, the anchors technique helps

expose communication patterns at runtime and enables execution of computation

near the data it accesses.

5.1 Moving Computation to Data

The key to retaining locality information is to include it in either of the program

abstractions: threads or data. We choose to retain temporal locality information by

incorporating it into our thread invocations. The cluster concept introduced in Chap-

ter 2 provides a technique for recognizing temporal locality among data objects and

associating these objects with their computation. Figure 5.1 depicts the execution of

a thread T; its data accesses to data A-F are specified and divided into three clusters.

Specific data may be used in different clusters, however, these clusters can be distin-

guished from one another by the core set of data they access. The most frequently

accessed data in a cluster constitutes a core data set. For example, in Figure 5.1, the

core data sets are A for cluster 1, A and D for cluster 2, and C for cluster 3.

By associating each cluster’s computation with its core data set, we can specify

the locality association between the thread and the data it uses. One element of the

core data set, called the anchor, acts as an approximation for the core data set. We

then exploit this association by remotely executing the computation at the location

of its anchor, thereby eliminating remote communication between the computation

and its anchor.

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 79

A, B, C

A, D, E

C, F

T
im

e

Thread T

Figure 5.1: Thread T’s data usage is decomposed into 3 clusters. In each cluster, the
core data set is circled.

T

A
T

1

C
T

2

A, B, C

A, D, E

T
im

e

Thread T
1

C, F

Thread T
2

(a) (b)

Figure 5.2: Anchors are chosen for each cluster and then two subthreads, T1 and T2,
are created as depicted in (a). A single thread includes clusters 1 and 2 because their
core data sets are similar. Figure (b) shows the execution of the two subthreads at
their respective anchor locations.

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 80

The anchor technique divides threads consisting of multiple clusters into sub-

threads; each subthread is associated with its respective cluster and executed at the

location of the anchor chosen from that cluster’s core data set. Figure 5.2 shows how

thread T from Figure 5.1 is decomposed into two subthreads, T1 and T2, based on

their clusters and then executed at their respective anchor locations. It is important

to note that these two threads are run serially; finding places to increase concurrency

is not the objective of this work.

5.2 An Example: Barnes-Hut

In Chapter 3, we describe the inherent locality between particles created by the oc-

tree structure in barnes-hut ; particles likely to strongly influence one another are sit-

uated close to one another in the octree. This locality information is lost at runtime,

making it extremely difficult for our migration strategy to reduce communication

distance without moving all data towards the center of the chip. This loss of infor-

mation derives from the decomposition of barnes-hut ’s computation into threads. A

single thread calculates how all other particles impact a single particle. Consequently,

threads access a large fraction of the application’s data set, and many threads access

overlapping data sets. This destroys any locality created by the octree.

In barnes-hut, each thread, ti, associated with a particle, pi, accesses some number

of other particles, pk, to determine pi’s new location and velocity. When threads are

decomposed into clusters, there is no overlap in the accesses of particles pk and pk+1;

each cluster contains accesses to a single particle pk. Therefore, when we apply the

anchor technique, we divide the thread ti into many new subthreads where each

new subthread, sk, executes the computation that accesses particle pk. Because the

particles are organized in a tree structure, this means that subthreads will create new

subthreads for their associated particles’ children in the tree. The anchor for each

new subthread, sk, will be its associated particle, pk.

Several improvements are gained by using anchors. First, all communication be-

tween subthread sk and particle pk is eliminated because they reside at the same

location. Second, accesses to all other data used with pk originate from the anchor’s

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 81

location. Data in subthread sk’s data cluster, therefore, has a clear direction to move

towards to improve locality; it is pulled towards pk’s location. Third, the locality cre-

ated by the octree between a node, its parent node, and its children nodes is exposed

by the communication needed to create new subthreads for accessing these nodes in

the octree. By creating subthread sk, particle pk’s association with its parent node in

the octree is exposed. Our migration strategy can potentially exploit these clarified

communication patterns to reduce communication demands.

5.2.1 Benefits: Reduced and Clarified Communication

The primary goal of using our anchor technique is reducing remote communication

and remote communication latency. In general, the latency for a single remote com-

munication, Lremote, equals the sum of sending a request, Lreq, receiving a reply, Lreply,

and data serialization, Ldata, as expressed in Equation 5.1. For an architecture where

communication latency increases depending on the number of hops traveled, the time

for sending a request or reply message depends on the number of hops, H , and hop

latency, Lhop, as seen in Equation 5.2. Note that this assumes that a request message

with no data is equivalent to the size of a single channel width or flit. Additionally,

any network contention would be added to this latency.

Lremote = Lreq + Lreply + Ldata (5.1)

Lreq = H × Lhop (5.2)

The total remote request latency for accesses to a particular data object can

be expressed as the sum of all the remote request latencies between that data and

the requesting thread. Because placing a thread and its anchor on the same node

reduces the number of hops to zero, this value also represents the maximum amount

of communication latency that would be eliminated if the thread and data resided on

the same node. Therefore, the overall decrease in cumulative communication latency

is simply the sum of the latencies for all remote requests, k, between a thread and its

associated anchor. This is seen in Equation 5.3.

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 82

(a)

B

T
1

T
4

A

T
3

T
2

(b)

T
1-4

A

B

Figure 5.3: Figure (a) shows the communication directions for data A and B when
threads do not execute at the location of the data that they access most frequently
- data B. Figure (b) shows data A’s clear communication direction towards data B
when threads execute at the location of data B.

m
∑

k=1

Lremote(k) (5.3)

An additional benefit of the anchor technique is that it clarifies the communication

patterns between threads and data. As seen in Chapter 4, the physical placement of

threads and data on a chip can obfuscate the logical communication patterns in an

application. For example in Figure 5.3, if data A is always used when data B is used,

then threads that use B will want A to be nearby. If, as in Figure 5.3(a), the threads

that use B are distributed across the chip, A will be communicating in all directions.

However, if all threads that use B execute at B’s location, A will only communicate

in one direction. Given the placement in Figure 5.3(b), migration schemes that use

communication direction to improve locality can then move A towards B.

The anchor technique clarifies the inter-object communication patterns exhibited

by barnes-hut. It enables us to capture the relationships among the data accessed

when calculating a single particle’s impact on a given particle. Additionally, it exposes

the structure imposed by the octree. As threads recursively execute on a particular

element’s children, we can observe the communication between the parent thread and

the children’s data.

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 83

5.2.2 Performance Limiting Overheads

There are, however, costs associated with decomposing a thread into subthreads and

executing these subthreads remotely. Invoking a remote thread requires any state that

is needed for execution to be transferred. Consequently, the communication latency

for creating a remote subthread, called the remote invocation latency, Linv, is the

sum of the latencies for sending a request and a reply as well as any necessary state,

Lstate. This set of latencies is captured in Equation 5.4.1 In this work, we assume all

threads are executing the same code so we do not include an explicit additional cost

for code migration.

Linv = Lreq + Lreply + Lstate (5.4)

In addition to the remote invocation latency, there are also two main processor

costs for our approach. First, invoking a remote thread requires additional instruc-

tions, Linstr to be executed on both of the processors involved. On the calling proces-

sor, additional instructions may need to be executed to send the thread invocation

message. Creating a new thread at the anchor’s location requires the remote proces-

sor to execute additional instructions to set up the new thread for execution. Both

of these actions increase latency by taking time to execute the new instructions and

by taking processor resources away from other useful computation.

Second, processor demands may become unbalanced when threads’ execution lo-

cations are dictated by anchor locations. If many threads use the same anchor or

have anchors residing at the same location, the processor resources at that location

will be overwhelmed. The cost for this imbalance, Limbal, is the sum of the number

of instructions that overlap; this is because independent threads that could execute

concurrently are serialized when they use the same processor, causing their execution

times to increase. Consequently, care must be taken in the assignment of anchors

to insure processor imbalance does not subsume the benefits gained by decreasing

communication.

1If the program can be organized as a series of tail-end function calls or continuations, the reply
message is not necessary.

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 84

5.2.3 Cost-Benefit Analysis

The anchor technique should only be used when the possible performance benefits for

an application are larger than the costs discussed in Section 5.2.2. Our technique is

advantageous when the change in execution time due to eliminating messages to/from

anchors is larger than the combined costs of thread creation overhead and processor

load imbalance as seen in Equation 5.5.

m
∑

k=1

Lremote(k) > Linv + Linstr + Limbal (5.5)

From this simple equation, we can make two observations. First, a key benefit

of remotely executing a thread is the elimination of message overhead. Instead of

having many request and reply messages, a single thread invocation message is sent,

containing all the state needed to execute the thread. This means that the overhead

of sending messages is only incurred once instead of many times. Second, Equation

5.5 implies that as processor speeds increase relative to network speeds, the negative

effects of these processor overheads on the obtainable performance improvements will

be reduced.

Finally, it is important to note that this model is simplistic in that it assumes that

the latency for a remote request cannot be masked via some other computation. When

latency can be masked, the overall benefit of removing remote requests decreases;

however, the decrease in messages may also reduce latency due to network contention.

The remainder of this chapter examines the impact of these theoretical costs and

benefits on the performance of a set of synthetic benchmarks and a set of applications.

The synthetic benchmarks enable us to analyze each of the potential costs in detail

while the applications show us the full potential of our technique.

5.3 Analyzing the Impact of Changing Costs

In this section, we use a set of synthetic benchmarks to examine the potential benefits

and costs of using the anchor technique. We study a range of costs in order to

understand how sensitive application performance is to each overhead. Additionally,

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 85

we examine how the relative impact of these costs changes as processor speeds increase

relative to network speeds.

5.3.1 Synthetic Benchmark Description

Each of the synthetic benchmarks consists of 64 threads that repeatedly access and

then immediately use data. The differences between the benchmarks are specified in

Table 5.1. Every thread in the benchmarks has a specific number of clusters in which

it accesses core data objects equally; any other data in that cluster is accessed 25%

as frequently.

Benchmarks with multiple clusters are candidates for the creation of subthreads,

each with their own anchor. We decrease the importance of communication rela-

tive to computation in the single-nosubthreads-compute benchmark by decreasing the

number of memory references; we use these benchmarks to explore the benefits of

our technique on more processor-centric applications. Finally, we vary the number of

nodes data reside on in order to examine the impact of processor load imbalance.

For each of the benchmarks, we vary the network’s hop latency. We use the vari-

able hop latency to approximate several possible increases in communication latency:

divisions of chips into larger numbers of nodes, network contention, and increasing

processor speeds. By increasing the hop latency, we change the relative processor

speeds; larger hop latencies imply relatively slower networks. By modeling increasing

hop latencies, we can see the performance trends caused by increased network con-

gestion, faster processors, or increased average hop distances (caused by subdividing

chips into larger numbers of nodes).

5.3.2 Communication Benefits from Using Anchors

Executing Computation at an Anchor

We use the single-nosubthreads benchmark to highlight the benefits accrued by ex-

ecuting a thread at the location of its anchor. We assume minimal overheads for

thread creation and that the benchmark’s processor and memory demands are dis-

tributed evenly across the chip. This benchmark places data within the same cluster

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 86

Table 5.1: Synthetic benchmarks’ defining parameters.

Name single-

nosubthreads

single-

nosubthreads-

compute

multiple-

nosubthreads

multiple-

subthreads

Clusters 1 1 4 4

Core Data 4 4 1 1

Other Data 0 0 1 1

Ref. 400 200 125 125

Instr 700 700 250 250

Placement Locality Locality Random Random

Nodes w/Core
Data

64 64 64 64/32/16/8

on neighboring nodes, with data distributed evenly across the nodes. Consequently,

when a thread resides near one of the data in its core data set, it resides near all

of them. In the no-anchor case, threads do not execute at their anchor’s location;

instead, the benchmark randomly assigns threads to nodes. When anchors are used,

threads execute at the location of their anchors.

