Handout 10
Lab].0 CSCl 136: Spring, 2004
Due: 14 May (but see below) 11 May

= A day out shopping

1 Introduction

You are to write a program that will simulate the day of several shoppers shopping in a multi-story store.
This will be a discrete simulation. Discrete simulations are based on having an event queue, where the events
on the queue are ordered by the time that they are supposed to happen.

The kinds of events that will happen in this simulation include:

1. An elevator will arrive at a floor to discharge and load passengers.
2. An elevator will leave a floor to go to the next floor

3. A shopper will finish shopping on a floor and line up to wait for an elevator to go to the next floor
they wish to visit.

In a discrete simulation, time advances only when an event is taken from the event queue. For example, it
may be time 100 now, but if the next event on the event queue is supposed to take place at time 115 then
time should immediately change to that when the event is removed from the queue.

Your job in this program is to print out a description of what is happening during the day. I will provide
most of the classes that you will need for this program, leaving you to provide three of those with the most
interesting data structures.

Remember that you may work in pairs on this project. If you work with someone else please put both
names on your classes and only turn in one copy of the program.

2 The Classes

Simulation. (Provided). This class sets up the simulation by creating a building and the shoppers and
then telling the building to start the simulation. It only has a main method. It should be executed to run
the program.

Building. (Provided). This class represents a building with elevators. The building is European, so the
bottom floor is floor 0 :-) The constructor takes the following parameters:

e number of floors in the building

the number of elevators.

the event queue,

the capacity of elevators,
e the amount of time elevators should wait on each floor before proceeding to the next
e the amount of time elevators take to go from floor to floor

The methods include:

// add new shopper to store on given floor.
public void addShopper (Person waiter, int floor)

// Record that there is now one fewer shopper
public void stopShopping()

// Add waiter to appropriate queue for floor
public void addWaiting(Person waiter, int floor)

// return list of waiters on floor wanting to go in direction given by up
public Queue getWaiters(int floor,boolean up)

// number of floors in building
public int number0fFloors()

// start simulation by posting arrival events for elevators.
public void startSimulation()

Event. (Provided). This class represents objects put on the event queue. They represent three different
kinds of events: elevator arrival events, elevator departure events, and person done shopping events. Methods
are available to return the object the event is happening to (elevator or person), the type of event, and
the floor number on which it happens. The actual objects stored on the event queue will be of type
ComparableAssociation, where the key will be the time of the event (held as an object of type Integer).
The value will be an event. The important public features are:

public class Event {
// Codes for kinds of events
public static final int ELEVATOR_ARRIVAL = 0;

public static final int ELEVATOR_DEPARTURE = 1;

public static final int STOP_SHOPPING = 2;

/%%

* Create event

* @param subject -- who or what it happens to

* Qparam eventType -- type of event

* QOparam floorNum -- floor number on which it happens
*/

public Event(EventSubject subject, int eventType, int floorNum)

// Return the type of event
public int getType()

// Return the subject event is happening to
public EventSubject getSubject()

// Return floor on which the event will happen
public int getFloor()

EventHandler. You will write this class that keeps track of all of the pending events. Here is an outline
of the constructor and methods:

public class EventHandler {

// Create event handler data structure

public EventHandler()

// Add arrival event for elevator to arrive at floor floorNum at arrivalTime
public void addElevatorArrivalEvent(Elevator elevator, int floorNum,
int arrivalTime)

// Add departure event for elevator to leave floor floorNum at departTime
public void addElevatorDepartureEvent(Elevator elevator, int floorNum,
int departTime)

// Add stop shopping event for shopper on floor floorNum at doneTime
public void addDoneShoppingEvent(Person shopper, int floorNum, int doneTime)

// return next event from event queue
public ComparableAssociation getNextEvent ()

// Are there no more events left?
public boolean isEmpty()
T

The events need to come off in the order that they are to happen. As you can see from the signature of the
getNextEvent method, the elements stored in the event queue are ComparableAssociations, where the key
is the time (of type Integer, and the value is of type Event. (This should help explain why events don’t
have a time field.)

