Data Structures with Randomness: Skip Lists

Flashback to Data Structures...

Recall the List interface

- What are the List operations?
- What concrete List implementations did we study?
- What are the tradeoffs between arrays and linked lists?
- Do those tradeoffs change when our lists are sorted?
- How does this compare to a binary search tree?

> Let's develop a data structure with the strengths of a Binary
> Search Tree but the (relative) simplicity of a List

One Linked List

- Start from simplest data structure: (sorted) linked list
- Search cost?
- $\Theta(n)$
- How can we improve it?

Two Linked Lists

- Suppose you instead had two sorted linked lists
- Each list can contain a subset of the total elements
- Elements can appear in one or both lists
- Class exercise. How can you use two lists to speed up searches?

NYC Subway System

Two Linked Lists

- Idea: we have both express and local subways
- Express lines connect a few main stations (and skip a bunch)
- Local lines connect all stations but are slow
- All express stops are also local stops so you can switch

Two Linked Lists

- $\operatorname{Search}(x)$:
- Walk right in top linked list L_{2} until going right would be too far
- Walk down to bottom linked list L_{1}
- Walk right in L_{1} until x is found or reach end (report not found)

Two Linked Lists

- Search(66):
- Walk right in top linked list L_{2} until going right would be too far
- Walk down to bottom linked list L_{1}
- Walk right in L_{1} until x is found or reach end (report not found)

Two Linked Lists

- How should we organize the two lists?
- Which nodes go in L_{2} ?
- How much of gap to leave between L_{2} elements?
- Best approach: evenly space and promote elements

Two Linked Lists

- If gap between elements in top list is g, then the number of elements traversed (search cost) is at most $g+n / g$
- Optimized by setting $g=\sqrt{n}$
- So the search cost is at most $2 \sqrt{n}$

More Linked Lists

- Search cost with two linked list: $2 \sqrt{n}$
- Search cost with three linked list: $3 n^{1 / 3}$

k Linked Lists

- Search cost with k linked lists: $k n^{1 / k}$
- Search cost with $\log n$ linked lists: $\log n \cdot n^{1 / \log n}$
- $\log n \cdot n^{1 / \log n}=2 \log n$

Insertion Cost

- This is good, but how can we insert?
- Every new element disrupts our spacing

Implementing Skip Lists

Insertion Cost

- This is good, but how can we insert?
- Every new element disrupts our spacing
- Reconfiguring to "rebalance" would be expensive
- Idea: use randomness!

Skip List Details

- Big question: how should we implement Insert(x)?
- Clearly x must be inserted into at least one list... so the first question is which list(s) should it be added to?
- Recall our "local line" invariant: bottommost list contains all elements (just like the local subway line makes all stops).
- We must search for x 's position in bottommost list and insert it there
- Any other lists?
- Goal: we want half of the elements to go to next level, similar to a balanced binary tree

Skip List Details

- Big question: how should we implement Insert(x)?
- Goal: we want half of the elements to go to next level, similar to a balanced binary tree
- Idea: Insert x at level 1 (required), then flip a coin
- If heads: element gets promoted to next level
- If tails: element stays put at current level
- Continue flipping until we get a tails
- Does this achieve our goal (in expectation)?

Skip List Details

- On average:
- $1 / 2$ of the elements are exclusively on the bottom level (T)
- $1 / 2$ of the elements go up 1 level (HT)
- $1 / 4$ of the elements go up 2 levels (HHT)
- $1 / 8$ go up to 3 levels (HHHT)
- etc.
- Question: Does this randomness on insertion affect any other operations?

Skip List Details

- Search (x) :
- Remains unchanged
- Start at top list, walk right until just before value gets $>$ target
- Go down and repeat until:
- find value $>$ target in bottom list (can't go down any farther)
- reach last element in bottom list (ran out of elements)
- element is found (hooray!)

Skip List Search Example

- Example: Search for 72

Skip List Search Example

- Example: Search for 72
* Level 1: 14 too small, 79 too big; go down 14

Skip List Search Example

- Example: Search for 72
* Level 1: 14 too small, 79 too big; go down 14
* Level 2: 14 too small, 50 too small, 79 too big; go down 50

Skip List Search Example

- Example: Search for 72
* Level 1: 14 too small, 79 too big; go down 14
* Level 2: 14 too small, 50 too small, 79 too big; go down 50
* Level 3: 50 too small, 66 too small, 79 too big; go down 66

Skip List Search Example

- Example: Search for 72
* Level 1: 14 too small, 79 too big; go down 14
* Level 2: 14 too small, 50 too small, 79 too big; go down 50
* Level 3: 50 too small, 66 too small, 79 too big; go down 66
* Level 4: 66 too small, 72 spot on

Skip List Analysis: Height

Let L_{k} be the set of all items in level $k \geq 1$.