Figure 5.4 depicts a dramatic difference in execution time for the no-anchor and

anchor versions; as hop latency increases, this disparity grows. Figure 5.5 depicts

the number of flits and messages sent during execution, as well as the cumulative

distance these messages travel. Fewer flits and messages are sent when anchors are

used. Because threads in the anchor version execute at the location of their respective

anchors, messages between these anchor/thread pairs are eliminated; only messages

to data on remote nodes are seen.

The large decrease in the anchor case’s message distance, however, contributes

more significantly to the execution time disparities than message elimination. In the

no-anchor case, threads do not necessarily execute near the data they access. In the

anchor case, however, threads execute near their entire core data set. Because the

data in the core data set resides near that set’s anchor, threads communicate only

short distances. Figure 5.6 shows that the distance between data and the center

of its accesses decreases when anchors are used. These shorter distances result in

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 87

0 2 4 6 8

Hop Latency

0

5000

10000

15000

20000

C
yc

le
s

No-anchor
Anchor

Figure 5.4: We execute the anchor and no-anchor versions of single-nosubthreads,
varying network hop latencies from 1 to 8.

shorter memory stalls which create the large changes in execution time. Threads in

the no-anchor version are unable to exploit its core data set’s locality and, therefore,

incur larger stalls.

Finally, Figure 5.7 depicts one further benefit of using anchors. As described in

Section 5.2.1, anchors can help make the inherent communication patterns between

objects clearer despite initial object placements. Figure 5.7 shows the optimal loca-

tions for data placement when overall communication distance is minimized. Darker

colors imply more data would be placed on these nodes. Without the use of anchors,

data is attracted towards the center of the chip; this implies that each data is pulled

in conflicting directions as discussed in Chapter 4. When anchors are used, however,

optimal data placement distributes data across the chip. Data is accessed by threads

whose locations are near the data’s location instead of by threads distributed across

the entire chip. Consequently, the data will remain in the area of these threads instead

of all of them being pulled towards the chip’s center. By using anchors, we avoid the

obfuscation of communication patterns that stems from physical placements of data

and threads on the chip; anchors allow us to clearly see the communication patterns

between data and threads regardless of placement.

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 88

Fl
its

M
sg

s

D
is

ta
nc

e

0

5

10

15

20

25

N
um

be
r

(1
0,

00
0)

No-anchor
Anchor

Figure 5.5: The cumulative number of messages and flits sent, as well as the overall
distance these messages travel, for the single-nosubthreads benchmark is shown.

0 5 10

Hops

0

10

20

30

D
at

a
O

bj
ec

ts

(a) no-anchor

0 5 10

Hops

0

10

20

30

D
at

a
O

bj
ec

ts

(b) anchor

Figure 5.6: The distance between a data object and the center of its references is
shown.

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 89

(a) no-anchor (b) anchor

Figure 5.7: These temperature graphs show the optimal locations for data given
their references’ node origins. Darker colors imply more data are pulled to that
location. When anchors are used, objects would optimally be distributed across the
chip, reducing the likelihood of imbalanced resource demands.

Evaluation of Creating New Subthreads

We use the multiple-nosubthreads and multiple-subthreads benchmarks to examine the

impact of subthreads on communication latency and execution time. The multiple-

nosubthreads benchmark accesses four primary data and one other piece of data.

However, it accesses each of the primary data for an interval and then switches to

use a different one. In multiple-subthreads, we create four subthreads at each of these

clusters with the primary data designated as the thread’s anchor.

Figure 5.8 shows the change in execution time when we simulate both of these

benchmarks using minimal anchor overheads. Similar to our example in the preceding

section, we observe large differences in the two cases’ execution times resulting from

decreased communication latency. Figure 5.9 shows the large differences between the

two cases in terms of both the number of flits and of messages and the cumulative

communication distance. By taking advantage of the different data clusters, anchors

transform the many read requests into a single remote thread invocation request and

many local data accesses.

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 90

0 2 4 6 8

Hop Latency

0

20000

40000

60000

80000

C
yc

le
s

Nosubthread
Subthread

Figure 5.8: Execution times for the multiple-nosubthreads and multiple-subthreads
benchmarks are shown as hop latency is varied from 1 to 8 cycles.

Fl
its

M
sg

s

D
is

ta
nc

e

0

2

4

6

8

10

N
um

be
r

(1
0,

00
0)

No-anchor
Anchor

325

Figure 5.9: The number of messages and of flits, as well as the distance messages
travel, are shown for the multiple-nosubthreads and multiple-subthreads benchmarks.

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 91

0 2 4 6 8

Hop Latency

0

5000

10000

15000

20000

C
yc

le
s No-anchor

Anchor
No-anchor-compute
Anchor-compute

Figure 5.10: The execution times for the noanchor and anchors versions of the
single-nosubthreads and single-nosubthreads-compute benchmarks are shown as hop
latency and thread invocation cycles are varied. The execution times for the single-
nosubthreads-compute benchmark show the effect that reducing data references (and
hence the relative impact of communication) has on the improvements gained by
using anchors.

Effects of communication frequency

To understand how communication frequency affects how well our approach per-

forms, we decrease the total frequency of data accesses (and thus communication) in

our benchmarks and repeat our experiments. The threads in the single-nosubthreads-

compute benchmarks perform 50% fewer data references than threads in the single-

nosubthreads benchmark. Figure 5.10 shows the execution times for both sets of

benchmarks. The differences in execution times for the two versions of the single-

nosubthreads-compute benchmark are smaller than in the more communication-bound

benchmark. At smaller hop latencies, in particular, only small performance gains

appear. The costs of using anchors discussed in Section 5.2.2 would likely over-

come these small improvements. However, as hop latency increases, even these more

compute-centric benchmarks experience significant execution time reductions with

the use of anchors.

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 92

0 2 4 6 8

Hop Latency

0

20000

40000

60000

80000

C
yc

le
s Nosubthreads

Subthreads 0
Subthreads 100
Subthreads 1000

Figure 5.11: The effects of hop latency and state size on a remote thread invocation
are depicted for the multiple-nosubthreads and multiple-subthreads benchmarks. The
legend specifies state size in terms of flits.

5.3.3 Impact of Remote Invocation Costs

Up until this point, we have focused on the benefits of anchors assuming minimal

overhead of applying this technique. We now look at the negative impact of addi-

tional instructions that must be executed on remote invocation, of state that must

be transferred on remote invocation, and of increased processor load imbalance.

Communication Resources: Transferred State

The state needed to execute a subthread must be included in remote thread invocation

messages; this increases both network bandwidth demands and the latency of remote

thread invocations. At the very least, a program counter is required, but generally

the transferred state will be similar to that passed on a function call. Larger state

quantities increase the message’s transit time and increase network demands. If the

state size is too large, the costs may offset the benefits from anchors.

Figure 5.11 shows the effects of increasing the state transferred on each subthread

invocation. We vary the amount of state transferred in terms of flits (8B) from 0 to

1000 while also varying hop latency. As the number of transferred bytes increases by

100 flits from 0 flits to 1000 flits, the execution time gradually increases; there are

no severe jumps in execution times as the transferred bytes increase by increments

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 93

of 100 flits, so we only show execution times for 0, 100, and 1000 flits. Figure 5.11

shows that state sizes of less than 100 flits do not strongly impede anchors from

improving performance. However, when the state size is 1000 flits, anchors only

improve performance at higher hop latencies. When the hop latency is less than four

cycles, the overhead of transferring a thread’s state overpowers any obtainable anchor

benefits. Therefore, subthreads should not be created when the state that must be

transferred is large and hop latencies are small. For the applications used in our

study, at most 40 bytes (5 flits) of state must be transferred in addition to the 8 bytes

(1 flit) of state (including the program counter) necessary for creating any remote

thread.

Processor Resources: Invocation Time and Load Imbalance

As mentioned earlier, processor resource demands increase and may become unbal-

anced when using our anchor technique. The number of cycles it takes to create a

new thread will reduce the potential performance benefits gained by the introduction

of subthreads. To understand the magnitude of this effect, we vary the invocation

time for subthreads from 0 cycles to 1000 cycles. Figure 5.12 shows the total execu-

tion cycles for the multiple-nosubthreads and multiple-subthreads benchmarks as both

hop latency and invocation time are varied. As hop latency increases, the benefits

of using subthreads is sustained despite increasing invocation times. Additionally,

as hop latency increases, the differences in execution time for different invocation

costs decrease. This trend implies that invocation time will diminish in importance

as processors become relatively faster than the network.

Finally, we note that there are points when the number of invocation cycles are

too high to allow the use of subthreads to reduce execution time. In Figure 5.12,

this happens when each invocation time is 1000 cycles and hop latency is 1. The

interval for which anchors will be too expensive depends on the relative speeds of

the network and processor, the application’s communication frequency, and remote

thread invocation costs. In [28], they showed that new threads could be created in 11

cycles at a remote processor. When more state is transferred, we expect the time for

creating a new thread will increase; however, the small application state transferred

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 94

0 2 4 6 8

Hop Latency

0

20000

40000

60000

80000

C
yc

le
s

Nosubthread
Subthread 0
Subthread 10
Subthread 100
Subthread 1000

Figure 5.12: The execution times for the multiple-nosubthreads and multiple-
subthreads are shown when hop latency and remote invocation latency are varied.
The remote invocation latency is specified in the legend.

on our applications’ thread creations is unlikely to increase invocation times by large

quantities. We expect the thread invocation cost to be larger than 10 cycles but less

than 100 cycles.

In addition to increasing the number of instructions executed, executing sub-

threads at the location of their anchors can destroy any initial processor load bal-

ance created by the programmer. We use the multiple-nosubthreads and multiple-

subthreads benchmarks to explore this issue. By varying the number of nodes (64,

32, 16, or 8) on which data resides, we vary the number of subthreads that execute

on each node in that set. This is because threads are co-located with their anchors.

Figure 5.13 shows the effects of varying hop latency and the number of nodes on

which data resides. When subthreads are not used, threads are evenly distributed

across all 64 nodes. Data, however, resides on a subset of these nodes. The smaller the

set of nodes with data, the larger the number of messages sent to each of these nodes.

Consequently, network contention increases, causing execution times to increase.

The results differ considerably when subthreads execute at their anchor locations.

At smaller hop latencies, the use of fewer nodes can double execution times because

threads must compete for the limited processor resources. These performance losses,

however, diminish as hop latency increases since communication resources have a

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 95

0 2 4 6 8

Hop Latency

0

20000

40000

60000

80000

C
yc

le
s

64 Nosubthreads
32
16
8
64 Subthreads
32
16
8

Figure 5.13: Execution times for the multiple-nosubthreads and multiple-subthreads
benchmarks are shown when hop latency and the number of nodes on which data
resides vary.

stronger influence on performance than processor resources. The convergence of ex-

ecution times at a hop latency of eight implies that as the speed of the processor

increases relative to the network speed, imbalanced processor demands no longer

inhibit the use of anchors.

5.3.4 Summary

The overheads we examined in this section detract from the performance improve-

ments achieved by using anchors when large overheads are assumed. However, as

communication speed grows relatively slower than processors, the impact of invo-

cation time and processor load imbalance diminish. Large state transfers have the

largest impact on the use of subthreads, but, even with substantial state transfer

amounts, benefits will be obtainable as the network becomes a larger bottleneck.

The applications we study do not incur these large overheads; they transfer small

quantities of state (<100 flits) on each thread creation, and the invocation time re-

quired for creating new threads should be on the order of tens of cycles. Consequently,

these overheads should have limited impact on the applications’ performance when

the anchor technique is applied.

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 96

5.4 Benefits of using anchors on full applications

Having analyzed anchors with synthetic benchmarks, we now apply anchors to three

applications introduced in Chapter 3. For each application, we manually determine

where threads should be broken into subthreads and which data should be used as

anchors for the anchor versions. We also calculate the amount of state that must be

transferred on remote thread invocations.