EventSubject. (Provided). This is an interface for objects that are subjects of events (e.g., elevators and
people). It provides the method:

// Do whatever is necessary to handle this event in simulation
// Event should happen at timeNow on floor, and type of event is eventType
void handleEvent(int floor, int timeNow, int eventType);

When an event is taken out of the event queue it should be unpacked and then the handleEvent message
should be sent to the subject of the event, which should handle it properly.

Person. You will write this class (which implements EventSubject). It is to represent a person shopping
in the store. These are some of the public features that you will need to represent a person.

/** Create person

O@param name -- name of Person

O@param itinerary -- list of floors where need to shop

O@param busyTimeSecs -- how long it takes to shop on each floor
O@param startingFloor -- where enter building

@param building -- where they are shopping

@param events —- event queue

Constructor also makes sure that itinerary includes only legal floors

* ¥ ¥ X X X %

*/
public Person(String name, int[] itinerary,int busyTimeSecs,
int startingFloor, Building building, EventHandler events)

// return name of person
public String toString()

// Where should they go next in their itinerary
public int getNextFloor(){

/** Do whatever is necessary to handle this event in simulation

* Event should happen at timeNow on floor, and type of event is eventType.
* In this case it is an event indicating that the shopper is done

* shopping for now. If they have more to do, put them in line for

* the elevator.

*/

public void handleEvent(int floor, int timeNow, int eventType)

Notice that when a person stops shopping they should go stand in line to wait for an elevator to go to the
next floor on their itinerary. (Of course it does this by generating an event for that when it starts shopping.)
It will be simplest if you imagine that the building has two lines on each floor for those waiting for
elevators. One is for those people who wish to go up, and the other is for those who wish to go down.
Remember that each elevator has a capacity, so people should go off the line in the same order they came.
You might want to keep extra information with the person, so that you can tell what the person is
actually doing at any time (e.g., shopping, waiting for an elevator, or riding in an elevator).

Elevator. You will be writing the Elevator class, which also implements EventSubject. The Elevator
class is the key to the entire simulation. The constructor gives the starting floor. We will assume that it
always starts out going up, unless it is on the top floor. We will make it as simple as possible. The elevators
will visit every floor, going up to the top floor, then going back down to the bottom floor, continuing as long
as the simulation continues. That is, it does not respond to button presses calling an elevator or button
presses by passengers requesting floors (but see extra credit!).

At each floor, the elevator stops to unload and pick up passengers. After serviceTimeSecs seconds, the
elevator leaves for the next floor. It takes travelTimeSecs seconds to get there. Elevators are involved in
both elevator and arrival and departure events. An arrival event should be generated when it departs, while
a departure event should be generated when it arrives.

public class Elevator implements EventSubject {

// Create elevator with given name and startingFloor in office. Capacity
// is number of passengers it can hold at a time. Events is event queue
// used to post and retrieve events. ServiceTimeSecs is number of seconds
// should stay at each floor, while travelTimeSecs is time between floors.
public Elevator(String name, int startingFloor,

int capacity, Building office, EventHandler events,

int serviceTimeSecs, int travelTimeSecs)

// returns name of elevator
public String toString()

// Do whatever is necessary to handle this event in simulation

// Event should happen at timeNow on floor, and type of event is eventType

// In this case, event is either arrival of elevator at new floor - so

// passengers must be let off or put on (until elevator at capacity)

// Alternatively is elevator departure event, so elevator moves to next floor.
public void handleEvent(int floor, int timeNow, int eventType)

3 Hints for writing the program

First keep in mind that there is no concurrency in this program. No classes will extend Thread. The event
queue keeps track of what is supposed to happen when. The startSimulation method (or a private method
that it calls) in the Building class will successively pull events off of the queue and dispatch them to the
subjects that are part of the events.

I would suggest that you begin by just getting the elevators moving and ignoring the people. (After all
you want to make sure the elevators are well tested before you let in customers.) You will need to print out
very complete information that tells you what is happening when.

Only when that is running perfectly should you start adding people to the simulation. The key to getting
this to run properly is using the right data structures. See the hints in the description of the Elevator class.
Notice that there is a two dimensional array of Queues in the Building class. The first subscript is the floor,
while the second indicates whether the queue is for people waiting to go up or down.

