GETTING STARTED IN UNDERGRADUATE RESEARCH

Kelly A. Shaw

Associate Professor

Department of Math and Computer Science

University of Richmond

What is Research?

- Collaborative and evolutionary process
 - Standing on the shoulders of giants
- All results advance scientific field

Benefits of Doing Research

- It's fun!
- Develops skills
 - New programming languages
 - New tools
 - Data analysis
 - Experiment creation
 - Collaboration
- Conversation starter
 - Future employers
 - Grad school applications
- New relationships

Discovering Research Opportunities

- Look locally
 - Department presentations about research
 - Explore faculty member webpages
 - Talk to faculty members

- NSF Research Experiences for Undergraduates
- CRA-W/CDC Distributed Research Experiences for Undergraduates
- Research universities
 - MIT
 - Princeton
 - Caltech
- Government agencies and national labs

Choosing a Project

- Does the topic interest you?
 - Read papers or presentations
 - Come up with a question or two
 - Talk to researcher
- Do you like the research advisor's style?
 - Talk to other student researchers
 - Ask about interaction styles
 - Ask about expectation
- What time can you commit?
 - One unit course
 - 10 hour a week
 - Summer fellowship

Learning About the Problem

- Ask for a couple of related papers or textbooks
- Find additional papers
 - Look at papers cited in this paper
 - Find papers that cite this paper
 - Look at other work by paper's authors

Reading Technical Papers

- Read introduction to see if interesting
- Decide if paper is worth reading
- Skim for unknown words and look up
- Read paper
- Ask yourself
 - What problem is being solved?
 - Who cares and why?
 - What is the pivotal insight?
 - What is the proposed solution?
 - How effective is the solution?
 - What limitations are there?

Learning the Tools

- Determine what tools you'll need to use
 - Data collection
 - Data analysis
 - Data visualization
- Find online resources
 - Web pages / Wikis
 - Online examples
 - O'Reilly electronic books
 - Discussion groups
- Familiarize yourself with tool top-down
 - Map out overall design structure of modules
 - Understand role of each module

Designing Experiments

- What question am I trying to answer?
- What data do I need to collect to answer that question?
 - Global metrics vs. local metrics
- How do I collect that data?
 - What mechanism/tool will I use to collect data?
 - What inputs do I need to provide for each test?
 - How do I need to configure the mechanism for each test?

Analyzing Data

- Verify correctness of your tool
 - Create simple tests with known answer
- Verify reasonableness of results
 - Calculate best possible result
 - Calculate worst possible result
 - Is your result in that range?
- Visualize results to detect patterns
 - Try different graph types
 - Use different axes

Best Wishes!