5.4.1 Adding Subthreads and Anchors to Applications

raytrace is a computationally intensive application which obtains little benefit from

reducing remote memory access latencies. By enabling a multithreading level of up to

eight threads per processor, we further decrease the need for reducing remote memory

latencies and the potential benefits obtained by using anchors. We can, therefore, use

it to examine the impact of applying our anchor technique to an application that is

not limited by communication latency. In the original version of raytrace, threads

walk through a variable number of voxels, using only a small subset of application

data. In order to employ the anchor technique, we modify the application by creating

new subthreads each time a thread begins accessing a new voxel and its associated

geometry. The voxel becomes that subthread’s anchor.

In the barnes-hut application, each thread walks through large parts of the octree,

using the data at its current tree position and then not using that data again until

the next timestep is simulated. In general, when multithreading is not used, the

application is processor load balanced and memory latency sensitive. By modifiying

this application to use both our anchor technique and no multithreading (to prevent

any masking of communication latency), we can focus on how our technique impacts

processor load balance and remote communication latency. Our modified version

creates a new subthread when a thread begins accessing a different tree element; that

tree element is designated the subthread’s anchor.

n-body does not have a tree structure that imposes locality. Instead, threads access

all particles, creating large quantities of remote communication and balanced work

distributions. Although this application is simple, it provides insight into applications

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 97

1 5 10

pe
rf

-1

pe
rf

-5

pe
rf

-1
0

0

2

4

6

C
yc

le
s

(1
,0

00
,0

00
)

No-anchor
Anchor

Figure 5.14: Despite being computationally-intensive, the size of raytrace’s increase
in execution time decreases with the use of anchors as hop latency increases.

that experience periods of all-to-all communication. Our modified version of n-body

creates a new subthread each time a thread begins accessing a different particle and

defines that particle to be the subthread’s anchor. Only one thread executes on each

node at a time.

5.4.2 Application Results

For each application, we simulate hop latencies of 1, 5, and 10 cycles. Additionally, we

have created an oracle that models memory delay while it also performs perfect pro-

cessor load balancing. This oracle, called perf, executes one instruction per timestep

from at most 64 threads, regardless of those threads’ locations. We also vary hop

latency for this oracle. The perf oracle provides a way of distinguishing between

processor imbalance and increasing communication latency.

Figure 5.14 shows that raytrace’s performance is improved by the use of anchors.

The benefits, however, are not from reductions in communication latency at small

hop latencies; changing the hop latency from one to five cycles does not significantly

increase execution time. The performance benefits come from better processor load

balance; this can be seen by comparing the execution time of perf-1 with the execution

time for a hop latency of one. Finally, we note that at a hop latency of ten cycles,

communication latency starts to significantly impact performance. The anchor version

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 98

1 5 10

pe
rf

-1

pe
rf

-5

pe
rf

-1
0

0

5

10

15

20

25

C
yc

le
s

(1
,0

00
,0

00
)

No-anchor
Anchor

Figure 5.15: The size of barnes-hut ’s increase in execution time decreases with the
addition of anchors as hop latency increases.

recoups some of this performance loss and processor load balancing recoups even more.

Hence, we observe that even computationally intensive applications can benefit from

the use of anchors.

At a hop latency of 1, anchors actually slightly degrade the performance of both

the barnes-hut and nbody applications as seen in Figures 5.15 and 5.16. The cost of

additional instructions and processor load imbalance introduced by anchors exceeds

any benefits. However, as hop latency increases, the anchor version outperforms

the no-anchor version for both of these applications. The addition of processor load

balancing to the anchor versions further improves performance.

We can use the temperature graphs in Figure 5.17 to understand the difference

between the anchor and no-anchor versions of barnes-hut. When anchors are not

used, data is accessed from all parts of the chip. As a result, the optimal location for

data with respect to locality is the chip’s center. When anchors are used, however,

data remain distributed across the chip. By using anchors, the locality imposed by

the tree structure is preserved; data are referenced from a small set of nodes instead

of all nodes. This reduces the application’s overall communication frequency and

communication latency, resulting in reduced execution times.

nbody’s all-to-all communication patterns make it impossible for a single thread

to exploit locality. Yet, using anchors improves execution time as discussed above.

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 99

1 5 10

pe
rf

-1

pe
rf

-5

pe
rf

-1
0

0

5

10

15

20

25

C
yc

le
s

(1
,0

00
,0

00
)

No-anchor
Anchor

Figure 5.16: Using anchors decreases nbody ’s execution time by more than 70% at a
hop latency of 10 cycles.

(a) No-anchor (b) Anchor

Figure 5.17: The temperatue graphs show the optimal placement of data in terms of
locality when the noanchor and anchor versions of barnes-hut are executed. Darker
squares have more resident data than lighter colored squares. The use of anchors
causes data to be distributed across the chip, distributing resource demands across
more nodes.

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 100

Fl
its

M
sg

s

D
is

ta
nc

e

0

50

100

150

N
um

be
r

(1
,0

00
,0

00
)

No-anchor
Anchor

Figure 5.18: We show the change in communication demands for the anchor and no-
anchor versions of nbody. Not only do the number of messages and distance decrease
with the addition of anchors, but the amount of transferred data decreases as well.
As hop latencies increase, this reduction in communication translates into substantial
reductions in execution time.

Figure 5.18 shows that when anchors are used, the total amount of communication

decreases significantly. In addition to reducing the quantity of communication and

distance traveled, anchors also reduce network congestion. Hence, anchors can signif-

icantly improve performance on applications with all-to-all communication.

5.5 Anchors Plus Migration

We now examine how our anchor technique interacts with migration. We showed in

Chapter 4 that applications with unclear communication patterns obtain only small

benefits from migration because the strategy cannot detect which direction to move

data to improve locality. In this section, we use the barnes-hut and nbody applications

to explore our conjecture that applying the anchor technique to applications with

unclear communication patterns can help clarify communication patterns, allowing

our migration strategy to improve locality and reduce communication demands.

In Chapter 4, we showed that the optimal locations for data objects in barnes-

hut and nbody were at the center of the chip. This placement minimized the overall

communication distance for the applications. When anchors are used, the optimal

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 101

(a) barnes-hut (b) nbody

Figure 5.19: The temperatue graphs show the final locations of data when migration
based solely on attraction forces is applied to the anchor versions of barnes-hut and
nbody. Darker squares have more resident data than lighter colored squares. Data
are distributed across the nodes of the chip instead of residing on a small number of
center nodes.

placement of data objects changes; as seen in Figure 5.17, the optimal placement

of barnes-hut ’s data objects is distributed over many more nodes when the anchor

technique is applied compared to the no-anchor case. We present similar temperature

graphs in Figure 5.19. These graphs represent the final locations of data objects

for barnes-hut and nbody when data are migrated based solely on attraction forces.

Migration based on attraction forces results in data objects being distributed across

many nodes of the chip when anchors are used; this is in contrast to the discovery in

Chapter 4 that data migrate to a small number of center nodes when anchors are not

used.

An additional benefit of applying migration based on attraction forces is the re-

duction in the overall communication distance. The cumulative distance traveled by

messages is reduced from 25 million to 15 million hops for barnes-hut and from 55

million to 27 hops for nbody. The result is that the average distance of communication

decreases from 5.2 to 3.2 hops for barnes-hut and from 5.3 to 3.1 hops for nbody.

Despite these reductions in communication demands, the overall impact of ap-

plying migration to the anchor versions of these two applications is an increase in

execution times. Figure 5.20 shows the execution times for these applications when

anchors are used with and without migration. We show results for two migration

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 102

b

d-
a

dt
-a

+
r

0

5

10

C
yc

le
s

(1
,0

00
,0

00
)

(a) barnes-hut

b

d-
a

dt
-a

+
r

0

2

4

6

8

C
yc

le
s

(1
,0

00
,0

00
)

(b) nbody

Str
Perf

Figure 5.20: We show the execution times for the anchor versions of barnes-hut and
nbody with (d-a and dt-a+r) and without migration(b) when executing on the baseline
architecture. Additionally, we show the execution times when processor demands are
perfectly load balanced by the perf oracle.

strategies: data migration based solely on attraction forces (d-a) and data and thread

migration based on both attraction and repulsion forces (dt-a+r). In order to show

the impact of processor load imbalance, we also show the execution times when the

perf oracle is used.

Figure 5.20 shows that both applications experience processor load imbalance; this

can be seen by the large difference in the baseline and perf execution times. When

migration is applied, execution times increase even further. However, this increase is

not reflected in the perf execution time when migration is used. This implies that

migration is exacerbating the processor load imbalance.

Unfortunately, the inclusion of repulsion forces in the migration strategy does not

significantly reduce execution times by redistributing processor demands. Part of

the reason the migration strategy is unable to improve processor load balance has

to do with the frequency of state exchange information among the nodes. The use

of anchors causes the frequency of thread invocations to increase while the thread

lifetime decreases. This means that many threads begin and finish executing in a

single interval between state exchanges. Consequently, the state exchanged becomes

stale much faster, and our migration strategy cannot respond quickly to changes in

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 103

b

10
00

0

50
00

10
00 50
0

0

5

10

C
yc

le
s

(1
,0

00
,0

00
)

(a) barnes-hut

b

10
00

0

50
00

10
00 50
0

0

2

4

6

8

C
yc

le
s

(1
,0

00
,0

00
)

(a) nbody

NoMig
Mig

Figure 5.21: We show the execution times for the anchor versions of barnes-hut and
nbody with migration as the interval between state exhanges varies. When the interval
decreases, more opportunities become available to migrate objects in response to
resource demands.

resource demands.

In Figure 5.21, we show the execution times of the two applications when data and

threads are migrated based on attraction and repulsion forces. We vary the number of

cycles between each state exchange. The interval used in Figure 5.20 is 10,000 cycles.

As the number of cycles between state exchanges decreases, the migration strategy

obtains more opportunities to migrate objects to redistribute resource demands. This

results in execution time decreasing.

The implication of this result is that when anchors are used, nodes must exchange

state information frequently. However, frequent state exchanges increase communi-

cation demands and are not necessarily sufficient to obtain well-balanced resource

demands. For example, the execution time of nbody with migration is always worse

than not using migration. The reason is that resource demand distributions are lost

as soon as threads finish executing. Future threads will execute at the location of their

associated anchor, not at a nearby node where a previous thread had been migrated

to.

As future work, we suggest that information about processor demands must be

associated with data when anchors are used. A migration strategy could then migrate

CHAPTER 5. PROACTIVE APPROACH - ANCHORS 104

data based not only on communication demands, but also on processor demands.

Recurring overloading of nodes’ processor demands created by using anchors could

then be avoided.

5.6 Conclusions

In this chapter, we presented a technique which reduces remote communication de-

mands and helps expose inter-object communication patterns. Unfortunately, the

overheads of using this technique place a larger burden on processing resources,

namely additional instructions and load imbalance. As processors become relatively

faster than network speeds, however, techniques like anchors that reduce the impact

of communication on performance will become increasingly important. In Chapter 6,

we explore how the anchor technique compares to caching in terms of both improving

performance and reducing communication demands.

Chapter 6

Comparison to Caching

105

CHAPTER 6. COMPARISON TO CACHING 106

Caching is a well-established technique for improving processor performance.

Caches improve memory system performance by reducing latency and by reducing

bandwidth demands. First, they reduce the latencies of data accesses to data they

contain. Second, by filtering accesses that hit in the cache, they reduce the bandwidth

demands placed on the next level of the memory hierarchy. As dataset sizes have

increased, larger and more levels of caches have been used to maintain low latencies

and limit bandwidth demands.

Modern processors contain multiple levels of caches. These caches decrease the

number of requests that reach shared resources, such as the network connecting pro-

cessors to remote memory. Assuming the number of transistors allocated to a single

node of a single-chip multiprocessor remains small due to increasing wire delays, the

total amount of storage, and hence cache, on a single node can be expected to be

smaller than in current processors. Consequently, increasing the size and number of

individual processor caches is only part of a solution to reducing memory latencies

and bandwidth demands in future single-chip multiprocessors. Additional mecha-

nisms, such as our migration and anchor techniques, must manage the on-chip shared

memory and communication resources efficiently.

