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W hen scientists write code to implement an algo-
rithm, we initially focus on just getting some-
thing that works. However, as we execute our 

code on large problem sizes, we sometimes discover that 
our initial implementation runs too slowly. Fortunately, 
there are some easy ways to speed up the code by tailoring 
it to how computer hardware actually works. 

In the first installment of this three-part series (May/
June 2008), we examined the individual instructions re-
quired by a simple but computationally intensive algorithm 
(an orientational correlation function) and explored how 
to reduce the number of clock cycles needed for each loop 
iteration. By avoiding long-running instructions and pre-
calculating some values outside of the innermost loop, we 
successfully cut the clock cycles needed for each iteration 
by more than half.

But our code still executed much more slowly than we 
anticipated. Although we estimated that each loop iteration 
should require roughly 50 clock cycles on our test system, 
we found that each actually required more than 130 clock 
cycles! The reason for this large discrepancy turned out to 
be the delay time, or latency, associated with retrieving data 
from the computer’s main memory. 

In this installment of our series, we show how to rear-
range code so that it accommodates the peculiarities of the 
memory system and consequently reduces execution time.

Main Memory and Caches
In part 1 of this series, we saw that latencies for arithme-
tic instructions range from one to 10 cycles (with some 
select instructions taking longer). In contrast, a typical 
main memory access can take approximately 300 cycles. 
All the optimizations we made to decrease the number of 
cycles doing computation are irrelevant if most memory 
accesses incur these long latencies.

Fortunately, hardware designers have developed a strat-
egy to mask this problem. They place a small amount of 

faster memory, called a “cache,” on or very near the CPU 
chip itself, where it can be accessed much more quickly 
than the main memory. Modern processors typically have 
two or more levels of cache (denoted L1, L2, and so on), 
each with a different trade-off of size versus latency.1 Fig-
ure 1 depicts the memory-system configuration used in 
our tests. Reading from the L1 cache (the smallest cache, 
located closest to the processor) is very fast, whereas read-
ing from the main memory (which is large and farthest 
from the processor) is much slower. 

To reduce the negative impact of memory accesses, the fast 
L1 cache must be able to satisfy as many memory accesses 
as possible. We want to avoid going to the main memory at 
all costs. As programmers, we need to understand when the 
cache retains data—that way, we ensure that the data we want 
will be cached when we need it.

Locality, Locality, Locality!
Caches work by retaining recently used data so that it can be 
retrieved more quickly on future accesses. Data is retained 
in the cache for as long as possible and is only evicted when 
other, more recently accessed data must be retained. One 
way to reduce the frequency of having to go to the main 
memory is to reuse data as many times as possible within 
a short period of time, because the data will likely remain 
cached. This is known as temporal locality. 

Caches also exploit spatial locality, which occurs when a 
program uses multiple pieces of contiguously stored data 
in a short time period—for instance, by accessing array 
elements sequentially. Caches exploit this spatial local-
ity by retrieving and storing not just the specific bytes 
of data requested by the processor but an entire “line” or 
sequence of contiguous bytes of data. By doing so, this 
cached line of data can satisfy future requests for near-
by memory addresses. Additionally, memory controllers 
usually “prefetch” multiple lines of data from the main 
memory into the cache when they suspect that they might 

This three-part series shows how applying knowledge about the underlying computer hardware to the code for 
a simple but computationally intensive algorithm can significantly improve performance. This second segment 
focuses on memory accesses.
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be used in the near future—for example, if nearby mem-
ory locations have been recently accessed. So, even if data 
spans several cache lines, storing it contiguously improves 
the chance that it will be prefetched before it’s needed. 

There’s another way in which a program’s spatial local-
ity can improve a cache’s performance, based on a subtle 
aspect of how caches work. Figure 2 shows an example 
cache with eight cache lines. On the left, we also show an 
example memory space divided into cache lines. In an ideal 
world, any line of data could reside in any cache line. How-
ever, to limit the number of lines that must be searched and 
keep the cache access times short, caches generally limit 
the number of cache lines in which a given piece of data can 

reside. In our example, every piece of data maps to two dif-
ferent cache lines, collectively referred to as a set. (We refer 
to this configuration as two-way set associative because each 
set contains two cache lines.) In the figure, green areas in 
the main memory can map to only one of the two green 
cache lines in the cache. If more than two areas map to the 
same set, a conflict results, causing some data to be evicted. 
Spatial locality can avoid such conflicts, because contigu-
ous areas in the main memory are guaranteed to map to 
different sets in the cache.

