
July/August 2008	 Copublished by the IEEE CS and the AIP 1521-9615/08/$25.00 ©2008 IEEE� 71

Editors: Michael Dennin, mdennin@uci.edu

Steven Barrett, steveb@uwyo.edu

E d u C A t I o n

Why	Computer	ArChiteCture	
mAtters:	memory	ACCess
By�Cosmin�Pancratov,�Jacob�M.�Kurzer,�Kelly�A.�Shaw,��
and�Matthew�L.�Trawick

W hen scientists write code to implement an algo-
rithm, we initially focus on just getting some-
thing that works. However, as we execute our

code on large problem sizes, we sometimes discover that
our initial implementation runs too slowly. Fortunately,
there are some easy ways to speed up the code by tailoring
it to how computer hardware actually works.

In the first installment of this three-part series (May/
June 2008), we examined the individual instructions re-
quired by a simple but computationally intensive algorithm
(an orientational correlation function) and explored how
to reduce the number of clock cycles needed for each loop
iteration. By avoiding long-running instructions and pre-
calculating some values outside of the innermost loop, we
successfully cut the clock cycles needed for each iteration
by more than half.

But our code still executed much more slowly than we
anticipated. Although we estimated that each loop iteration
should require roughly 50 clock cycles on our test system,
we found that each actually required more than 130 clock
cycles! The reason for this large discrepancy turned out to
be the delay time, or latency, associated with retrieving data
from the computer’s main memory.

In this installment of our series, we show how to rear-
range code so that it accommodates the peculiarities of the
memory system and consequently reduces execution time.

Main Memory and Caches
In part 1 of this series, we saw that latencies for arithme-
tic instructions range from one to 10 cycles (with some
select instructions taking longer). In contrast, a typical
main memory access can take approximately 300 cycles.
All the optimizations we made to decrease the number of
cycles doing computation are irrelevant if most memory
accesses incur these long latencies.

Fortunately, hardware designers have developed a strat-
egy to mask this problem. They place a small amount of

faster memory, called a “cache,” on or very near the CPU
chip itself, where it can be accessed much more quickly
than the main memory. Modern processors typically have
two or more levels of cache (denoted L1, L2, and so on),
each with a different trade-off of size versus latency.1 Fig-
ure 1 depicts the memory-system configuration used in
our tests. Reading from the L1 cache (the smallest cache,
located closest to the processor) is very fast, whereas read-
ing from the main memory (which is large and farthest
from the processor) is much slower.

To reduce the negative impact of memory accesses, the fast
L1 cache must be able to satisfy as many memory accesses
as possible. We want to avoid going to the main memory at
all costs. As programmers, we need to understand when the
cache retains data—that way, we ensure that the data we want
will be cached when we need it.

Locality, Locality, Locality!
Caches work by retaining recently used data so that it can be
retrieved more quickly on future accesses. Data is retained
in the cache for as long as possible and is only evicted when
other, more recently accessed data must be retained. One
way to reduce the frequency of having to go to the main
memory is to reuse data as many times as possible within
a short period of time, because the data will likely remain
cached. This is known as temporal locality.

Caches also exploit spatial locality, which occurs when a
program uses multiple pieces of contiguously stored data
in a short time period—for instance, by accessing array
elements sequentially. Caches exploit this spatial local-
ity by retrieving and storing not just the specific bytes
of data requested by the processor but an entire “line” or
sequence of contiguous bytes of data. By doing so, this
cached line of data can satisfy future requests for near-
by memory addresses. Additionally, memory controllers
usually “prefetch” multiple lines of data from the main
memory into the cache when they suspect that they might

This three-part series shows how applying knowledge about the underlying computer hardware to the code for
a simple but computationally intensive algorithm can significantly improve performance. This second segment
focuses on memory accesses.

E d u C A t I o n

72� Computing in sCienCe & engineering

be used in the near future—for example, if nearby mem-
ory locations have been recently accessed. So, even if data
spans several cache lines, storing it contiguously improves
the chance that it will be prefetched before it’s needed.

There’s another way in which a program’s spatial local-
ity can improve a cache’s performance, based on a subtle
aspect of how caches work. Figure 2 shows an example
cache with eight cache lines. On the left, we also show an
example memory space divided into cache lines. In an ideal
world, any line of data could reside in any cache line. How-
ever, to limit the number of lines that must be searched and
keep the cache access times short, caches generally limit
the number of cache lines in which a given piece of data can

reside. In our example, every piece of data maps to two dif-
ferent cache lines, collectively referred to as a set. (We refer
to this configuration as two-way set associative because each
set contains two cache lines.) In the figure, green areas in
the main memory can map to only one of the two green
cache lines in the cache. If more than two areas map to the
same set, a conflict results, causing some data to be evicted.
Spatial locality can avoid such conflicts, because contigu-
ous areas in the main memory are guaranteed to map to
different sets in the cache.