In this chapter, we examine how caching impacts performance, and we examine

how caching interacts with our migration and anchor techniques. We study whether

data migration can still reduce communication demands when caching is used. We

also consider whether the cost of losing data stored in a local cache exceeds the

benefits gained by using idle processor resources when threads migrate. Our study of

the anchor technique and caching includes comparing caching to anchors as well as

exploring how these two techniques function together.

We begin by describing the cache coherence protocol used in our study. Next,

we compare the performance of four applications on a system using caching to their

performance on a cacheless system. We execute each of the applications on configu-

rations where the cache size varies from 1KB to 32KB and the multithreading level

changes from one to eight threads (four in the case of equake). We present both execu-

tion times and communication demands throughout this chapter; this is because the

two are closely linked and communication demands are likely to become increasingly

CHAPTER 6. COMPARISON TO CACHING 107

important in future chips. For the remaining studies in this chapter, we choose two

cache and multithreading configurations, where caching both helps and hurts perfor-

mance, and examine how caching and our anchor and migration techniques interact

at these configurations.

Our studies show that our techniques can complement caching depending on appli-

cation characteristics. Migration can reduce execution times more than caching alone

by both reducing communication distance and balancing resource demands. We also

show that the use of the anchor technique can reduce the communication demands in

a cacheless system to below those for a system using caching, and we show that the

addition of anchors to a system using caches can reduce communication demands.

6.1 Communication Produced by Caches

Caches rely on spatial and temporal locality in data accesses to reduce both memory

access times and the number of requests sent to the next level of memory. When

a reference hits in the cache, no requests exit the cache for lower levels of storage

and the access latency remains small. However, when accesses miss in the cache,

requests are sent to the next level of the memory hierarchy and latencies grow. In

this section, we briefly describe the communication demands generated by remote

memory accesses in both cacheless and caching systems.

6.1.1 Communication Description

Figure 6.1(a) depicts a 4-by-4 single-chip multiprocessor with no first-level caches.

In this system, a request for remote data must first travel to the directory associated

with that data to discover the current location of the data in memory. A static

mapping function decides which node’s directory contains information about a given

data line. Once the location of the data is ascertained, the request proceeds to the

memory location. Finally, the requested data is sent from the data’s memory node

to the node that initiated the request.

The benefits accrued from using caches include the elimination of these three

CHAPTER 6. COMPARISON TO CACHING 108

Dir

Mem

P

Single -

Processor

Memory

Figure 6.1: In a cacheless system, all remote requests first go to the directory and
then proceed to the data’s memory location before returning to the requesting node
with the data.

communications on a cache hit. This reduction in communication, however, entails

three primary costs. First, information about each cache line’s current state must

be stored either at the directory or in memory where the data resides. Second,

caches introduce additional communication to maintain cache coherence as depicted

in Figure 6.2. Dirty cache lines must be written back to memory and sent to the

requesting node as seen in Figure 6.2(b). Invalidate messages must be sent to all

caches sharing a cache line when another processor wants to write to the data as seen

in 6.2(c). Third, entire cache lines are transferred on a request, even if some of the

data is not needed, increasing the amount of data being sent through the networks.

As long as the communication demands eliminated by cache hits exceed the co-

herence traffic, the on-chip shared network will be less of a bottleneck in a caching

system than in a cacheless system. This premise, however, requires nodes to request a

relatively small amount of frequently-accessed data that can be reused before data is

evicted due to conflict or capacity misses. In single-chip multiprocessors, the caches

on each node will be smaller than modern-day, on-chip caches in order to keep clock

cycle times small. Consequently, it is unclear whether these caches will always be able

to contain a node’s data working set. This concern is particularly valid if multiple

threads create destructive interference when executing on a single node.

CHAPTER 6. COMPARISON TO CACHING 109

Figure 6.2: In a system using caches, three scenarios are encountered depending on
the request type and the cache line’s current state.

CHAPTER 6. COMPARISON TO CACHING 110

6.1.2 Directory Overhead

In the previous section, we indicate that every request that does not hit in the re-

questing node’s memory must go to the directory to discover the current location of

the requested data. In a cacheless system, the frequency of these directory requests

can be reduced by retaining a small cache of memory locations for recently accessed

data. When requests hit in this cache, the two messages involving the directory can

be eliminated and the request can proceed directly from the requesting processor to

the memory location found in this cache.

Eliminating messages to the directory can be more difficult in caching systems.

For each line of memory, information about its current state and sharing nodes must

be stored. The logical place for storing this cache state is either in the directory

or in memory at the data’s location. If cache state is stored at the directory, the

directory requests cannot be eliminated as they were in the cacheless system because

each request must check or modify the cache state. If the cache state is stored with

the data in memory, then the migration of data would require the migration of cache

state; however, we could eliminate requests to the directory in a manner identical to

the method used in a cacheless system.

For the results presented in this chapter, we assume that a 128-entry, remote-

location cache exists on each node in a cacheless system. This directory cache contains

the memory locations of recently accessed remote data. Remote requests that hit in

this cache do not need to go to the directory, eliminating one of the three messages on

each remote request. In a system with caches, we assume that cache state is stored

at the directory; therefore, a similar cache of remote data locations is not useful.

6.1.3 Potential Improvements beyond Caching

Looking back at Figure 6.2, we can see how our migration and anchor techniques can

help reduce the number of misses as well as their latencies and bandwidth demands.

In a cacheless system, migration moves data closer in memory to the processors

accessing it. The anchors technique takes an alternate approach to minimizing the

distance between computation and the data it uses; it moves the computation to the

CHAPTER 6. COMPARISON TO CACHING 111

Figure 6.3: We show one possible transformation of Figure 6.2 when anchors and/or
migration are applied. The distance between threads and data is reduced, and the
distance between threads accessing the same data is reduced.

data it accesses, eliminating misses to the data. Both of these techniques are trying

to reduce the number of nodes sharing data and the distance between those nodes.

When caches are used, the same techniques can be used to reduce the number

of nodes sharing data as well as the distance among these nodes and the data’s

memory location. Figures 6.2(a)-(c) would be transformed into Figures 6.3(a)-(c).

In Figure 6.3(a), we eliminate the memory’s reply to the requesting processor because

the accessing thread and data reside on the same node. The distance of the writeback

message to memory decreases and the separate forwarding message to the processor is

incorporated into the writeback of data to memory in Figure 6.3(b). Finally, Figure

6.3(c) shows that the number of sharing nodes that must be invalidated are reduced

by the convergence of implicitly connected threads and data to a small set of nodes.

In the remainder of this chapter, we explore how migration and anchor techniques

CHAPTER 6. COMPARISON TO CACHING 112

can be used with and in place of caches to reduce the on-chip communication demands

and improve performance through redistribution of resource demands.

6.2 Workload Characterization

Cache characteristics and application data access patterns strongly influence the per-

formance of a cache on a given application; they affect the likelihood of cache hits and

the quantity of coherence traffic. We begin our examination of caching by looking at

how two factors affect our applications’ performance: cache size and multithreading.

For our four applications, we examine how each application’s execution time and

communication demands vary when we use six different cache sizes: 0KB, 1KB, 4KB,

8KB, 16KB, and 32KB. In general, we expect execution times and communication

demands to decrease with larger cache sizes. The goal of our study is to understand

how caching interacts with the migration and anchor techniques in situations where

caching helps and where caching hurts performance. Using small cache sizes enables

us to understand how the interactions are affected when the data working set does

not fit into the cache. For our applications, a 1KB cache allows us to create this

environment; for applications with larger data working set sizes, this same scenario

can be created despite the use of much larger cache sizes. Similarly, the use of large

caches enables us to understand how the techniques interact when caching captures

most of the available spatial and temporal locality. Therefore, by using the range of

cache sizes, we can examine the entire spectrum of interactions.

We also examine how increased multithreading impacts these results. Multithread-

ing allows applications to hide larger latencies at the expense of possibly increasing the

number of simultaneous inflight memory accesses; multithreading may issue requests

that conflict in the cache, causing the number of off-node requests to increase.

In addition to trying to understand how different cache sizes and multithreading

levels affect our applications’ performance, this study allows us to identify which cache

and multithreading configurations positively and negatively influence performance.

We can then focus our examination of interactions between caching and migration

and anchors to a small set of configurations - those configurations where caching

CHAPTER 6. COMPARISON TO CACHING 113

0 1 2 4 8 16 32

Cache Size (KB)

0

2

4

6

8

C
yc

le
s

(1
,0

00
,0

00
)

(a) raytrace

0 1 2 4 8 16 32

Cache Size (KB)

0

5

10

C
yc

le
s

(1
,0

00
,0

00
)

(b) barnes-hut

0 1 2 4 8 16 32

Cache Size (KB)

0

2

4

6

8

10

C
yc

le
s

(1
,0

00
,0

00
)

(c) nbody

0 1 2 4 8 16 32

Cache Size (KB)

0

10

20

30
C

yc
le

s
(1

,0
00

,0
00

)

(d) equake

MT1
MT4
MT8

Figure 6.4: Execution times at different cache sizes and multithreading levels

benefits are limited and those configurations where caches perform well.

Figure 6.4 depicts the execution times for our four applications as we vary cache

size. In this figure, we show curves for raytrace, barnes-hut, and nbody when only one

thread executes on each processor (MT1) and when eight threads execute on each

processor (MT8). Our analysis of equake includes evaluation of a multithreading level

of one thread (MT1) and a multithreading level of four threads (MT4); increasing

the level of multithreading above four threads significantly increases the amount of

data tracked in our simulator, exceeding our simulation capability.

In general, the addition of larger caches reduces execution time; however, there are

key configurations which do not adhere to this trend. When the cache size is only 1KB,

CHAPTER 6. COMPARISON TO CACHING 114

ra
y_

0K
B

ra
y_

1K
B

bh
_0

K
B

bh
_1

K
B

nb
od

y_
0K

B

nb
od

y_
1K

B

0

20

40

60

80

100

M
sg

s
(1

,0
00

,0
00

)

Cache Coherence
Memory

Figure 6.5: Breakdown of total number of messages when 1KB caches are and are
not used (0KB). We only present the applications that have increased execution time
when caches are used.

raytrace and nbody experience increases in execution time when the multithreading

level is eight threads. barnes-hut experiences increases in execution time at a cache

size of 1KB regardless of the level of multithreading. These configurations, therefore,

can be classified as positions in which caching hurts performance.

In determining the reasons behind these performance changes, recall that in the

preceding section, we discussed coherence traffic as a potential bottleneck in systems

using caching. Figure 6.6 shows the number of flits sent into the on-chip network for

the different configurations. Configurations where caching improves performance have

decreased the number of flits traveling in the network; the reduction in communication

demands due to cache hits exceeds any overhead created by caching. In contrast, the

three applications that suffer from increases in execution time at a cache size of 1KB

also suffer from large increases in flits sent into the network. This increase is due

to both increases of memory messages and increases in coherence messages as seen

in Figure 6.5. The inability of the cache to handle conflicting, or just too many,

memory accesses at each node results in these increased communication demands.

These larger communication demands created by caching increase network con-

tention, causing longer latencies for all messages. When no caches are used in these

CHAPTER 6. COMPARISON TO CACHING 115

0 1 2 4 8 16 32

Cache Size (KB)

0

20

40

60

80

100
F

lit
s

(1
,0

00
,0

00
)

(a) raytrace

0 1 2 4 8 16 32

Cache Size (KB)

0

50

100

150

200

F
lit

s
(1

,0
00

,0
00

)

(b) barnes-hut

0 1 2 4 8 16 32

Cache Size (KB)

0

50

100

150

200

F
lit

s
(1

,0
00

,0
00

)

(c) nbody

0 1 2 4 8 16 32

Cache Size (KB)

0

50

100

150
F

lit
s

(1
,0

00
,0

00
)

(d) equake

MT1
MT4
MT8

Figure 6.6: Total number of flits transferred during execution for different multi-
threading levels as cache size changes.

applications, each message experiences additional latency above the physical wire de-

lay due to network contention: 1.9 cycles on average for barnes-hut, 1.3 cycles for

nbody, and 0.9 cycles for raytrace. When a cache size of 1KB and multithreading

level of 8 threads are used, these numbers rise to 54.3, 67.2, and 26.9 cycles. These

larger latencies contribute to the rise in execution times.