- Height of an element $x: \ell(x)=\max \left\{k \mid x \in L_{k}\right\}$
- Height of entire skip list $L: \quad h(L)=\max \left\{\ell(x) \mid x \in L_{0}\right\}$

Maximum height among all elements in the list

Skip List Analysis: Height

- Expected height of a node?
- Question: in an experiment with probability p of success, what is the expected number of trials until success?

Skip List Analysis: Height

Let X denote the random variable equal to the number of flips performed until we reach a tails (stopping condition for promotion). What is $E[X]$?

- For $i>0$, we have $\operatorname{Pr}[X=i]=(1-p)^{i-1} p$ $i-1$ failures, then first success
- $E[X]=\sum_{i=0}^{\infty} i \cdot \operatorname{Pr}[X=i]=\sum_{i=1}^{\infty} i(1-p)^{i-1} p=\frac{p}{1-p} \sum_{i=1}^{\infty} i(1-p)^{i}$

$$
=\frac{p}{1-p} \cdot \frac{1-p}{p^{2}}=\frac{1}{p}
$$

- If $p=\frac{1}{2}$, then $E[X]=2$

Skip List Analysis: Height

- Expected height of a node?
- Expected number of trials until success (tail): 2
- Worst-case height? $h(L)=\max \{\ell(x) \mid x \in L\}$

Skip List Analysis: Height

- Claim. A skip list with n elements has height $O(\log n)$ levels with high probability
- Goal: show that the probability that it has more than $d \log n$ levels is at most $1 / n^{c}$, where the constants c, d usually depend on each other
- Proof. For any $x \in L, k \geq 1$, the probability that height of x is k
- What is $\operatorname{Pr}[\ell(x)=k]$?

$$
=(1-p)^{k-1} p=\left(1-\frac{1}{2}\right)^{k-1} \frac{1}{2}=\frac{1}{2^{k}}
$$

Skip List Analysis: Height

- Claim. A skip list with n elements has height $O(\log n)$ levels with high probability
- Goal: show that the probability that it has more than $d \log n$ levels is at most $1 / n^{c}$, where the constants c, d usually depend on each other
- Proof. For any $x \in L, k \geq 1$, the probability that height of x is k
- What is $\operatorname{Pr}[\ell(x)=k]=\frac{1}{2^{k}}$
- $\operatorname{Pr}[\ell(x)>k]$ is probability $\ell(x)$ is $k+1, k+2, \ldots$ the probability decreases by half each time, thus is at most $\frac{1}{2^{k}}$

Skip List Analysis: Height

- Claim. A skip list with n elements has height $O(\log n)$ levels w.h.p.
- Proof. For any $x \in L, k \geq 1$, the probability that height of x is k
- $\operatorname{Pr}[\ell(x)>k]=\sum_{k+1}^{\infty} \operatorname{Pr}[\ell(x)=i]=\sum_{i=k+1}^{\infty} \frac{1}{2^{i}}=\frac{1}{2^{k}}$
- $\operatorname{Pr}[h(L)>k]=\operatorname{Pr}\left[\cup_{x \in L} \ell(x)>k\right] \leq \sum_{x \in L} \operatorname{Pr}[\ell(x)>k]=\frac{n}{2^{k}} \quad$ Union bound
- $\operatorname{Pr}[h(L)>c \log n] \leq \frac{1}{n^{c-1}} \quad$ [pick any $c>2$ for w.h.p.] $\quad \begin{gathered}P(A \cup B)=P(A)+P(B)-P(A \cap B) \\ P(A \cup B) \leq P(A)+P(B)\end{gathered}$
- Thus, height of skip is $O(\log n)$ with high probability

Skip List Search Cost

- Claim. Search cost in a skip list is $O(\log n)$ with high probability
- Proof. Idea think of the search path "backwards"
- Starting at the target element, going left or up until you reach root or sentinel node $(-\infty)$

Skip List Search Cost

- Backwards search path, when do go up versus left?
- If node wasn't promoted (got tails here), then we go [came from] left
- If node was promoted (got heads here), then we go [came from] top

