
Filters (Bloom & Quotient) 

CSCI 256



Announcements/Logistics

• Last day of classes!!!! 
• Review session: Monday @ 7pm, room TBA 
• TA office hours: Tuesday @ around 3:30pm 

(Johnathan after Ward prize presentations) 
• Office hours: Wednesday 10:30-noon, 1:30-2:30pm 
• Final Exam: Thursday @ 9:30 
• Any questions about the exam?



Today’s Outline: Filters

• Filter Operations 
• Filter Motivation 
• Filter Designs 

• Bloom Filter 
• Parameters 
• Example 
• Limitations 

• Quotient Filter 
• Quotienting idea 
• Data structure 
• Example



Filter Operations

• Filters approximately answer questions about set 
membership. Therefore, a filter must support: 
• Insertions: insert(key) 
• Queries: lookup(key) 

• Filters may also support other operations: 
• Deletion: remove(key) 

• Union: merge(filtera, filterb)



Filter Motivation

• Sometimes, we’re asked to perform an operation on a piece 
of data that doesn’t actually exist 
• Consider a library. If we know the call number of a book we 

want, we can: (1) walk to the correct floor, (2) find the shelf with 
the correct range, and (3) scan for the book on the shelf. 
• If the book was checked out, all of that work was wasted! 

• These steps are surprisingly similar to the process of looking for 
an item in a data structure so large that it exceeds RAM 

• What does this have to do with filters? 
• Filters compactly represent a set so we can check for the 

existence of an item. If the filter can confirm that the item does 
not exist, then we don’t need to do the expensive search!



Filters: the BIG idea

• Filters are not exact. 

• By embracing approximation, filters can be memory efficient 
data structures 
• Some false positives are allowed 
• But false negatives are never allowed 

• Many applications are OK with this behavior 
• Typically filters are used in applications where a wrong answer just 

wastes work, but does not harm correctness 
• Recall the library example from before: 

• If we confirm the book doesn’t exist, we don’t search (correct) 
• If we mistakenly say the book exists, all we do is waste the time that we would 

have needed in the absence of the filter (correct, but slow)



Filter Case Study: Bloom



Bloom Filters

Goal: approximately represent a set of n elements 
using a bit array 
• Queries return one of two answers: 

• Item is definitely NOT in the set 

• Item is Possibly in the set 

Parameters: m, k
• m: Number of bits in the array (i.e., buckets)

• k: Set of k hash functions { h1, h2, …, hk }, each with range 
{0…m-1}



Concrete Example: k=3, m=10

h1 (    )

h2 (    )

h3 (    )

0 0 0 0 0 0 0 0 0 0M =

INSERT(     )



Concrete Example: k=3, m=10

h1 (    )

h2 (    )

h3 (    )

0 1 0 0 1 0 0 0 0 1M =

INSERT(     )

Set: 



Concrete Example: k=3, m=10

h1 (    )

h2 (    )

h3 (    )

0 1 0 0 1 0 0 0 0 1M =

INSERT(     )

Set: 



Concrete Example: k=3, m=10

h1 (    )

h2 (    )

h3 (    )

0 1 0 1 1 0 0 1 0 1M =

INSERT(     )

Set: 

Note: bit was 
already set



Concrete Example: k=3, m=10

h1 (    )

h2 (    )

h3 (    )

0 1 0 1 1 0 0 1 0 1M =

LOOKUP(     )

Set: 

All k bits are 1: 
return  
“possibly in set”



Concrete Example: k=3, m=10

h1 (    )

h2 (    )

h3 (    )

0 1 0 1 1 0 0 1 0 1M =

LOOKUP(     )

Set: 

Not all k bits are 1: 
return  
“definitely NOT in set”



Concrete Example: k=3, m=10

h1 (    )

h2 (    )

h3 (    )

0 1 0 1 1 0 0 1 0 1M =

LOOKUP(     )

Set: 

All k bits are 1: 
return  
“possibly in set”

False Positive!



Tuning False Positives

• What happens if we increase m? 

• What happens if we increase k? 

• False positive rate f is:

P(a given bit is still 0 after n insertions with k independent hash functions)

f = (1 − (1 −
1
m )

kn

)
k

≈ (1 − e− kn
m )

k



Bloom Filters

• Are there any problems with Bloom filters? 
• What operations do they support/not support? 
• How do you grow a Bloom filter? 
• What if your filter itself exceeds RAM (how bad is 

locality)? 
• What does the cache behavior look like?



Bloom Filters: Challenges

• How do you grow a Bloom filter? 
• Short answer: you can’t 

• Filter only stores bits: no way to “invert” bits to recover items 

• Longer answer: rebuild 
• If you wanted to grow a Bloom filter, you could allocate a new 

(empty) filter of the target size, then read through all items and 
insert them to the new filter 
• Note: the underlying data may or may not be available!



Bloom Filters: Challenges

• What if your filter itself exceeds RAM? 
• What does the cache behavior look like? 