A Programming Example
Let’s look back at our orientational correlation code from
part 1 of this series to evaluate its spatial and temporal
locality. The data to be analyzed is a series of N points,
possibly from a microscope image, where each point has
a location (with x and y values), as well as a local orienta-
tion. The data is stored in four separate input arrays: x[N],
y[N], sin6[N], and cos6[N]. (Previously, we found it
computationally advantageous to precalculate the sine and
cosine for each given orientation angle—hence, the two
arrays.) Calculating the orientational correlation function
requires calculating the distance between each possible
pair of points i, j,

r x x y yi j i j i j, ,= () +()– –
2 2

and accumulating correlation data for each pair in the rth
element of the arrays g[r] and count[r]. The relevant
portion of the code is as follows:

//Now, accumulate data for all pairs of

//points (i,j).

for(i=0; i<N; ++i) //for each i < N

 for(j=i+1; j<N; ++j) { //for each j < N

 Dx = x[i]-x[j];

 Dy = y[i]-y[j];

 r = sqrt(Dx*Dx + Dy*Dy);

 g[r] += cos6[i]*cos6[j]+sin6[i]*sin6[j]

 ++count[r];

 }

Even without thinking too hard about what the code is
actually doing, it’s clear that it already exhibits some de-
gree of temporal and spatial locality, which the cache is
exploiting. The temporal locality comes from repeatedly
reusing the ith element of the input arrays, as guaranteed
by the nested for loops. The spatial locality comes from

Cache

Set 0

Set 1

Set 2

Set 3

Main memory

…

Figure 2. Mapping between main memory (divided into
cache lines) and a two-way set associative cache with a
capacity of eight cache lines.

CPU

L1 data cache (64 Kbytes)

L2 cache (512 Kbytes)

3 clock cycles

20 clock cycles

~300 clock cycles

Main memory (2 Gbytes)

Figure 1. the relative sizes and latencies of different parts of
our test platform’s memory system.

July/August 2008� 73

always accessing the four input arrays
sequentially, with the index j incre-
mented by one every iteration. The
cache must satisfy at least some of the
program’s memory requests—if not,
the clock cycles per pair of points in
our code would be significantly higher
than the observed 130 cycles.

But there’s clearly room for im-
provement. Each of the inner loop’s
iterations currently requires access
to six different arrays, which means
that six different locations in memory
must be accessed. And since the cache won’t be able to
hold all of the data for large values of N, the data will have
to be read again from main memory every time the inner
loop begins. Our goal as programmers is to find ways to
improve spatial and temporal locality where we can, by
changing either the order in which we store data or the
order in which we access it. Fortunately, some broadly ap-
plicable strategies can help.

Improving Spatial Locality: Array Merging
Examining our sample program, we have declared six dif-
ferent large arrays of numbers. The declarations for these
arrays are

int x[N], y[N];

float sin6[N], cos6[N];

int count[MAX_R];

float g[MAX_R];

As Figure 3a shows, these arrays are each stored sequen-
tially in the main memory. Structuring the data into these
parallel arrays would be ideal if our processing required
accessing only the x or y values. But our program accesses
the jth element of each of the four input arrays and the rth
element of each of the two output arrays at the same time,
so this data organization doesn’t mimic how we access the
data.

In our case, we can improve our program’s spatial lo-
cality by storing contiguously in memory the values as-
sociated with each jth input point as shown in Figure
3b, a technique known as array merging.2 In C, this is
accomplished by defining a struct that contains all four
values for each point, with our data held in a single array
data[N] of those structs. When the cache retrieves the
cache block containing the x value for point j, it will au-

tomatically prefetch the y, cos6, and sin6 values for that
point and could potentially prefetch values for several
other points (such as j + 1, j + 2, and so on), depending
on the cache line size. Similarly, because the rth element
of the arrays count and g are always accessed at the same
time, we can define a second struct that contains both
the g and count values; all Max_R of these values are held
in a single array of these structures accum[Max_R]. The
revised declaration section and the code that uses these
structures is as follows:

struct DataStruct {

 int x, y;

 float cos6, sin6; };

DataStruct data[N];

struct AccumulationStruct {

 int count;

 float g; };

AccumulationStruct accum[Max_R];

//Now, accumulate data for all pairs of

//points (i,j).

for(i=0; i<N; ++i) //for each i < N

 for(j=i+1; j<N; ++j) { //for each j < N

 Dx = data[i].x - data[j].x;

