
Lab 1
Due 15 February

Handout 2
CSCI 136: Spring, 2004

11 February

Java, Unix, and Growing a Java Garden

1 Getting Started

During lab today, you will learn how to use the Java environment on the CS Lab Mac systems.

1. Go through the Unix tutorial handout. This will teach you how to log in and out of the machines, use
basic Unix commands, and edit files with xemacs.

2. Identify the function of and experiment with these Unix Commands:

ls cd cp mv rm mkdir pwd
man chmod cat more grep head tail

Identify the function of and experiment with these Emacs Commands:

C-x C-s C-x C-c C-x C-f C-x C-w C-g C-a C-e
C-d C-_ C-v M-v C-s C-r M-%

Learn these commands – you will use them often. Hints can be found in the Unix and Emacs web
pages on the course website. (Recall that the “meta” key on Macs is the “fan” key to the left of the
space bar.)

3. Make a directory in your Unix account for CS 136 work (perhaps “136” or “cs136” might be reason-
able). Make a subdirectory lab1 in this new directory for files related to this lab.

4. To set up your account to run the correct version of Java, you should enter the command

source /private/Network/Servers/cortland.cs.williams.edu/Volumes/Courses/cs136/bin/136

each time you log in. Rather than type this command every time, you can make it happen automatically
by going into xemacs and adding it to the file .local bashrc in your home directory.

5. Create a subfolder inside lab1 called OddMyName where you should replace MyName with your last
name. In that folder, write, compile, and run a Java program under Unix that prints the first ten
odd numbers. Call it Odd.java. Turn in your Java source code and compiled code (contained in the
generated file, Odd.class by dragging the folder containing these to the folder CS136DropOff. This
will be how you turn in your work for this course.

2 Lab Program

You are going to write a series of classes that will emulate the growth of a garden. Recall that each class will
go in a separate file and that the file name must be the same as the class name, except that “.java” must be
tacked onto the end of the file. If you mess this up you will get error messages about not being able to find
your class so don’t mess it up!

1

2.1 Getting started

I will help you to get started by providing you with the code for an interface:

/**
* @author kim
*
* Interface for items to be planted in a garden
*/
public interface PlantInterface {

// modify the size of the plant to reflect growing "days" days.
void grow(int days);

// modify the rate of growth of the plant to reflect "inches" of rain.
void rain(double inches);

// modify the size of the plant to reflect the effects of a frost.
void frost();

// display the plant with its current location and size.
void draw();

}

Use xemacs to create a file PlantInterface.java in a new subdirectory of lab1 called GardenMyName .
To make sure you haven’t made any mistakes in typing it, execute:

javac PlantInterface.java

If you get any error messages from the Java compiler, go back and fix the errors and recompile until there
are no more errors.

2.2 Writing the Flower class

Now it is time for you to write a class Flower that implements PlantInterface. The constructor should
take parameters that indicate the x and y coordinates (as integers) of the base of the flower. It should set
the initial height of the flower to be 30 and its width to be 8 (use constants that are doubles!). The initial
growth rate should be half of its height. For each day that the plant grows (via the grow method), the height
should increase by the growth rate (i.e., two days growth should result in twice as much change as one day).
The width of the flower does not change as it grows. Rain has the effect of increasing the growth rate by
10*inches percent. A frost kills the plant, resulting in setting the growth rate, height, and width to 0.

Because we are not including any graphics, the draw method should simply result in writing (using
System.out.println) a message saying that it is a flower and what its location and size is. To better
prepare for later parts of this lab, first write a methodpublic String toString(){...} that composes the
string to be printed and then the body of the draw method will just be System.out.println(toString());.

Test your program by adding the following method as the last method in the class:

public static void main(String[] args) {
Flower myFlower = new Flower(20,40);
myFlower.draw();
System.out.println("growing 2 days");
myFlower.grow(2);
myFlower.draw();
System.out.println("raining and growing 2 days");
myFlower.rain(5);
myFlower.grow(2);
myFlower.draw();

2

System.out.println("growing 1 day");
myFlower.grow(1);
myFlower.draw();
System.out.println("Frost happens");
myFlower.frost();
myFlower.draw();
System.out.println();

}

Compile it, and run the program by typing java Flower.
Adding a method like this at the end of a class is a common trick of Java programmers to incrementally

test classes before assembling them into a larger program. Make sure that the results you get are correct.
Be sure to document your class with appropriate comments, including a general description at the top of

the file and a description of what each method and constructor does. Comments for most methods can be
copied from the interface comments. Be sure to use descriptive variable names and provide a comment on all
variables and constants to make clear what they stand for. The code in your constructor and method bodies
typically will not need comments unless there is something tricky going on that needs extra explanation. Do
not add comments that simply repeats what is obvious in the code.

