Experiments in Sensing, Networking, and STEM Education at Ohio State

Anish Arora, Rajiv Ramnath, Wenjie Zeng, Mike McGrath

July 8, 2012
The short story

- Hands-on projects involving networked sensor nodes in our introductory courses in networking and distributed computing since ~2003
- Evolved from graduate to undergraduate (2006) to high school curricula (2010)
The short story

- Emphasis on experiments with real hardware
 - low power sensor arrays (motes, smartphones)
 - live setting (application-oriented testbeds and projects)

Dreese Sensor Array
- Occupancy
- Elevator
- Temperature
- Anchor Nodes
The short story

- Leveraging KanseiGenie and derivative infrastructure, and continued plan for GENI “cloud” resources

KanseiGenie sites:
Kansei (OH), NetEye (MI), OKGenes (OK), TsingHua (CN)

Web based portal for experiment control and data in-/ex-filtration

BAK Software
- Minimal setup time
 - 2010: Days
 - 2011: Hours
 - 2012: Minutes
- Lightweight
 - 2010: 4 DVDs
 - 2012: 1 DVD
 - 2013: 100sMB
- Simplified user→testbed interaction
 - 2010: Website
 - 2012: Laptop
 - 2013: Mobile
- Configurable and robust
 - 2010: Hand-configuration
 - 2011: Central ini
 - 2013: Database
- Relies on the GENI cloud
Teaching modus operandi

- Each offering has ~15 custom projects
 - 3 students per project (2, if team includes a grad student)
 - each project has assigned grad expert

- Two hour tutorial on concepts, development environment, and hello-world exercises
 - TinyOS programming (in NesC), Android programming
 - project resources and tutorial compilations shared online

- Pace through regular deliverables
 - demo env. setup (hardware & emulator), design report, ...

- Per group exam
 - demo and written report
 - evaluate design and conceptual understanding
Operational details (Sensor Network projects)

- TinyOS (historically, now shifting to .NET MF)
- Pre-packaged VM, includes simulator, setup
 - VMSphere walled playground available
- WSN motes borrowed when needed
 - <100 used per quarter
- Provide server access for projects

- Kansei arrays accessed via Researcher Portal web (mostly by graduate students for networking research projects)
 - increasingly these are about the physical layer
Sample projects: ThermoNet

- Fine-grain assessment of building comfort-efficiency
 - on average 47% comfortable area
 - ill-conditioned rooms, alarms

- Localize temperature sensors

- Spoof sensors to “fool” ThermoNet
 - fake alarm
Sample network security project

- Secured password backup manager for Android
 - Centralized management of passwords
 - Backup in the cloud via Dropbox API
 - 3 weeks of development delivers working Android app
 - but really 16 hours of effort
Science experiments for high schoolers
Operational details (STEM experiments @ school)

- Schools provide computer to run KanseiGenie VM image
 - each student gets a sensor node
 - students use web browser to access local VM portal

- Image pre-loaded with apps; more apps available online
 - kit is stand-alone until user is ready for cloud resources
 - kit array can be exposed to cloud as a programmable fabric

- OSU machines
 - to act as “Data Hub”, “App Store”, “STEM Social Network”
 - run ORCA actors to shepherd kit arrays as resources in federated sensor arrays
Lessons Learned

- Undergraduates respond well to playing with device arrays
- KanseiLite / kit infrastructure lowers barrier to experimentation
- Helps to “can” the dev. environment, pace students through initial learning curve with programming system
 - most disasters at this stage
 - sample programs (app notes) helped
- Extra credit and open-ended projects work for motivated students