GENI for Undergraduates

Jeannie Albrecht
Associate Professor of Computer Science
Williams College

Introduction

• Undergraduates enrolled in a Distributed Systems course at Williams use GENI to gain hands-on experience with computer networks and “big” systems
• Goal: Teach students how to design, implement, and evaluate distributed systems
• Without computing platforms like GENI, students at small colleges lack the computing infrastructure necessary to deploy and evaluate distributed systems

Williams College

• About Williams
 • Liberal arts college in rural western Massachusetts
 • 2200 undergraduate students (no grad students)
 • Student:faculty ratio is 7:1
• CS@Williams
 • Avg (thru 2013): 15 majors per year (~3 women)
 • This year: 38 majors in senior class (12 women)
 • Many students double major
 • ~1/3 of our students go on to top tier graduate programs
 • 8 CS faculty members (soon to be 9...)
• Class sizes range from 35-40 in intro courses to 10-20 in upper-level electives (though this is increasing!)

Course Overview

• Goals
 • Introduce students to key design principles
 • Teach students skills necessary to build and evaluate distributed systems
 • Expose students to cutting-edge real-world technologies
 • Improve technical writing skills
• Components
 • Programming projects (x4)
 • Midterm exam
 • Research paper evaluations (x8-10)

Student Profile

• Prerequisites
 • Data Structures
 • Computer Organization
• Non-prerequisites
 • Networks
 • Operating Systems
• First “project” course for many students
• Sample class breakdown
 • S08: 14 students: 2 sophomores, 4 juniors, 8 seniors
 • S12: 15 students: 1 sophomore, 6 juniors, 9 seniors
 • S14: 34 students: 5 sophomores: 14 juniors, 15 seniors
Project Overview

- Projects are 45% of overall grade
- Students work alone or in a small group (encouraged)
- Projects designed to emphasize techniques and technology from lecture topics and reading assignments
- Projects include a technical writing component
- Explore four different architectural models: client-server, multi-tier client-server, cluster computing, wide-area computing

Project 1: Web Server

- Assignment: Build a web server (in C)
- Support GET requests in HTTP1.0 and HTTP1.1
- Return valid response codes
- Time allowed: ~2.5 weeks
- Goals
 - Explore simple client-server distributed computing paradigm
 - Gain experience with network/socket programming
 - Evaluate performance of HTTP1.0 and HTTP1.1 under varying conditions—hard to do using only local resources!
- Potential Role of GENI
 - Create topologies (specs) with varying network conditions
 - Much like Hello GENI Example!

Project 2: Online Bookstore

- Assignment: Build a multi-tier online bookstore with “proper” synchronization
 - Use Java/Python??? and XML-RPC
 - Timeline: ~2 weeks
- Goals
 - Explore multi-tier distributed computing paradigm
 - Gain experience with RPCs
 - Evaluate performance under varying levels of (artificial) load
- Potential Role of GENI
 - Provide varying network conditions
 - (Same as webserver)

Project 3: Contextual Advertising

- Assignment: Given an advertising context, predict which ad is most likely to be clicked (using Hadoop)
- Compute click-through rate for ad id and page URL
- Timeline: ~3 weeks
- Setup
 - Created small clusters on Amazon EC2 platform
 - Dataset also comes from Amazon
 - Students maintained/configured their own cluster
- Goals
 - Explore “cutting-edge” cluster computing paradigm
 - Gain experience with basic system administration (without getting overly frustrated)

Project 4: Final Project

- Assignment: Open-ended final project
- “Default” project: Build a P2P file-sharing system
 - Run system on GENI
- Setup
 - Created each group their own GENI slice
 - Students used Gush for app management
- Goals
 - Allow students freedom to innovate
 - Experiment with wide-area deployment
 - Student results
 - Up to 400 GENI resources used

Gush User Interfaces

- Command-line interface used to interact with applications
- Nebula (GUI) allows users to describe, run, & visualize applications
- XML-RPC interface for managing applications programmatically
Student Feedback

- “[The final project] was one of the hardest and most rewarding projects I've done at Williams.”
- “I really felt like this was one of the most real-life applicable CSCI courses I took at Williams.”
- “I loved the papers! This was the first class that required critical responses to papers like that and I was surprised by how much I enjoyed it.”
- “Evaluating the papers, while kind of a pain sometimes, was actually quite valuable in retrospect; I learned a lot about distributed systems that way, and I'm glad we did them.”

Instructor Feedback

- Students really love Projects 1 and 4 (several students turned Project 4 into senior theses)
- Some students appreciate open-endedness of Project 4; some struggle with it (defining “default” project helps!)
- I spend (at least) 5-7 hrs per wk in lab helping students
- Students work an avg of 10-12 hours per week
- Students miss the point of evaluation in early projects when only using local resources
- GENI helps!
- Perhaps introduce GENI experimenter tools (Gush, Flack, omni, etc) earlier in semester
- Good writers != good technical writers

Conclusions

- We should teach undergraduates how to design, implement, and evaluate real distributed systems
- Shared computing platforms (like GENI and EC2) provide students with the opportunity to gain hands-on experience with large-scale, wide-area distributed computing environments
 - Use shared platforms as learning laboratories
 - Bring tech-richness of big universities to small colleges
- Frameworks and tools (Hadoop, Gush, Flack, jFed, etc) lower entry barrier for dist systems innovation
 - With a little guidance, undergrads are capable of doing great work!

Thanks!

- More info:
 - jeannie@cs.williams.edu