4 QOutput

Your program should print out everything that happens in the simulation. I want to see output when a
customer goes shopping, when they finish and get in line, when they get on the elevator, and when they get
off the elevator. I want to see output that tells when an elevator arrives at a floor, what people get off, what
people get on, and when it leaves a floor (and where it is going next).

The following is some rather crude output that should give you an idea what I have in mind:

lift O arrived at floor 0 at time O.
Passengers getting off 1lift 0 at floor O at time O
Passengers loading on 1lift O on floor O at time O
bill going to floor 1
bob going to floor 2
lift 1 arrived at floor 1 at time O.
Passengers getting off 1ift 1 at floor 1 at time O
Passengers loading on lift 1 on floor 1 at time O
lift O departing floor O at time 30, going to floor 1
lift 1 departing floor 1 at time 30, going to floor 2
lift O arrived at floor 1 at time 90.
Passengers getting off 1ift O at floor 1 at time 90
bill
Passengers loading on 1lift O on floor 1 at time 90
lift 1 arrived at floor 2 at time 90.
Passengers getting off 1lift 1 at floor 2 at time 90
Passengers loading on 1lift 1 on floor 2 at time 90
lift O departing floor 1 at time 120, going to floor 2
lift 1 departing floor 2 at time 120, going to floor 1
lift O arrived at floor 2 at time 180.
Passengers getting off 1lift 0 at floor 2 at time 180
bob
Passengers loading on 1ift O on floor 2 at time 180
lift 1 arrived at floor 1 at time 180.
Passengers getting off 1ift 1 at floor 1 at time 180
Passengers loading on 1lift 1 on floor 1 at time 180
1lift O departing floor 2 at time 210, going to floor 1
1lift 1 departing floor 1 at time 210, going to floor O
lift 0 arrived at floor 1 at time 270.
Passengers getting off 1lift 0 at floor 1 at time 270
Passengers loading on 1lift O on floor 1 at time 270
lift 1 arrived at floor 0 at time 270.
Passengers getting off 1lift 1 at floor O at time 270
Passengers loading on 1lift 1 on floor O at time 270
anne going to floor 1
debbie going to floor 2
1lift O departing floor 1 at time 300, going to floor O
1lift 1 departing floor O at time 300, going to floor 1

bill is done shopping on floor 1 and is in line for the elevator at time 330
lift 1 arrived at floor 1 at time 360.
Passengers getting off 1ift 1 at floor 1 at time 360

anne

I’'m sure that you can figure out a way to make it even more readable. You can either print this out with
System.out.println or put it in a window with a scrollable JTextArea.

5 Extra Credit:

A wide variety of extra credit is possible. Here are some options:

1. Make the elevator scheduler more interesting. The elevator should only move if there is a reason to.
Otherwise it should wait at a fixed floor for riders. When a button is pushed by a waiting shopper,
one of the elevators should pick up the customer.

Deciding on a reasonable logic for this is harder than you might think. I’ve heard of reports of people
riding elevators all day to try to figure out the algorithm that is actually used. Of course this is only
an issue when there are multiple elevators.

Of course, elevators should always place the highest priority on requests by riders, but should always
stop if they are going past a floor that has people requesting an elevator going that direction.

2. Print out the time in a more reasonable way. Le., rather than writing 270 seconds, write 4:30.

3. Gather statistics on the average wait time for shoppers who are waiting for an elevator. (Of course
this is much more interesting when you also have a smart way of scheduling elevators.)

4. Let shoppers shop for a random amount of time. Have the length of time that an elevator is on a floor
be dependent on the number of people getting on and off the elevator on that floor.

If you do decide to add extra credit features that would change the results of the simulation (e.g., add
features 1 or 4), please turn in two versions of your program. One that runs the simulations as in the original
assignments, and then a second that adds the extra features. This way we can more easily see that your
program generates correct output. (Le., be nice to Ashok!)

6 Turning it in

Please turn in your program on Cortland as usual. It is due Friday at 4 p.m., but you can have a no penalty
extension to Sunday if you need it (though I won’t be around TCL over the weekend to help and no TA’s
will be on duty).