Dy = data[i].y - data[j].y;

r = sqrt(Dx*Dx + Dy*Dy);

 accum[r].g += data[i].cos6 * data[j].cos6 +

data[i].sin6 * data[j].sin6;

 ++accum[r].count;

 }

We tested this code’s speed and compared it to the code
without array merging; the results appear in the first two

x: …

y: …

…

cos6: …

count: …

g: …(a)

Data:

Accumulation:(b)

…x y cos6 sin6 x y cos6 sin6 x y cos6 sin6

sin6:

…count g count g count g

Figure 3. Array merging for increased spatial locality. (a) the data structure as
originally coded in six separate arrays and (b) the revised data structures, as two
arrays of structures.

E d u C A t I o n

74� Computing in sCienCe & engineering

rows of Table 1. (All table entries reflect the use of the trigo-
nometric optimization discussed in the first installment.) Ap-
parently, this simple code modification cuts the cycles needed
per pair by more than one-third, getting our observed execu-
tion time closer to our theoretical estimate of about 50 clock
cycles per iteration. Clearly, rearranging the data to reflect
how data is accessed enhances the cache’s ability to exploit
spatial locality and streamlines the prefetching of data.

Improving Temporal Locality: Blocking
As mentioned earlier, our code already exhibits some tem-
poral locality by keeping the index constant on the outer
loop, resulting in each ith array element being repeatedly
reused. During each outer loop iteration, however, it also
cycles through the data for all possible values of j. Conse-
quently, the time between subsequent uses of the same data
is the time it takes to process all of the data for one iteration
of the outer loop. For large numbers of points, the data for
all values of j might be far too big to fit in either the L1 or
L2 cache, so later values overwrite the first values of j in
the cache. Consequently, the cache can’t exploit this data’s
eventual reuse.

A solution to this problem is to group the input data to-
gether in small blocks (of size blocksize) that will easily
fit in the lowest level of cache. Then we can process each
possible pair of points from those two blocks before mov-
ing on to the next pair of blocks, as Figure 4 shows. This
technique, called blocking, lets us perform more computa-
tions for every new data point that we read from the main
memory. For example, if we store in the cache two blocks
of data, each of blocksize = 100 points, we could process
all 10,000 possible pairs of points before having to access
the next block of 100 points. That’s a big improvement
from processing only a single pair for every point read.
The modified portion of our code snippet is as follows:

for(A=0; A+2*blocksize<N; A+=blocksize)

 for(B=A+blocksize; B+blocksize<N;

 B+=blocksize)

 for(i=A; i<A+blocksize; ++i)

 for(j=B; j<B+blocksize; ++j) {
 .
 .
 .

The technique’s disadvantage, of course, is that it makes
the code more complex. First, it increases the number of
nested loops from two to four. Second, it introduces several

special cases (not handled in the sample code) for pairs of
points within the same block and for any leftover points if the
number of points N isn’t an integer multiple of blocksize.

Table 1 shows that using this blocking technique,
whether in conjunction with structs or individual arrays,
increases the speed by about 10 clock cycles per pair. This
modest gain underscores that the hardware was already do-
ing a pretty good job of prefetching the input array data.
However, the fact that we’re still above the estimated 50
clock cycles required for the calculations in each inner loop
iteration indicates that some memory latency is still affect-
ing our performance. Apparently, the L1 cache still isn’t
satisfying some of the data requests.

The only way to know for sure what causes the additional la-
tency would be to run a detailed simulation of our calculation
based on our memory system’s known behavior. Fortunately,
we can make some educated guesses based on the sizes and
latencies of each level of cache on our CPU. It happens that
for the set of input data we used to test our code, the required
size of the accumulation array (with or without structs) is just
over 64 Kbytes, which is just a bit too big for our L1 data
cache. Worse, each pair of points from the input data could
be any distance apart, so the accumulation array is accessed
randomly, with neither spatial nor temporal locality. Given
that the L1 cache is too small to hold the entire accumulation
array and the two input data blocks at the same time, data is
frequently evicted from the L1 cache and must subsequently
be reloaded—most likely from the L2 cache, which, at 512
Kbytes, is large enough to hold everything. Each L2 cache
access takes 20 clock cycles, which would be just about right
to explain the additional latencies we observe.

The array-merging and blocking techniques, which
are applicable to a variety of problems, improved our

code’s performance by approximately 40 percent. Coupled
with the improvements we made to the code in the first
installment of this series, we have reduced execution time
dramatically—by more than a factor of four. But we’re not
done yet! There are additional ways we can improve our
code that also use the general strategies of reducing in-
structions (both explicitly and implicitly, for address arith-
metic) and increasing locality (both spatial and temporal).
In the next installment, we will see how paying attention to
computer architecture for a particular algorithm can yield
even more dramatic performance improvements.