Skip List Search Cost

- How many consecutive tails in a row? (left moves on a level)
- Same analysis as the height! $O(\log n)$
- $O\left(\log ^{2} n\right)$ length overall—but we claimed $O(\log n)$ earlier

We are about to get very deep into

3

2

Skip List Search Cost

- Search path is a sequence of $H H H T T T H H T T$. . .
- How many "up" moves (H) before we are done?
- Height: $c \log n$ with high probability

Skip List Search Cost

- Search ends when we reach top list: have seen at least $c \log n$ heads
- Search cost: Can we bound the number of times do we need to flip a coin until we see $c \log n$ heads with high probability?

Coin Flipping

- Claim. Number of flips until $c \log n$ heads is $\Theta(\log n)$ with high probability, that is, with probability $1-1 / n^{c}$
- Note. Constant in $\Theta(\log n)$ will depend on c
- Proof. Say we flip $10 c \log n$ coins
- $\operatorname{Pr}[$ exactly $c \log n$ heads]

$$
=\binom{10 c \log n}{c \log n} \cdot\left(\frac{1}{2}\right)^{c \log n} \cdot\left(\frac{1}{2}\right)^{9 c \log n}
$$

- $\operatorname{Pr}[$ at most $c \log n$ heads $] \leq\binom{ 10 c \log n}{c \log n} \cdot\left(\frac{1}{2}\right)^{9 c \log n}$

Coin Flipping

- Claim. Number of flips until $c \log n$ heads is $\Theta(\log n)$ with high probability, that is, with probability $1-1 / n^{c}$

Applied "Deathbed formula"

- Proof. $\operatorname{Pr}[$ at most $c \log n$ heads $] \leq\left(\frac{e \cdot 10 c \log n}{c \log n}\right)^{c \log n} \cdot\left(\frac{1}{2}\right)^{9 c \log n}$

$$
=(10 e)^{c \log n} \cdot\left(\frac{1}{2}\right)^{9 c \log n}
$$

Coin Flipping

- Claim. Number of flips until $c \log n$ heads is $\Theta(\log n)$ with high probability, that is, with probability $1-1 / n^{c}$
- Proof. $\operatorname{Pr}[$ at most $c \log n$ heads $] \leq\left(\frac{e \cdot 10 c \log n}{c \log n}\right)^{c \log n} \cdot\left(\frac{1}{2}\right)^{9 c \log n}$

$$
\begin{aligned}
& =(10 e)^{c \log n} \cdot\left(\frac{1}{2}\right)^{9 c \log n} \\
& =2^{\log (10 e) \cdot c \log n} \cdot\left(\frac{1}{2}\right)^{9 c \log n} \\
& =2^{(\log (10 e)-9) \cdot c \log n}=2^{-d \log n} \\
& =1 / n^{d}
\end{aligned}
$$

Aside: Coin Flipping and CLT

Let n be the number of coin flips we make, with $p=1 / 2$ being the probability of success, and $q=1 / 2$ being the probability of failure. Then the:

- mean $\mu=n p=n / 2$, and variance $\sigma^{2}=n p q=n / 4$
- The central limit theorem says that, for a sequence of independent and identically distributed random variables drawn from a distribution with expected value μ and a finite variance σ^{2}, the sample averages converge to μ as $n \rightarrow \infty$.

- Although not a proof, hopefully this helps to further illustrate the unlikelihood of a very tall skiplist!

Skip Lists

- Using $O(\log n)$ linked lists, achieve same performance as binary search tree
- No stored information about balance, no tricky balancing rules!
- Just flip coins when inserting new elements to decide which lists they reside in

Summary: Skip Lists (Randomized Search Trees)

- Invented around 1990 by Bill Pugh
- Motivation: binary search trees are a pain to implement
- Skip lists balance randomly; no rules to remember, no rebalancing
- Build out of simple structure: sorted linked lists
- Inserts, deletes, search, predecessor, successor are all $O(\log n)$ with high probability
- No rebalancing makes them useful in concurrent programming
- E.g, lock-free data structures

Acknowledgments

- Some of the material in these slides are taken from
- Shikha Singh
- MIT slides: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fall-2005/video-lectures/lecture-12-skip-lists/lec12.pdf
- Eric Demaine handout: https://courses.csail.mit.edu/6.046/spring04/ handouts/skiplists.pdf