2.3 Preparing a garden

Now add a new class FlowerGarden that represents a collection of plants. The garden should have the
capacity to hold 100 flowers (in an array of objects of type PlantInterface). For reasons that will become
apparent only later, declare FlowerGarden to implement PlantInterface. When the grow message is sent
to a FlowerGarden, the garden should send a grow message (with the same parameter) to all of the flowers
in the garden. Similarly for rain, frost, and draw. Also add a method plantNewPlants that can be called
to add several new plants to the garden. The constructor for the garden should take as parameters the
coordinates of the upper left hand corner of the garden, the width and height of the garden, and the number
of flowers to be initially planted in the garden. The constructor (perhaps via a call to plantNewPlants)
should create the appropriate number of flowers whose x and y coordinates are within the confines of the
garden. Use a random number generator from class Random (look it up and the nextInt method in the
on-line Sun Java documentation) to generate random starting locations for the flowers. (Don’t worry if they
overlap each other!).

Test the class by adding the following method to your class:

public static void main(String[] args) {
FlowerGarden backyard = new FlowerGarden(0,0,400, 600, 6);
backyard.draw();
FlowerGarden sideyard = new FlowerGarden(400,0,400, 600, 6);
System.out.println("growing");
sideyard.grow(1);
backyard.grow(1);
backyard.draw();
sideyard.draw();
backyard.rain(5);
System.out.println("growing");
backyard.grow(1);
backyard.draw();
System.out.println("Frost happens");
backyard.frost();
backyard.draw();
System.out.println("Adding new flowers to backyard");
backyard.plantNewPlants(12);
backyard.draw();

}

3

Compile and run the program to make sure your program is working properly. [As a safeguard, from now
on compile all of the “.java” files rather than just the most recently changed one. You can do this by typing
javac *.java. This keeps you from using inconsistent versions of classes if you recompile one that has been
used in another class.]

2.4 Adding bushes to the garden

Design a new class Bush that implements PlantInterface. Rather than just growing straight up, bushes
also get wider as they grow. As a result the methods from Flower will have to be modified slightly to take
into account the changes in width. Also the toString method will have to be modified to print out that the
object is a bush rather than a flower. You can choose the initial width, height, and growth rate. Compile
and test this to make sure it works.

Now modify (temporarily) your FlowerGarden class to grow bushes instead of flowers. In my version of
this class, I only needed to change the call of the constructor in the plantNewPlants method. Hopefully
you will also manage with a small change like this one. Notice that because your array holds items of type
PlantInterface, it is quite happy to hold bushes as well as flowers. Test this to make sure the garden of
bushes grows properly, and then change the FlowerGarden class back.

2.5 Using inheritance to factor out common code

You will have noticed that the Flower and Bush classes share most of their code. It is considered to be bad
style to have lots of shared code between classes. Instead it is preferable to move the shared code into a
superclass.

Design a new abstract class, Plant, which will implement PlantInterface. It’s header should look like

public abstract class Plant implements PlantInterface {

Copy all of the instance variables and methods from Flower to Plant except for the toString method
and the constructor. Also do not copy the static main method. The constructor for Plant should take
four parameters: the width, height, and x and y coordinates, each of which should be saved in an instance
variable. While the instance variable for growth rate will be declared in the Plant class, it will not be
initialized. It is important to make sure that all of your instance variables are declared to be protected and
not private.

Also add the method declaration:

public abstract String toString();

This indicates that some of the other methods in the class may depend on a method toString, but it is not
supplied. It is also the reason that the class must be declared to be abstract.

While the abstract class Plant has a constructor, you may not invoke it because the class is abstract
(because of the missing implementation of toString). Instead the constructor is defined solely so that it
can be extended by other classes.

Now go back to the class Flower and change the header so that it extends Plant. You no longer need to
say that it implements PlantInterface, as Java can deduce that from the fact that it extends a class that
implements the interface. Now erase all of the methods except for toString and main. The other methods
will be inherited from Plant. Also erase all of the instance variables. [Very bad things happen if you repeat
the declaration of instance variables from a superclass into a subclass – the compiler treats them as distinct
from those declared in the superclass.]