In this section, we identified caching and multithreading configurations in which

caching helped (32KB cache and multithreading level of 1 thread) and hurt (1KB

cache and multithreading level of 8 threads) performance. The following sections

CHAPTER 6. COMPARISON TO CACHING 116

combine these configurations with migration and anchors to evaluate how each tech-

nique interacts with caching, paying attention to changes in communication demands

and latency as well as execution times.

6.3 Combining Migration with Caches

Although caches eliminate large numbers of remote requests, they cannot reduce

communication on compulsory cache misses, and they still experience capacity and

conflict misses when the data set size exceeds the cache size. Additionally, they

do not perform any resource load redistribution. In this section, we examine how

caching interacts with both the communication distance reduction component of our

migration technique as well as our technique’s ability to move resource demands away

from areas of high resource demands. In order to understand how migrating data and

migrating threads interact with caching, we examine these two actions separately.

6.3.1 Data Migration

Our migration strategy moves data based on both locality and resource demands. In

this section, we focus on how caching affects our ability to migrate data to improve its

locality and, therefore, decrease communication distance. Because little benefit was

gained from data migration in the barnes-hut and nbody applications, our discussion

focuses on the raytrace and equake applications.

Recall from Chapter 4 that we collect locality statistics over time based on re-

quests received at the data’s memory location. We then select which data to consider

for migration simply by selecting the data associated with every 100th remote mem-

ory request at a given node. Systems that use caching affect both of these steps in

our migration strategy. Caching reduces the number of messages sent to memory.

Consequently, it decreases the number of messages used in our statistics collection

at a datum’s memory location. It also increases the interval of time between each

migration decision as it takes longer for 100 remote memory requests to be received

at a given node.

CHAPTER 6. COMPARISON TO CACHING 117

Table 6.1: Average number of references per data object that reach the data object
in memory. As we increase the cache size, the number of references decrease.

Average References Per Object
raytrace equake

Cache Size MT=1 MT=8 MT=1 MT=4

0KB 1238 1210 396 345
1KB 158 395 111 58
4KB 66 97 71 40
8KB 23 34 19 38
16KB 8 8 18 37
32KB 4 4 17 18

The first part of our evaluation on raytrace and equake examines how the infor-

mation collected about communication patterns varies with cache size. Table 6.1

gives an example of how the number of references observed by our migration strategy

changes with increasing cache sizes for raytrace and equake. The table depicts the

average number of references that reach individual data objects at memory. As can

be seen in the table, as cache sizes grow, the number of requests that reach data

objects in memory, meaning they miss in local caches, decrease.

The second part of our evaluation examines how changes in the interval between

migration decisions impact the benefits gained from data migration. Figures 6.7

shows the effect of migrating data based on both location preferences and commu-

nication demands for the two applications’ execution times when a single thread

executes on each node using a 1KB cache. On the x-axis, we vary the number of re-

mote memory requests received at a node before another migration decision is made.

We also show the applications’ execution times when data migration is not used, no.

From the figure, we see that raytrace obtains little benefit from data migration

regardless of the frequency of migration decisions. The reason that execution times

do not decrease is that data migration does not reduce the average communication

distance. When caching is not used, data migration decreases the average distance of

memory requests to 3.6 hops (from 5.6 hops), while it can only reduce the distance

CHAPTER 6. COMPARISON TO CACHING 118

no 10
0 50 10 no 10
0 50

0

2

4

6

8

10

C
yc

le
s

(1
,0

00
,0

00
)

ray
equake

Migration Decision Policy

Figure 6.7: Execution times for raytrace and equake when a single threads runs
on each node, each node has a 1 KB cache, and the number of remote requests
between migration decisions is varied. We migrate data based on both location and
communication demands.

to 5.0 hops (from 5.6 hops) when caching is used. Part of the reason for the reduced

benefits of data migration on raytrace when caching is used is that fewer requests

are reaching memory. Additionally, the smaller numbers of requests that miss in the

cache and reach memory are spread out over long intervals of time, making them less

likely to trigger a migration to improve locality. For example, more than 4,000 of the

data objects in raytrace have their accesses from a given node spread out over more

than 90,000 cycles.

Unlike raytrace, equake still obtains benefits from data migration when caching

is used. When every 100th remote request instigates a migration decision, equake

experiences a 24% decrease in execution time compared to caching alone. However,

as the frequency of migration decisions increases, these performance benefits are lost.

Migration decisions occur every 6,000 cycles on average when every 100th remote

request triggers a decision; when every 50th remote request triggers a decision, mi-

gration decisions occur every 3,000 cycles on average. This shortened interval allows

for more migrations but not necessarily better migration decisions. Additionally, since

migrations make the data unavailable for use and increase communication demands,

more frequent migrations contribute to the loss in migration benefits.

Depending on the application characteristics, data migration can still reduce the

CHAPTER 6. COMPARISON TO CACHING 119

communication distance for those memory requests not satisfied by the cache. How-

ever, data migration cannot always improve performance as seen in the case of raytrace

in Figure 6.7. It is important to note that our migration strategy does not signifi-

cantly hurt performance. When insufficient data is available for making decisions, it

does not migrate data. Zero data migrations occured in raytrace when it was exe-

cuted on a 32KB cache configuration executing one thread per processor, and only

90 migrations occured when equake was executed on the same configuration; neither

caused any significant change in execution times. When data is available but overall

communication demands are high, the inclusion of communication resources in our

migration strategy insures that no negative effects result from migration. Without

this repulsion force, migration can improve locality but hurt execution time. For ex-

ample, when migration based solely on locality is used on the raytrace application as

it executes eight threads per node, execution time increases by 37%. The use of com-

munication resources in our migration strategy keeps this increase to 1%. Because of

the balancing effect of repulsion forces, migration can be used with caching without

any loss of performance.

6.3.2 Thread Migration

When caches are used there is an additional cost to migrating a thread. All of the

data stored in the cache and used by the thread must be reacquired or a copy of the

data must be forwarded to the thread’s new node. The larger the amount of data

stored in the cache, the larger the penalty encountered when migrating a thread.

Our migration strategy forwards stack data, but does not forward any other data

that resides in the cache.

Figure 6.8 shows the execution times for all of the applications when they execute

with and without migration on cache configurations of 1KB and 32KB. We show

results for multithreading levels of eight threads (four for equake). In making a

thread migration decision, the migration strategy uses all three components: locality,

computation demands, and communication demands.

raytrace and equake are two applications that benefited from thread migration

CHAPTER 6. COMPARISON TO CACHING 120

1 32 1 32 1 32 1 32

0

5

10

C
yc

le
s

(1
,0

00
,0

00
)

nomig
mig

nbody bh ray equake

Figure 6.8: Execution times when thread migration is used with 1KB and 32KB
caches.

in Chapter 4; raytrace obtained a large performance benefit from thread migration

while equake obtained a relatively small benefit. As seen in Figure 6.8, the benefits

of using idle computational cycles far outweigh the cost of having to reacquire the

data that had been in threads’ pre-migration caches for raytrace. However, equake

does not obtain any benefits from thread migration. When the cache size is 1K,

there is actually some performance degradation. This degradation is caused by the

slow creation of new threads in equake when small caches are used. When threads

finish, a master thread must create new threads. The small cache size means the

master thread must re-cache all of its related cache lines before creating new threads.

The delay in reacquiring those cache lines causes a delay in creating new threads.

That delay results in the state exchanged between nodes not reflecting the fact that

new threads are being created. Consequently, threads are moved to nodes that are

creating new threads, causing those nodes to have overloaded processor resources.

A better mechanism for detecting processor resource demands would alleviate this

problem even with small cache sizes, eliminating this negative performance impact of

thread migration.

nbody and barnes-hut were two applications that obtained little or no benefit from

thread migration in isolation because their processor demands were well balanced.

CHAPTER 6. COMPARISON TO CACHING 121

Because caching reduces memory access latencies, it is possible that some threads

with high cache hit rates could complete earlier than other threads with low cache

hit rates, resulting in processor load imbalance. However, the resulting differences in

thread lifetimes is small, and this effect results in small or no changes in execution

times for these two applications.

6.4 Anchors and Caches

The goal of using the anchor technique is the same as the goal of using caches: to

eliminate remote memory requests. Caches achieve this goal by retaining a copy of

data locally at the accessing thread’s location – in essence, moving data to computa-

tion. In contrast, the anchor technique moves computation to the location of the data

it accesses. As shown in Chapter 5 and Section 6.2, both techniques can improve

performance by reducing communication demands. In this section, we explore how

these two approaches function together.

6.4.1 General Comparison

At first glance, caching and anchors appear to be competing techniques for reducing

communication demands. In a system that uses caching, each remote memory access

requires two messages: a request and a reply. If the data is retained in a cache, these

request/reply pairs of messages are eliminated. When anchors are used, a message

is sent to create a new thread at the location of the anchor, and when that thread

finishes, a message is sent to the initiating computation to notify it of the subthread’s

completion. Similar to caching, all intermediate accesses to the anchor are eliminated.

The two techniques, however, are best suited for different situations; the key is

determining each technique’s favorable conditions. In order to understand in which

scenarios each technique works well, we examine the number of messages created by

systems using and not using caching and then evaluate how anchors affect the number

of messages created.

We begin by looking at the messages created in a cacheless system. As discussed

CHAPTER 6. COMPARISON TO CACHING 122

in Section 6.1.1, requests to data residing on the same node as the requesting thread

generate no messages. Requests to data located remotely generate three messages:

processor to directory, directory to memory, and memory to processor. Assuming

that N memory lines are each referenced R times and that the probability that a

requestor’s data resides locally is L, we can quantify the number of requests generated

by NR references as

NR(1 − L)3.1 (6.1)

In a system using caching, any requests that hit in the cache and do not require

a state change generate zero messages. Otherwise, three messages are generated as

in a cacheless system. If the data resides locally, the request to the directory must

still be sent to update the cache line’s state, but the message from the data’s memory

location to the processor is eliminated since they are the same node. Consequently,

two messages are generated if the data resides locally and three messages are generated

if the data resides remotely. Assuming cache hits occur with probability C, the total

number of messages for NR requests is

NR((1 − C)(2L + (3(1 − L)))). (6.2)

This equation does not include additional messages such as invalidates and writebacks

needed to maintan cache state.

By setting Equations 6.1 and 6.2 equal to one another, we can determine a rela-

tionship between C and L,

C = (2L)/(3 − L). (6.3)

Figure 6.9 graphs the number of messages sent in caching and cacheless systems

when the probability that data is local varies and the probability of a cache hit varies

from 25% to 75%.

Having determined the number of requests generated in each type of system,

1As discussed in Section 6.1.2, a local cache of memory locations would change the number
of messages per request to two for those references that hit in the cache; we choose to use the
conservative equation for our analysis.

CHAPTER 6. COMPARISON TO CACHING 123

0.0 0.2 0.4 0.6 0.8 1.0

Probability Data Local (L)

0

2000

4000

6000

M
es

sa
ge

s Cacheless
C=0.25
C=0.50
C=0.75

Figure 6.9: Number of messages sent in cacheless and caching systems when N = 100
and R = 5. N is the number of data and R is the number of requests to each data.

we can describe situations where each system performs well. Caching clearly works

when cached data is reused before being evicted; this statement holds true regardless

of where that data resides in memory. One of the clear benefits of caching is that

it reduces communication to data retained in the cache even when that data resides

at many different remote memory locations. If, however, a large fraction of the data

lines accessed by computation resides locally in memory, less traffic will be generated

by a cacheless system and the relative impact of the cache will be decreased.

The goal of our anchor technique is to make computation and data resident on

the same nodes; in our equations, this corresponds to an increase in L’s value. By

increasing L, a cacheless system will generate fewer messages than a system using

caching. In applications where large fractions of a computation’s data resides at the

same location, anchors will reduce communication demands more than caching.