A Programming Example
Let’s look back at our orientational correlation code from 
part 1 of this series to evaluate its spatial and temporal 
locality. The data to be analyzed is a series of N points, 
possibly from a microscope image, where each point has 
a location (with x and y values), as well as a local orienta-
tion. The data is stored in four separate input arrays: x[N], 
y[N], sin6[N], and cos6[N]. (Previously, we found it 
computationally advantageous to precalculate the sine and 
cosine for each given orientation angle—hence, the two 
arrays.) Calculating the orientational correlation function 
requires calculating the distance between each possible 
pair of points i, j, 

r x x y yi j i j i j, ,= ( ) +( )– –
2 2

and accumulating correlation data for each pair in the rth 
element of the arrays g[r] and count[r]. The relevant 
portion of the code is as follows: 

//Now, accumulate data for all pairs of  

//points (i,j).

for(i=0; i<N; ++i) //for each i < N

  for(j=i+1; j<N; ++j) { //for each j < N

    Dx = x[i]-x[j];

    Dy = y[i]-y[j];

    r = sqrt(Dx*Dx + Dy*Dy);

    g[r] += cos6[i]*cos6[j]+sin6[i]*sin6[j]

    ++count[r];

  }

Even without thinking too hard about what the code is 
actually doing, it’s clear that it already exhibits some de-
gree of temporal and spatial locality, which the cache is 
exploiting. The temporal locality comes from repeatedly 
reusing the ith element of the input arrays, as guaranteed 
by the nested for loops. The spatial locality comes from 
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…

Figure 2. Mapping between main memory (divided into 
cache lines) and a two-way set associative cache with a 
capacity of eight cache lines.
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Figure 1. the relative sizes and latencies of different parts of 
our test platform’s memory system.
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always accessing the four input arrays 
sequentially, with the index j incre-
mented by one every iteration. The 
cache must satisfy at least some of the 
program’s memory requests—if not, 
the clock cycles per pair of points in 
our code would be significantly higher 
than the observed 130 cycles.

But there’s clearly room for im-
provement. Each of the inner loop’s 
iterations currently requires access 
to six different arrays, which means 
that six different locations in memory 
must be accessed. And since the cache won’t be able to 
hold all of the data for large values of N, the data will have 
to be read again from main memory every time the inner 
loop begins. Our goal as programmers is to find ways to 
improve spatial and temporal locality where we can, by 
changing either the order in which we store data or the 
order in which we access it. Fortunately, some broadly ap-
plicable strategies can help.

Improving Spatial Locality: Array Merging
Examining our sample program, we have declared six dif-
ferent large arrays of numbers. The declarations for these 
arrays are

int x[N], y[N];

float sin6[N], cos6[N];

int count[MAX_R];

float g[MAX_R];

As Figure 3a shows, these arrays are each stored sequen-
tially in the main memory. Structuring the data into these 
parallel arrays would be ideal if our processing required 
accessing only the x or y values. But our program accesses 
the jth element of each of the four input arrays and the rth 
element of each of the two output arrays at the same time, 
so this data organization doesn’t mimic how we access the 
data. 

In our case, we can improve our program’s spatial lo-
cality by storing contiguously in memory the values as-
sociated with each jth input point as shown in Figure 
3b, a technique known as array merging.2 In C, this is 
accomplished by defining a struct that contains all four 
values for each point, with our data held in a single array 
data[N] of those structs. When the cache retrieves the 
cache block containing the x value for point j, it will au-

tomatically prefetch the y, cos6, and sin6 values for that 
point and could potentially prefetch values for several 
other points (such as j + 1, j + 2, and so on), depending 
on the cache line size. Similarly, because the rth element 
of the arrays count and g are always accessed at the same 
time, we can define a second struct that contains both 
the g and count values; all Max_R of these values are held 
in a single array of these structures accum[Max_R]. The 
revised declaration section and the code that uses these 
structures is as follows:

struct DataStruct {

  int x, y;

  float cos6, sin6; };

DataStruct data[N];

struct AccumulationStruct {

  int count;

  float g; };

AccumulationStruct accum[Max_R];

//Now, accumulate data for all pairs of  

//points (i,j).

for(i=0; i<N; ++i) //for each i < N

  for(j=i+1; j<N; ++j) { //for each j < N

     Dx = data[i].x - data[j].x; 

Dy = data[i].y - data[j].y; 

r = sqrt(Dx*Dx + Dy*Dy);

    accum[r].g +=  data[i].cos6 * data[j].cos6 + 

data[i].sin6 * data[j].sin6;

    ++accum[r].count;

  }

We tested this code’s speed and compared it to the code 
without array merging; the results appear in the first two 

x: …

y: …

…

cos6: …

count: …

g: …(a)

Data:

Accumulation:(b)

…x y cos6 sin6 x y cos6 sin6 x y cos6 sin6

sin6:

…count g count g count g

Figure 3. Array merging for increased spatial locality. (a) the data structure as 
originally coded in six separate arrays and (b) the revised data structures, as two 
arrays of structures.
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rows of Table 1. (All table entries reflect the use of the trigo-
nometric optimization discussed in the first installment.) Ap-
parently, this simple code modification cuts the cycles needed 
per pair by more than one-third, getting our observed execu-
tion time closer to our theoretical estimate of about 50 clock 
cycles per iteration. Clearly, rearranging the data to reflect 
how data is accessed enhances the cache’s ability to exploit 
spatial locality and streamlines the prefetching of data.