Table 1. Effects of array merging and blocking on execution time.

Execution time (seconds) Clock cycles per pair

Without array merging or blocking 4,422 133.6

With array merging only 2,917 88.1

With blocking only 4,086 123.5

With array merging and blocking 2,634 79.6

July/August 2008� 75

References
J.L. Hennessy and d.A. Patterson, Computer Architecture: A Quantitative
Approach, 3rd ed., Morgan Kaufmann, 2003.

A.R. Lebeck and d.A. Wood, “Cache Profiling and the SPEC Bench-
marks: A Case Study,” Computer, vol. 27, no. 10, 1994, pp. 15–26.

Cosmin Pancratov is a research assistant and undergraduate stu-

dent at the university of Richmond. His research interests include

condensed matter physics and computer science. Contact him at

 cosmin.pancratov@richmond.edu.

Jacob M. Kurzer is a research assistant and undergraduate student

at the university of Richmond. His research interests include algo-

1.

2.

rithms and performance optimization. Contact him at jacob.kurzer@

richmond.edu.

Kelly A. Shaw is an assistant professor of computer science at the

university of Richmond. Her research interests include the interac-

tion of hardware and software in chip multiprocessors. Shaw has a

Phd in computer science from Stanford university. Contact her at

kshaw@richmond.edu.

Matthew L. Trawick is an assistant professor of physics at the univer-

sity of Richmond. His research interests include the physics of block

copolymer materials and their applications in nanotechnology, as

well as atomic force microscopy. trawick has a Phd in physics from

the ohio State university. Contact him at mtrawick@richmond.edu.

Advertising Sales Representatives

Mid Atlantic
(product/recruitment)
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0164
Email: db.ieeemedia@ieee.org

New England (product)
Jody Estabrook
Phone: +1 978 244 0192
Fax: +1 978 244 0103v
Email: je.ieeemedia@ieee.org

New England (recruitment)
John Restchack
Phone: +1 212 419 7578
Fax: +1 212 419 7589
Email: j.restchack@ieee.org

Connecticut (product)
Stan Greenfield
Phone: +1 203 938 2418
Fax: +1 203 938 3211
Email: greenco@
optonline.net

Midwest (product)
Dave Jones
Phone: +1 708 442 5633
Fax: +1 708 442 7620
Email: dj.ieeemedia@ieee.org

Will Hamilton
Phone: +1 269 381 2156
Fax: +1 269 381 2556
Email: wh.ieeemedia@ieee.org

Joe DiNardo
Phone: +1 440 248 2456
Fax: +1 440 248 2594
Email: jd.ieeemedia@ieee.org

Southeast (recruitment)
Thomas M. Flynn
Phone: +1 770 645 2944
Fax: +1 770 993 4423
Email: flynntom@
mindspring.com

Southeast (product)
Bill Holland
Phone: +1 770 435 6549
Fax: +1 770 435 0243
Email: hollandwfh@yahoo.com

Midwest/Southwest (recruitment)
Darcy Giovingo
Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email: dg.ieeemedia@ieee.org

Southwest (product)
Steve Loerch
Phone: +1 847 498 4520
Fax: +1 847 498 5911

Email: steve@didierandbroderick.com

Northwest (product)
Lori Kehoe
Phone: +1 650 458 3051
Fax: +1 650 458 3052
Email: l.kehoe@ieee.org

Southern CA (product)
Marshall Rubin
Phone: +1 818 888 2407
Fax: +1 818 888 4907
Email: mr.ieeemedia@ieee.org

Northwest/Southern CA
(recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Japan
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Europe (product)
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@impressmedia.com

Advertiser Index
July/August 2008

Advertiser� Page

Marian�to�fix� all

Advertising Personnel

Marion�Delaney
EEE�Media,�Advertising�Dir.
Phone: +1 415 863 4717 | Email:
md.ieeemedia@ieee.org
Marian�Anderson
Sr.�Advertising�Coordinator
Phone: +1 714 821 8380 | Fax: +1
714 821 4010 | Email: manderson@
computer.org
Sandy�Brown
Sr.�Business�Development�Mgr.
Phone: +1 714 821 8380 |
Fax: +1 714 821 4010 | Email:
sb.ieeemedia@ieee.org

Block A

…

x y cos6 sin6

Data:

Block B (Next Block B)

Figure 4. Increasing spatial locality using blocking. this technique lets us perform more computations for every new data
point that we read from the main memory.