The analysis above has left out several key factors in comparing the performance

of caching and using anchors. We did not include communication demands created by

caching, including invalidate and writeback messages. In addition to these messages,

each cache line request transfers 64B of data, some of which may go unused. This

additional communication can increase network contention, making a higher hit rate

necessary for a caching system to perform better than a cacheless system.

CHAPTER 6. COMPARISON TO CACHING 124

Using anchors in a cacheless system also includes additional overhead. As dis-

cussed in Chapter 5, instructions that create remote subthreads increase the amount

of computation performed. The decomposition of individual threads into multiple

threads may increase the total number of stack lines used over the lifetime of the

thread. Finally, processor demands are redistributed when anchors are used; this re-

distribution can either equalize processor demands or cause processor load imbalance.

6.4.2 Anchors versus Caching

Figure 6.10 shows the execution times for nbody, raytrace, and barnes-hut for different

cache and multithreading configurations when anchors are not used. The figures also

include execution times when caching is not used but anchors are used (anch). Ad-

ditionally, they show execution times when anchors are used and processor demands

are perfectly balanced (anchbal). Similarly, Figure 6.11 shows the total number of

flits sent through the network for these applications, including a line for when anchors

are used without caching.

As observed in Chapter 5, Figure 6.10 shows that using anchors without perform-

ing some form of processor load balancing can result in worse execution times than

not using anchors; this is due to both increases in the number of instructions and

redistributed processor demands. In a cacheless system, nbody and barnes-hut, two

applications with initially well-balanced processor demands, incur increases in execu-

tion times when anchors are used compared to when anchors are not used. However,

raytrace shows that increases in execution times are not always a consequence of

using anchors. Using anchors improves raytrace’s distribution of processor demands,

causing execution times to decrease. For the purposes of the remaining discussion, we

assume the use of a processor load balancing technique that can be used with anchors

to generate execution times bounded by the performance achieved using anchors and

using anchors with perfect processor load balancing.

We examine the performance of anchors and of caches by looking at both commu-

nication demands and execution times. When caches hurt performance, such as at

configurations with a 1KB cache and multithreading level of eight threads, the cache

CHAPTER 6. COMPARISON TO CACHING 125

0 1 4 8 16 32

an
ch

an
ch

ba
l 0 1 4 8 16 32

an
ch

an
ch

ba
l

0

2

4

6

8

C
yc

le
s

(1
,0

00
,0

00
)

(a) raytrace

MT1
MT8

0 1 4 8 16 32

an
ch

an
ch

ba
l 0 1 4 8 16 32

an
ch

an
ch

ba
l

0

5

10

C
yc

le
s

(1
,0

00
,0

00
)

(b) barnes-hut

MT1
MT8

0 1 4 8 16 32

an
ch

an
ch

ba
l 0 1 4 8 16 32

an
ch

an
ch

ba
l

0

2

4

6

8

10

C
yc

le
s

(1
,0

00
,0

00
)

(c) nbody

MT1
MT8

Figure 6.10: We show execution times when anchors are not used but caching is used.
Additionally, we show execution times when anchors are used with no caching (anch)
and when anchors are used with perfect processor load balancing (anchbal).

CHAPTER 6. COMPARISON TO CACHING 126

hit rate will be low. In these instances, the improved locality gained by using anchors

reduces the number of flits transmitted below both the number generated in a system

using caching as well as in a cacheless system. In these cases, the execution times,

even without processor load balancing, are less than caching’s execution times.

In the cases where caching helps performance, specific application data usage

patterns impact the benefits obtained from the two techniques. Caching reduces

communication more than using anchors when either a node’s working set fits into

the cache or constructive cache interference gained by multithreading reduces the

number of requests sent off of the node. In the raytrace application, threads use

small data sets, and threads residing on neighboring nodes use similar data sets.

Consequently, caches can reduce the communication demands more than anchors.

When multiple threads execute on each processor in nbody, constructive interference

enables caching to reduce the number of flits below the number produced when using

anchors.

There exist situations, however, when caching cannot reduce communication de-

mands as much as using anchors can reduce these demands. When a single thread

executes per node in nbody, constructive cache interference cannot reduce commu-

nication demands. Many of the cache misses are compulsory misses. Additionally,

a thread’s entire working set cannot be retained in the cache for use by subsequent

threads. Consequently, caching’s ability to reduce communication demands is lim-

ited. Because each particle accessed by a thread fits into a single cache line and the

amount of state transferred to create a new thread is slightly smaller than a cache

line, using anchors can reduce the total number of flits sent into the on-chip network.

Regardless of the cache size used for barnes-hut, using anchors always generates at

most half as many flits as caching. Not only are many of the cache misses compulsory

misses like in nbody, but each particle accessed consists of multiple cache lines all

resident at the same memory location. Thus, not only is the cache hit rate bounded,

but using anchors causes requests to different data lines to hit in local memory.

In summary, the anchor technique can reduce communication demands when cache

hit rates are low, either because of conflict misses, as in the configurations with high

CHAPTER 6. COMPARISON TO CACHING 127

0 1 4 8 16 32

an
ch 0 1 4 8 16 32

an
ch

10

100

F
lit

s
(1

,0
00

,0
00

)

(a) raytrace

MT1
MT8

0 1 4 8 16 32

an
ch 0 1 4 8 16 32

an
ch

100

F
lit

s
(1

,0
00

,0
00

)

(b) barnes-hut

MT1
MT8

0 1 4 8 16 32

an
ch 0 1 4 8 16 32

an
ch

10

100

F
lit

s
(1

,0
00

,0
00

)

(c) nbody

MT1
MT8

Figure 6.11: We show the total number of flits when anchors are not used but caching
is used. Additionally, we show the total number of flits when anchors are used with
no caching (anch) and when anchors are used with perfect processor load balancing
(anchbal).

CHAPTER 6. COMPARISON TO CACHING 128

levels of multithreading, or because of the compulsory misses. Anchors perform par-

ticularly well when multiple data lines that generate compulsory misses in a caching

system actually reside at the same memory location.

6.4.3 Caching and Anchors

Having discussed the benefits of caching and of using anchors separately, we examine

using the two techniques together. When the two are used together, the number

of messages generated adheres to the equation for systems with caching. The use

of anchors increases L; cache misses to data stored in local memory generate two

messages instead of three. However, more messages must be created than when only

caching is used to create new subthreads when anchors are used. Consequently,

combining anchors with caches reduces the number of messages created only if the

number of cache misses to data stored locally exceeds the number of messages used

to create new subthreads.

In addition to the number of messages generated, redistribution of processor de-

mands and total communication demands still impact performance. For each cache

miss that our anchor technique turns into a local memory request, we eliminate the

transmission of flits for an entire cache line. This reduction in total bytes sent through

the network can reduce network congestion.

When a single thread executes on each node as seen earlier in Section 6.4.2, redis-

tribution of processor demands caused by using anchors completely overwhelms any

other benefits gained by using anchors. Caching alone should be used for these con-

figurations unless some form of processor load balancing is performed. Therefore, we

focus our attention on configurations where multiple threads execute on each node.

Figure 6.12 and 6.13 show the execution times and number of flits transmitted

for the applications when a multithreading level of eight threads is used. The figures

show results for a cacheless configuration (0KB) and for two cache configurations,

1KB and 32KB, when anchors are both used and not used. In cases where the cache

cannot satisfy large fractions of the requests (1KB), using anchors can help reduce

both execution times and the number of flits sent into the network. Both the execution

CHAPTER 6. COMPARISON TO CACHING 129

0 1 32 1 32 0 1 32 1 32 0 1 32 1 32

0

5

10
C

yc
le

s
(1

,0
00

,0
00

)

noanch
anch

bh nbody ray

Figure 6.12: Execution times when caching and anchors are used on applications with
a multithreading level of eight threads.

times and the number of transmitted flits, however, are still larger than when using

anchors alone.

When a 32KB cache is used, the combination of caching and anchors increases

execution times above the execution times for caching alone for barnes-hut and nbody.

Because two messages are still sent on a cache miss that hits in local memory, the

reduction in flits gained by adding anchors to caching is small. The nbody application

experiences an increase in the number of flits with the addition of anchors due to the

messages needed to create new threads remotely.

Unlike barnes-hut and nbody, raytrace experiences reductions in execution times

when anchors are combined with a 32KB cache. The new execution time exceeds the

execution time when only anchors are used; however, the increase is small. Looking at

the number of flits sent through the network, we observe the number is both smaller

than when caches are not used and larger than when only caches are used. Creating

new threads increases the number of flits, but caching works to remove a number of

the otherwise remaining remote requests.

In summary, the addition of anchors can reduce the negative impact of caching.

However, choosing the single technique most suited for the application can obtain the

best performance.

CHAPTER 6. COMPARISON TO CACHING 130

0 1 32 1 32 0 1 32 1 32 0 1 32 1 32

0

50

100

150

200
F

lit
s

(1
,0

00
,0

00
)

noanch
anch

bh nbody ray

Figure 6.13: Total number of flits sent through network when caching and anchors
are used on applications with a multithreading level of eight threads.

6.5 Application Summary

Table 6.2 summarizes the techniques we recommend for each of the four applications.

In general, using caching with the anchor technique will obtain fewer performance

benefits than using either technique alone. Additionally, when a cache cannot contain

the application’s data working set, it is better to use the anchor technique or migration

without caching.

When applications suffer from large numbers of capacity or compulsory misses,

Table 6.2: Recommended techniques for each application

Application Multithreading level Technique
raytrace 1 Caching with Migration

8 Caching with Migration
Anchors

barnes-hut Any Anchors with Load Balancing
nbody 1 Anchors with Load Balancing

8 Caching with Migration
equake Any Caching with Migration

CHAPTER 6. COMPARISON TO CACHING 131

such as in barnes-hut or nbody with a multithreading level of one thread, the an-

chor technique combined with some form of processor load balancing will perform

as well as or better than caching. As computation becomes relatively faster than

communication, the benefits of reducing communication demands by using anchors

will grow.

Applications that experience constructive cache interference at higher multithread-

ing levels, such raytrace and nbody with a multithreading level of eight threads, should

use caching with migration to best improve their performance. Because raytrace also

benefits from redistributed processor demands when anchors are used, we also rec-

ommend anchors be used to improve the application’s execution times.

6.6 Conclusions

The limited size of per-node memory will limit cache capacity in future single-chip

multiprocessors. Consequently, other techniques can help reduce on-chip communi-

cation. In this chapter, we showed that migration can reduce the average communi-

cation distance of memory requests that miss in the cache and can improve resource

demand distribution. We showed that using our anchor technique in addition to

caching can reduce communication demands. However, the use of anchors can per-

form significantly better than caching in scenarios where caches are either too small

or applications exhibit large fractions of compulsory misses.

Chapter 7

Related Work

132

CHAPTER 7. RELATED WORK 133

The work presented in this dissertation addresses resource management in a new

environment: single-chip multiprocessors. Because single-chip multiprocessors are a

recent development in computer architecture, we briefly discuss the motivation be-

hind these designs. We also examine the different designs being explored in this new

domain. Single-chip multiprocessors, however, are not the focus of this research; they

are simply the platform for our research. Resource management and reductions in

communication demands via migration techniques and strategic execution of compu-

tation at the data it uses (our anchor technique) are the areas of our contributions.

Because single-chip multiprocessors have existed for only a few years, little prior

work about resource management has been explored within their specific domain.

Consequently, we have used prior work in the domain of multi-chip multiprocessor

systems as the foundation for our own research. In contrast to our work, most earlier

work in migration has focused on either data or thread migration but not both; conse-

quently, we discuss each body of work separately. Finally, we look at techniques that

resemble our anchor technique or represent pieces of our anchor technique. We discuss

prior research that examines the decomposition of computation as well as techniques

that try to maximize the likelihood of computation executing at the location of the

data it uses.

7.1 Technology Trends

Advances in technology have enabled the number of transistors placed on a single chip

to exceed the billion transistor mark. Shrinking feature sizes have been accompanied

by faster clock rates. These trends in the semiconductor industry have been coupled

with an important constraint: growing wire delays. These growing wire delays com-

bined with the increased number of transistors imply that the fraction of total chip

area reachable in a single clock cycle will decrease [3].