Improving Temporal Locality: Blocking
As mentioned earlier, our code already exhibits some tem-
poral locality by keeping the index constant on the outer 
loop, resulting in each ith array element being repeatedly 
reused. During each outer loop iteration, however, it also 
cycles through the data for all possible values of j. Conse-
quently, the time between subsequent uses of the same data 
is the time it takes to process all of the data for one iteration 
of the outer loop. For large numbers of points, the data for 
all values of j might be far too big to fit in either the L1 or 
L2 cache, so later values overwrite the first values of j in 
the cache. Consequently, the cache can’t exploit this data’s 
eventual reuse. 

A solution to this problem is to group the input data to-
gether in small blocks (of size blocksize) that will easily 
fit in the lowest level of cache. Then we can process each 
possible pair of points from those two blocks before mov-
ing on to the next pair of blocks, as Figure 4 shows. This 
technique, called blocking, lets us perform more computa-
tions for every new data point that we read from the main 
memory. For example, if we store in the cache two blocks 
of data, each of blocksize = 100 points, we could process 
all 10,000 possible pairs of points before having to access 
the next block of 100 points. That’s a big improvement 
from processing only a single pair for every point read. 
The modified portion of our code snippet is as follows:

for(A=0; A+2*blocksize<N; A+=blocksize)  

  for(B=A+blocksize; B+blocksize<N;  

      B+=blocksize) 

    for(i=A; i<A+blocksize; ++i)    

      for(j=B; j<B+blocksize; ++j) {
      .
      .
      .

The technique’s disadvantage, of course, is that it makes 
the code more complex. First, it increases the number of 
nested loops from two to four. Second, it introduces several 

special cases (not handled in the sample code) for pairs of 
points within the same block and for any leftover points if the 
number of points N isn’t an integer multiple of blocksize. 

Table 1 shows that using this blocking technique, 
whether in conjunction with structs or individual arrays, 
increases the speed by about 10 clock cycles per pair. This 
modest gain underscores that the hardware was already do-
ing a pretty good job of prefetching the input array data. 
However, the fact that we’re still above the estimated 50 
clock cycles required for the calculations in each inner loop 
iteration indicates that some memory latency is still affect-
ing our performance. Apparently, the L1 cache still isn’t 
satisfying some of the data requests.  

The only way to know for sure what causes the additional la-
tency would be to run a detailed simulation of our calculation 
based on our memory system’s known behavior. Fortunately, 
we can make some educated guesses based on the sizes and 
latencies of each level of cache on our CPU. It happens that 
for the set of input data we used to test our code, the required 
size of the accumulation array (with or without structs) is just 
over 64 Kbytes, which is just a bit too big for our L1 data 
cache. Worse, each pair of points from the input data could 
be any distance apart, so the accumulation array is accessed 
randomly, with neither spatial nor temporal locality. Given 
that the L1 cache is too small to hold the entire accumulation 
array and the two input data blocks at the same time, data is 
frequently evicted from the L1 cache and must subsequently 
be reloaded—most likely from the L2 cache, which, at 512 
Kbytes, is large enough to hold everything. Each L2 cache 
access takes 20 clock cycles, which would be just about right 
to explain the additional latencies we observe. 

The array-merging and blocking techniques, which 
are applicable to a variety of problems, improved our 

code’s performance by approximately 40 percent. Coupled 
with the improvements we made to the code in the first 
installment of this series, we have reduced execution time 
dramatically—by more than a factor of four. But we’re not 
done yet! There are additional ways we can improve our 
code that also use the general strategies of reducing in-
structions (both explicitly and implicitly, for address arith-
metic) and increasing locality (both spatial and temporal). 
In the next installment, we will see how paying attention to 
computer architecture for a particular algorithm can yield 
even more dramatic performance improvements. 

Table 1. Effects of array merging and blocking on execution time. 

Execution time (seconds) Clock cycles per pair

Without array merging or blocking 4,422 133.6

With array merging only 2,917 88.1

With blocking only 4,086 123.5

With array merging and blocking 2,634 79.6
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Figure 4. Increasing spatial locality using blocking. this technique lets us perform more computations for every new data 
point that we read from the main memory.