The constructor of Flower can now be greatly simplified, as you need only invoke the constructor of the
superclass, using the appropriate parameters. The constructor of Flower takes two parameters, the x and y
coordinates of the flower, as all flowers have the same initial width and height (which hopefully you declared
as constants when you originally wrote the class). You can now replace almost the entire constructor body
by a call of the superclass constructor, written as:

super(...,...,x,y);

4

where the “. . . ” are replaced by the constants representing the inital width and height of the flower. The
call to super must be the first statement of the Flower constructor. The only other thing that must be done
is to initialize the growth rate to half of the initial height.

Notice that the constructor and toString method refer to instance variables declared in Plant. This
is possible because they are declared to be protected rather than private. Protected variables are acces-
sible from within subclasses, while private variables are not. Again, make sure you have not repeated the
declarations in the subclass.

Now, if you have done all of this correctly, you should be able to compile all of the classes and execute
the Flower class, and get the exact same results as you did before. If you have errors, track them down –
especially making sure that you got rid of all of the instance variables from Flower.

This was a lot of extra work, but if you had done this originally, it would have been much easier to
write the Bush class and any other classes with similar behavior. Now let’s change the Bush class so that
it also inherits from Plant. Start by changing the header to declare it extends Plant. Again, all of the
necessary instance variables were declared in Plant, so should not be repeated in Bush. The constructor will
be modified so that it is similar to that in the revised Flower class.

The Bush class will need two methods, toString and grow. The toString method will remain as it was
(indicating that it is a “bush”), while the grow method is different from that of Plant, in that now the width
must also increase as it grows. Thus the grow method needs to perform the same actions as the method
in Plant, but then also do more. If we add a grow method to the Bush class, then it will replace the grow
method inherited from Plant. However, we would like to perform the actions of the grow method from the
superclass, as well as the extra operations. We can execute the code in the superclass, by including the line:

super.grow(days);

inside the method body if days is the name of the formal parameter of the method. Then just add the extra
code to update width after that line.

2.6 Going further . . .

Of course now we’d like to create gardens that use bushes rather than just flowers. I’d like you to create a
class BushGarden that is similar to FlowerGarden, but which grows bushes. You can probably see that this
could be easily done by just copying the code in FlowerGarden and changing the line or two that involves
calling the Flower constructor. However, now that you know about how to create abstract superclasses so
that code can be shared, I’d like you to try that.

Create a new abstract class Garden that implements PlantInterface and contains all of the code from
FlowerGarden that can also be reused in BushGarden. (Start by just copying and pasteing the code from
FlowerGarden.)

Here is a hint to get the greatest mileage out of constructing this class. Add a new abstract method

public abstract PlantInterface newPlant(int x, int y);

and replace all occurrences of “new Flower(...,...)” by a call of the newPlant method. Then in
FlowerGarden you need only have a constructor that calls the superclasses constructor (recall super(...))
and write the method newPlant so that it returns the result of creating a new Flower. (All other methods
and instance variables will appear only in the Garden class.) You can then write BushGarden similarly.

That is all you need to turn in for this program. However, consider what you would need to do to make
the following additions to the program.

1. Suppose you wished to create a garden in which half the plants were flowers and half were bushes. How
could you accomplish this by defining a subclass of Garden? (Hint: You need only modify newPlant).

2. Suppose you wished to create a class GridGarden which is composed of numGards gardens in a row –
where the smaller gardens alternate between being flower gardens and bush gardens. Interestingly the
hardest part of defining this new class as a subclass of Garden is that Java requires the first statement
in the constructor to be a call to the superclass constructor. To make this work, you might need to
move constructor code down from Garden to FlowerGarden and BushGarden or alternatively insert
a new abstract class called RandomGarden between Garden on the one hand and FlowerGarden and

5

BushGarden on the other. The constructor from Garden could be moved down to RandomGarden.
GridGarden could extend Garden, while FlowerGarden and BushGarden could extend RandomGarden.
(Notice that this exercise is easier because the gardens each implement PlantInterface, and hence
can be stored in the array.)

If you would like to add these extensions, they would be worth a modest amount of extra credit. However,
I would be happy just to have you think about how these extensions might be accomplished.

One idea that I hope you have seen in doing this lab is that you should not be afraid to modify (refactor)
a program as you proceed in its development. While the classes you defined for this lab were pretty trivial, in
big programs these refactorings can result in programs that are much easier to maintain because you aren’t
keeping multiple copies of blocks of code. A change in one place will impact all the sites where it is used.

When you are finished, be sure that all of the classes are well documented (including putting your name
in the comments in each) and turn in the entire folder in the same way you did before. As in all labs, you
will be graded on design, documentation, style, and correctness. This program is due by 11:59pm on
Sunday, 15 February.

6