The time it takes to transmit signals from one side of a chip to the other side

will take an increasing number of clock cycles in future chips. The number of cycles

required for across-chip communication can be kept manageable by dividing long

wires into short wires connected by repeaters, where each short wire can be traversed

CHAPTER 7. RELATED WORK 134

in a single clock cycle [23]. In this organization, the time for signal transmission is

linear in terms of the number of small wires traversed.

Multiple cycle across-chip communications make global control difficult; large

structures become less attractive for use in chip designs as it takes more than one

cycle to reach all parts of a structure. At the same time, efforts to further exploit

instruction level parallelism have seen diminishing returns, and the amount of thread

level parallelism in server applications has been growing. This environment has given

rise to the idea of placing multiple processing elements on a single chip in place of a

single larger processing core.

7.2 Single-Chip Multiprocessors

Single-chip multiprocessors provide an organization that allows high computational

throughput while limiting the effects of increasing wire delays [20]. A number of

projects are currently exploring how best to design these microprocessors. This work

can be broken into two strategies: placing a small number of complex processors on

a single chip or placing many, simple processors on a single chip.

The logical first step in placing multiple processors on billion transistor chips is

to place multiple complex processors and multiple levels of cache on them. Several

chip manufacturers have taken this route. In 2001, IBM introduced the Power4 which

contains two 1GHz 5-issue, superscalar cores as well as two levels of cache including

a 1.41 MB shared L2 cache [14]. Intel and AMD both announced their impending

dual-core chips in 2004; Intel’s Montecito chip will contain two Itanium processors

[25] and AMD’s chip will contain two Opteron processors [4].

Researchers concerned about increasing wire delays and design complexity have

looked beyond this logical next step. The premise behind chips like the Stanford

Hydra chip [21] and Compaq’s Piranha prototype [6] is that more thread level paral-

lelism can be exploited if more, simpler processors replace the small number of large,

complex processors. Hydra places four small MIPS cores on a single chip and cre-

ates fast communication among the processors via a shared, on-chip L2 cache. On

Piranha, eight single-issue, in-order processors are connected via a logically shared

CHAPTER 7. RELATED WORK 135

1MB L2 cache that is physically divided into eight banks.

As the fraction of reachable chip area continues to decrease, the number of these

processing elements will need to grow [24][23]. Smart Memories [34], the Grid Proces-

sor Architecture [37], and RAW [46] are three projects exploring designs that connect

large numbers of processing elements on a single chip with an interconnection net-

work. Each processing element can be traversed in a single cycle and contains both

an independent processor and a small amount of memory; the local memory decreases

communication across the on-chip network [23][42]. The communication latency for

these networks is linear in terms of the number of processing elements traversed.

The work in this dissertation applies to chips designed in this fashion. The key

general features our work assumes are that the chip is populated by a large number of

nodes that contain both a processor and small amounts of memory. These nodes func-

tion independently and are connected via an on-chip network where latency increases

linearly with the number of nodes traversed.

7.3 Migration

Previous work in process and data migration has been based on two key assump-

tions reflecting the multi-chip environment from which they evolved. First, processor

utilization affected performance more than usage of other resources, and, second,

data locality was defined as either local or remote. We describe the insight gained

by this research below despite differences from our work regarding the underlying

assumptions about multiprocessor environments.

7.3.1 Thread Migration

Lin’s Gradient Model [32] and Kale’s Contracting Within Neighborhood (CWN) [27]

techniques both used a distributed approach to migrate work away from heavily

loaded processors. Lin’s model dynamically migrated executing tasks based on a

system-wide gradient surface, moving tasks towards lightly loaded processors. The

gradient surface was created by dynamically propagating processor load throughout

CHAPTER 7. RELATED WORK 136

the system gradually. CWN used a simpler approach which continually migrated

newly created tasks towards a node’s least loaded neighbor until either a node’s load

was less than it’s neighbors or until the task had been migrated a predefined number

of times. The limit on migrations constrained tasks to stay within a fixed radius

of their parent, limiting global communication between tasks. Because this work

was performed in a message-passing environment, the issue of data locality was not

explored.

Load balancing research in shared-memory multiprocessors either ignored the issue

of data locality, for example with the use of a central process queue [43], or included

the effect of co-located data into scheduling decisions. Squillante and Lazowska [41]

and Vaswani and Zahorjan [44] explored the impact of cache affinities on processor

scheduling. The intuition is that executing processes develop an affinity for their

current processor because their working set is resident in the processor’s cache. By

incorporating cache affinity information into scheduling decisions, performance could

be improved by avoiding unnecessary cache refills. Chandra et. al [12] and Markatos

and LeBlanc [35] extended the notion of data locality to include a node’s entire

memory hierarchy in their respective approaches.

7.3.2 Data Migration

The large latency difference between local and remote data gave rise to work that

used either migration or replication to reduce remote memory accesses. In cache-

coherent, non-uniform memory access architectures (CC-NUMA) such as DASH [30]

and Alewife [1], programmers tried to partition applications so that data needed by

a given process was allocated within the local memory of the cluster of processors

the process was executing on. STiNG, another CC-NUMA machine, maintained a

remote cache at each quad of processors; this remote cache maintained copies of

data from remote memories in order to decrease the necessity of remote accesses [33].

Cache only memory architectures (COMA) use replication and migration of data to

reduce remote accesses. In these architectures, data migrates to different parts of

the distributed memory depending on which processors in the system are accessing

CHAPTER 7. RELATED WORK 137

the data [19][18][17]. Researchers have compared the benefits of using each of these

approaches separately [48][26] and together [16].

The techniques discussed above migrated and replicated cache blocks. Researchers

have also examined ways to co-locate data with its accessing threads by either migrat-

ing or replicating pages in memory [9]. In systems incorporating process migration,

page migration becomes especially important as processes are moved away from the

initial location of their data in memory. Much of this work explores the different

possible strategies for collecting state and making decisions. Bolosky et. al [10] ex-

amine migrating and replicating pages in the operating system based on page faults.

Their work assumes two different access times, local versus global, simplifying their

migration and replication strategies to either making pages resident at the accessing

processor or not. In Verghese et. al [45] and Soundararajan et. al [39], the oper-

ating system dynamically migrated and replicated pages based on sampling of cache

misses. LaRowe and Ellis [29] examine a mixture of migration and replication poli-

cies in conjunction with different mechanisms for triggering new decisions. Success

in these approaches is measured in terms of making pages resident on the accessing

nodes without creating large numbers of wasted page movements.

7.4 Thread Decomposition

7.4.1 Executing computation at data’s location

The concept of executing computation at the location of the data it accesses has

been explored both in shared-memory machines and distributed systems. Remote

procedure calls [8] can be considered a mechanism for remotely invoking threads.

Code annotations or program language extensions have been incorporated to allow

the user to specify when code should execute at the location of specific data [22][12].

One of the key problems documented for these approaches is the movement of

data. For example, in computation migration [22], all live variables move to the new

location along with the current stack frame. Eager et al. [15] state that moving cur-

rently executing processes to improve processor load balance is not worth it because

CHAPTER 7. RELATED WORK 138

of the state that has to be transferred. However, Eager et al. also state that remote

invocation of processes are a viable option for balancing workloads.

7.4.2 Compiler optimizations

Existing compiler work improves data locality and/or reduces communication via

code transformations [31][47][2][5][13]. Much of this work focuses on restructuring

loops or tiling data in which data accesses are restructured. In an approach similar

to our anchor approach, Maps [7] attempts to executes computation at the location

of the data it uses. However, they achieve this by explicitly orchestrating instruction

and data placement in the compiler.

7.5 Conclusions

Earlier work in multi-chip multiprocessors provides a foundation for the work to be

performed on single-chip multiprocessors; however, it is important to keep in mind

key distinctions between these different multiprocessor systems. Because the amount

of local memory is small in single-chip multiprocessors, on-chip communication plays

a much more prominent role in any techniques we create to minimize data access

times than in earlier systems. The relatively short communication latencies and

abundant processing resources permit us to incorporate lightweight techniques that

were infeasible before. Understanding the differences enables us to retain mechanisms

that will continue to work and create new ones that take advantage of single-chip

multiprocessor’s unique characteristics.

Chapter 8

Conclusions

139

CHAPTER 8. CONCLUSIONS 140

As transistor capacities and wire delays continue to grow, chips will become in-

creasingly organized with distributed control. Single-chip multiprocessors are one

possible design point in this space. They consist of many independent nodes, con-

taining both a processor and limited memory, connected by an on-chip network. The

communication latency between nodes will be small for adjacent nodes (one or two

processor cycles) and will increase linearly with the number of nodes traversed.

In this thesis, we explore the management of communication, computation, and

memory resources in single-chip multiprocessors. Our work focuses on both reducing

the distance and frequency of communication through the on-chip network and bal-

ancing resource demands. We present a reactive technique that migrates data and

threads to both improve locality and reduce resource contention. Our proactive ap-

proach, called anchors, reduces communication frequency by executing computation

at the same location as its most frequently referenced data.

8.1 Thesis Summary

Techniques attempting to reduce communication demands rely on an ability to detect

which data and threads interact with one another. Our first contribution, therefore,

is an architecture-independent framework for classifying applications based on the

communication among their data and threads. We decompose a thread’s execution

over time into clusters based on the thread’s data references. When looking across all

threads’ data clusters, the overlap among these clusters enables us to detect which

threads use similar data and which data are used in conjunction with one another.

This information can then be used to place data and threads on an architecture so

that communication distance is minimized. It also illuminates ways of decomposing

threads into smaller units of computation that access different data, aiding in the

development of communication-sensitive placements of data and threads.

Resource demands and communication patterns cannot always be determined

statically. Our second contribution focuses on both balancing resource demands

and reducing communication distance during application execution. Our migration

technique exploits a key feature of single-chip multiprocessors: communication to

CHAPTER 8. CONCLUSIONS 141

neighboring nodes takes only slightly longer than communication on a single node.

Consequently, data and threads can be moved away from nodes with highly utilized re-

sources to neighboring nodes without incurring large latency penalties. Additionally,

moving data and threads one node closer to the nodes with which they communicate

reduces communication distance. Our technique models the competing demands of

improving locality and equalizing resource demands as competing forces. To meet

these goals, data and threads migrate gradually, one node at a time, based on recent

communication patterns and resource demands for the small region of nodes surround-

ing their current locations. We show that, depending on application characteristics,

our technique can reduce execution times by up to 41%.

Although not always possible, we can use static information about the interactions

between computation and data to reduce communication demands. The third contri-

bution of this dissertation is a technique called anchors; anchors enable the data most

frequently used by a computation to specify the location where the computation exe-

cutes. Communication between the data and the computation is eliminated because

the two are located at the same node. We show that, by decomposing threads into

independent computations based on the clusters of data identified by our framework

and executing these smaller computations at the locations of their most frequently

accessed data, we can decrease communication demands by up to 80% when com-

pared to a cacheless system. As the average communication latency grows, either due

to increases in the number of nodes on a chip or due to network contention, these

communication reductions translate into larger performance improvements.

Finally, we explore how these techniques compare to and work with processor

caches. Our results show that migration can still reduce communication distance

when caching is unable to eliminate all remote data accesses. Migration can still

redistribute resource demands, without incurring large performance penalties, when

threads move away from data stored locally in their current nodes’ caches. Our com-

parison of anchors and of caching identifies situations where each technique performs

best. In situations where caches are unable to contain all of the requested data or

where threads switch to using new clusters of data frequently, anchors can reduce

communication demands and execution times more than caching alone.

CHAPTER 8. CONCLUSIONS 142

8.2 Future Directions

While this dissertation provides insight into both the challenges of using single-chip

multiprocessors and possible solutions for those challenges, it also provides the foun-

dation for asking additional questions about this new environment.