• Good hash functions intentionally create a uniform distribution 
to avoid “clumping” 

• So even if the filter fits in RAM, the cache locality is poor 

• If the data set is truly large, there are a few options: 
• Use fewer bits per item (sacrifice precision) 
• Tolerate higher false positive rates 
• Use caching techniques, adding potential for expensive misses



Bloom Filters: Challenges

• What operations do they support/not support? 
• insert? 
• query? 
• delete? 
• rename? 
• “count”?

Yes!
Yes!
No! (Multiple items may have “set” any given bit)
No! (rename = delete + insert)
No! (maybe/no answers only)

Bloom filter extensions that add support for additional operations do exist, 
but these operations are not supported by the standard data structure.



Filter Case Study: Quotient



Quotient Filters

• Based on a technique from a homework question in 
Donald Knuth’s “The Art of Computer Programming: 
Sorting and Searching, volume 3” (Section 6.4, 
exercise 13) 
• Quotienting Idea:

Hash: 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1



Quotient Filters

• Based on a technique from a homework question in 
Donald Knuth’s “The Art of Computer Programming: 
Sorting and Searching, volume 3” (Section 6.4, 
exercise 13) 
• Quotienting Idea:

Hash: 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1

Quotient: q most significant bits Remainder: r least significant bits

Remaining bits are discarded/lost



Building a Quotient Filter
• The quotient is used as an index into an m-bucket array, where the 

remainder is stored. 
• Essentially, filter is a hashtable that stores a remainder as the value 
• The quotient is implicitly stored because it is the bucket index 

• Collisions are resolved using linear probing and 3 extra bits per bucket 
• is_occupied: whether a slot is the canonical slot for some value currently 

stored in the filter
• is_continuation: whether a slot holds a remainder that is part of a run (but 

not the first element in the run)
• is_shifted: whether a slot holds a remainder that is not in its canonical slot

• A canonical slot is an element’s “home bucket”, i.e., where it belongs in the 
absence of collisions.



Quotient Filter Example

Hash table 
with external 

chaining

Hash table 
with linear 

probing + bits 

Table of 
objects with 
quotients/ 
remainders 

for reference

[https://www.usenix.org/conference/hotstorage11/dont-thrash-how-cache-your-hash-flash]



Quotient Filter Example

0132put(     )

2859put(     )

2609put(     )

3402put(     )

q = 1 “bit”
r = 3 “bits”

Parameters:

Quotient (Bucket Index)       Remainder (Item Stored)

0 132

2 859

2 609

3 402

Example uses decimal 
digits for readability



Quotient Filter Example

is_occupied is_shifted

is_continuation

402 did not collide with any elements, 
but it was shifted from its canonical slot 
by 609 and 859. 

859 collided with 609, so 859 is both 
shifted and part of a run. 402 would 
live here, so this bucket is occupied

Collision, but 609 is in it’s canonical slot, 
so is_occupied is set



Quotient Filter Concept-check

• What are the possible reasons for a collision? 
• Which collisions are treated as “false positives” 

• What parameters does the QF give the user? In 
other words: 
• What knobs can you turn to control the size of the filter? 
• What knobs can you turn to control the false positive rate 

of the filter?



Quotient Filter Concept-check

• What are the possible reasons for a collision? 
• Collisions in the hashtable 

• Same quotient, but different remainders cause shifting 
• Collisions in the hashspace 

• Different keys may produce identical quotients/remainders 
• If a hash function collision -> not the QF’s fault 
• If due to dropped bits during “quotienting” -> that is the QF’s fault 

• Which collisions are treated as “false positives” 
• Collisions in the hash space 

• What parameters does the QF give the user? In other words: 
• What knobs can you turn to control the size of the filter? 
• What knobs can you turn to control the false positive rate of the 

filter? 
• Quotient bits (number of buckets) 
• Remainder bits (how many unique bits per element to store)



Why QF over BF?

• QF supports deletes 
• QF supports “merges” 
• QF has good cache locality 

• How many locations accessed per operation? 
• Some math can show that runs/clusters are expected to be 

small 

• Don’t Thrash, How to Cache Your Hash on Flash also 
introduces the Cascade filter, a write-optimized filter made 
up of increasingly large QFs that spill over to disk. 
• Similar idea to Log-structured merge trees, which are an 

exciting data structure for large key-value stores!



Cascade Filter

[https://www.usenix.org/conference/hotstorage11/dont-thrash-how-cache-your-hash-flash]

Inserts are fast (duplicates are OK, so inserts only touch RAM level) 
Lookups do 1 I/O per level



What next?

• CS256 Unlocks new Williams CS courses: 
• https://www.cs.williams.edu/~jannen/teaching/

cs-prereqs.svg 
• CS256 Prepares you for CS research 
• NSF REUs 
• Williams Summer Research 
• Thesis 

• CS256 helps you think in new ways about the world

https://www.cs.williams.edu/~jannen/teaching/cs-prereqs.svg
https://www.cs.williams.edu/~jannen/teaching/cs-prereqs.svg




Thank you!

                                               Artie ->