The framework we have created for identifying relationships among data and

threads permits us to manually decompose threads into smaller computations cen-

tered around distinct clusters of data. An open question is whether or not this process

can be automated. Automation would require not only the identification of thread

decomposition points, but it would also require the selection of the data used to

anchor each computation. Concerns about processor load imbalance require an auto-

mated mechanism to incorporate some technique for avoiding all computations being

assigned the same anchor.

An intuitive way of decreasing communication demands not explored in this disser-

tation is to compact data accessed together into contiguous memory addresses. Many

communication patterns change over time, making it unlikely that the data used to-

gether reside in sequential memory locations. As communication becomes relatively

more expensive than computation, it may become advantageous to use computation

to copy data into sequential memory locations and, hence, improve data locality.

This approach is similar to using scratchpad memory to store temporary data. Such

a technique could reduce the data working set size and reduce the quantity of data

transmitted through the on-chip network.

Finally, the work in this dissertation focuses on communication occuring on a

single chip. The research does not study in detail how to move data on and off of the

chip. Several issues need to be examined regarding off-chip communication. First,

concerns about the amount of data to be moved onto the chip and the limitations

of on-chip storage may suggest the need to reorganize data prior to it being fetched

onto the chip. Second, a system may be composed of multiple chips connected and

working together; a multi-chip environment creates different challenges from the ones

explored in this thesis regarding data and thread placements.

Bibliography

[1] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. Kubiatowicz,

B. Lim, K. Mackenzie, and D. Yeung, “The MIT Alewife Machine: Architecture

and Performance,” in Proceedings of the 22nd Annual International Symposium

on Computer Architecture, pp. 2-13, June 1995.

[2] A. Agarwal, D. A. Kranz, and V. Natarajan, ”Automatic Partitioning of Parallel

Loops and Data Arrays for Distributed Shared-Memory Multiprocessors”, in

IEEE Transactions on Parallel and Distributed Systems, pp. 943-962, Sept. 1995.

[3] V. Agarwal, M.S. Hrishikesh, S.W. Keckler, and D. Burger, “Clock Rate Versus

IPC: The End of the Road for Conventional Microarchitectures,” in Proceedings

of the 27th Annual International Symposium on Computer Architecture, pp. 248-

259, June 2000.

[4] AMD Press Release, “AMD Announces Technology Milestone With Its Multiple-

Core Strategy,” http://www.amd.com/us-en/Corporate/VirtualPressRoom/

0,,51_104_543~86455,00.html, June 2004.

[5] J. M. Anderson, S. P. Amarasinghe, and M. S. Lam, ”Data and Computation

Transformations for Multiprocessors,” in Proceedings of the 5th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, pp. 166-178,

July 1995.

[6] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano,

S. Smith, R. Stets, and B. Verghese, “Piranha: A Scalable Architecture Based

143

BIBLIOGRAPHY 144

on Single-Chip Multiprocessing,” in Proceedings of the 27th Annual International

Symposium on Computer Architecture, pp. 282-293, June 2000.

[7] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal, “Maps: A Compiler-

Managed Memory System for Raw Machines,” in Proceedings of the 26th Annual

International Symposium on Computer Architecture, May 1999.

[8] A. D. Birrell and B. J. Nelson, “Implementing Remote Procedure Calls,” in ACM

Transactions on Computer Systems, pp. 39-59, February 1984.

[9] D. Black, A. Gupta, and W. Weber, “Competitive Management of Distributed

Shared Memory,” in COMPCON Spring ’89, Digest of Papers, pp. 184-190,

March 1989.

[10] W. J. Bolosky, R. P. Fitzgerald, and M. L. Scott, “Simple But Effective Tech-

niques for NUMA Memory Management,” in Proceedings of the 12th Symposium

on Systems Principles, pp. 19-31, December 1989.

[11] D. Burger and T. M. Austin. “The SimpleScalar Tool Set, Version 2.0”, in Com-

puter Architecture News, pp. 13-25, June 1997.

[12] R. Chandra, A. Gupta, and J. Hennessy, “Data Locality and Load Balancing

in COOL,” in Proceedings of the 4th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, San Diego, CA, pp. 249-259, May. 1993.

[13] M. Cierniak and W. Li, ”Unifying Data and Control Transformations for Dis-

tributed Shared-Memory Machines”, in Proceedings of the ACM SIGPLAN 1995

Conference on Programming Language Design and Implementation, pp. 205-217,

June 1995.

[14] K. Diefendorff, “Power4 Focuses on Memory Bandwidth”, in Microprocessor Re-

port, 13(13):1-8, 1999.

[15] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “The Limited Performance Ben-

efits of Migrating Active Processes for Load Sharing,” in ACM SIGMETRICS

Conference on Measuring and Modeling of Computer Systems, pp. 63-72, 1988.

BIBLIOGRAPHY 145

[16] B. Falsafi and D. A. Wood, “Reactive NUMA: A Design for Unifying S-COMA

and CC-NUMA,” in Proceedings of the 24th Annual International Symposium on

Computer Architecture, pp. 229-240, June 1997.

[17] S. Frank, H. Burkhardt III, and J. Rothnie, “The KSR 1: Bridging the Gap Be-

tween Shared Memory and MPPs” in COMPCON Spring ’93, Digest of Papers,

pp. 285-294, Feb. 1993.

[18] E. Hagersten, A. Landin, and S. Haridi, “DDM - A Cache-Only Memory Archi-

tecture,” in IEEE Computer, pp. 44-54, Sept. 1992.

[19] E. Hagersten, A. Saulsbury, and A. Landin, “Simple COMA Node Implemen-

tations,” in Proceedings of the 27th Hawaii International Conference on System

Sciences, Jan. 1994.

[20] L. Hammond, B. A. Hayfeh, and K. Olokotun, “A Single-Chip Multiprocessor,”

in IEEE Computer, pp. 79-85, Sept. 1997.

[21] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen, and K. Olukotun, “The

Stanford Hydra CMP,” in IEEE Micro Magazine, March-April 2000.

[22] W. C. Hsieh, P. Wang, and W. E. Weihl, “Computation Migration: Enhanc-

ing Locality for Distributed-Memory Parallel Systems” in PPOPP, pp. 239-248,

1993.

[23] R. Ho, K. W. Mai, and M. A. Horowitz, “The Future of Wires,” in Proceedings

of the IEEE, 89(4):490-504, April 2001.

[24] J. Huh, D. Burger, and S.W. Keckler, “Exploring the Design Space of Future

CMPs,” in International Symposium on Parallel Architectures and Compilation

Techniques, pp. 199-210, Sept. 2001.

[25] Intel Press Release, “Intel Silicon Innovation To Shape Direction Of The Dig-

ital World: Multi-Core Processors, Other Key Silicon Technologies Part of

Platform Approach,” http://www.intel.com/pressroom/archive/releases/

20040907corp.htm, Sept. 2004.

BIBLIOGRAPHY 146

[26] T. Joe and J. L. Hennessy, “Evaluating the Memory Overhead Required for

COMA Architectures,” in Proceedings of the 21st Annual International Sympo-

sium on Computer Architecture, pp. 82-93, 1994.

[27] L. V. Kale, “Comparing the Performance of Two Dynamic Load Distribution

Methods,” in International Conference on Parallel Processing, University Park,

PA, pp. 8-11, Aug. 1988.

[28] S.W. Keckler, W.J. Dally, D. Maskit, N.P. Carter, A. Chang, and W.S Lee, “Ex-

ploiting Fine-Grain Thread Level Parallelism on the MIT Multi-ALU Processor,”

in Proceedings of the 25th Annual International Symposium on Computer Archi-

tecture, pp. 306-317, 1998.

[29] R. LaRowe and C. Ellis, “Experimental Comparison of Memory Management

Policies for NUMA Multiprcessors,” in ACM Transactions on Computer Systems,

pp. 319-363, Nov. 1991.

[30] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy, M.

Horowitz, and M. Lam, “The Stanford DASH Multiprocessor,” in IEEE Com-

puter, pp. 63-79, March 1992.

[31] A. W. Lim, G. I. Cheong, and M. S. Lam, “An Affine Partitioning Algorithm

to Maximize Parallelism and Minimize Communication,” in Proceedings of the

1999 Conference on Supercomputing, ACM SIGARCH, pp. 228-237, June 1999.

[32] F. C. H. Lin and R. M. Keller, “The Gradient Model Load Balancing Method,”

in IEEE Transactions on Software Engineering, Vol. SE-13, No. 1, pp. 32-38,

Jan. 1987.

[33] T. Lovett and R. Clapp, “STiNG: A CC-NUMA Compute System for the Com-

mercial Marketplace,” in Proceedings of the 23rd Annual International Sympo-

sium on Computer Architecture, pp. 308-317, May 1996.

[34] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally and M. Horowitz, “Smart Mem-

ories: A Modular Reconfigurable Architecture,” in Proceedings of International

Symposium on Computer Architecture, pp. 161-171, June 2000.

BIBLIOGRAPHY 147

[35] E. Markatos and T. LeBlanc, “Load Balancing vs. Locality Management in

Shared-Memory Multiprocessors,” in International Conference on Parallel Pro-

cessing, St. Charles, Illinois, pp. 258-265, Aug. 1992.

[36] D. Matzke, ”Will Physical Scalability Sabotage Performance Gains?” in IEEE

Computer, vol. 30, pp. 37-39, Sept. 1997.

[37] R. Nagarajan, K. Sankaralingam, D. Burger, and S.W. Keckler, “A Design Space

Evaluation of Grid Processor Architectures,” in Proceedings of the 34th Annual

International Symposium on Microarchitecture, pp. 40-51, Dec. 2001.

[38] K. A. Shaw and W. J. Dally, “Migration in Single Chip Multiprocessors,” in

IEEE Computer Architecture Letters, Volume 1, Nov. 2002.

[39] V. Soundararajan, M. Heinrich, B. Verghese, K. Gharachorloo, A. Gupta, and

J. Hennessy, “Flexible Use of Memory for Replication/Migration in Cache-

Coherent DSM Multiprocessors,” in Proceedings of the 25th International Sym-

posium on Computer Architecture, Barcelona, Spain, pp. 342-355, June 1998.

[40] SPEC OMP Benchmark Suite, http://www.specbench.org/omp.

[41] M. Squillante and E. Lazowska, “Using Processor-Cache Affinity Information in

Shared Memory Multiprocessor Scheduling,” Tech. Rep. FR-35, University of

Washington Computer Science Department, Feb. 1990.

[42] M.B. Taylor et. al. “The Raw Microprocessor: A Computational Fabric for

Software Circuits and General-purpose Programs,” in IEEE Micro, pp. 25-35,

March/April 2002.

[43] A. Tucker and A. Gupta, “Process Control and Scheduling Issues for Multipro-

grammed, Shared Memory Multiprocessors,” in Proceedings of the 12th Sympo-

sium on Operating Systems Principles, Litchfield Park, AZ, pp. 159-166, Dec.

1989.

BIBLIOGRAPHY 148

[44] R. Vaswani and J. Zahorjan, “The Implications of Cache Affinity on Processor

Scheduling for Multiprogrammed, Shared Memory Multiprocessors,” in Proceed-

ings of ACM Symposium on Operating Systems Principles, Pacific Grove, CA,

pp. 27-40, Oct. 1991.

[45] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, “Operating System Sup-

port for Improving Data Locality on CC-NUMA Compute Servers,” in Pro-

ceedings of the 7th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, Cambridge, MA, pp. 279-289, Oct.

1996.

[46] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M.

Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal, “Baring

it all to Software: Raw Machines,” in IEEE Computer, pp. 86-93, Sept. 1997.

[47] M. E. Wolf and M. S. Lam, “A Data Locality Optimizing Algorithm,” in Pro-

ceedings of the SIGPLAN ’91 Conference on Programming Language Design and

Implementation, pp. 30-44, June 1991.

[48] Z. Zhang and J. Torrellas, “Reducing Remote Conflict Misses: NUMA with

Remote Cache versus COMA,” in Proceedings of the 3rd IEEE Symposium on

High-Performance Computer Architecture, pp. 272-281, Feb. 1997.

