Data Structures with “Randomness”: Hashtables
Flashback to Data Structures…

Recall the **Dictionary** interface

- What are the **Dictionary** operations?
- What concrete **Dictionary** implementations did we study?
- What are the tradeoffs between binary search trees and hashtables?
- How often do we need to do successor/range operations?
 - Similarly: How much does locality matter?

Let’s develop a data structure with excellent (expected) **point** lookup/update performance but no support for **range** operations.
Hashtable Basics

- We have an underlying array of size m
 - We say this array has m slots or buckets
- Suppose we want to store n items, where $n < m$. What is ideal situation?
 - If every element has a unique, designated location, get $O(1)$ operations:
 - Insert a new item \rightarrow update slot
 - Look up an item \rightarrow check slot
 - Delete an item \rightarrow clear slot
- Unfortunately we usually have a universe of items U we may wish to store, where $|U|$ is much much bigger than m. Example universes?
 - Punchline: even with $n < m$, we can’t guarantee those n items their own dedicated locations because we don’t know which particular n items from our universe U that we will be storing…
Hash table

- But we still want $O(1)$ operations! Plus, you’ve been told we achieve that!
 - In reality, we settle for expected $O(1)$ performance…
- Idea: use a **hash function** to map each item to a slot
 - h is a one-way function that maps the **universe** U of keys to **slots** in our array A:
 \[
 h : U \rightarrow \{0, 1, \ldots, m - 1\}
 \]
- So, we say an item with key k **hashes** to slot $h(k)$, and that $h(k)$ is the item’s **hash value**
 - Textbook gives example hash functions (and why some are bad)
 - Textbook discusses universal hashing
 - Instead, we’re going to focus on analyzing the data structure under the assumption that we do in fact have a **uniform hash function**
Hash function: theory versus practice

- We will assume hash function h is ideal:
 - For all $i \in U$, k, assume $\Pr(h(i) = k) = 1/m$
 - Assume the hashes of all items are independent:
 $$\Pr(h(i) = k \mid h(i_2) = k_2, h(i_3) = k_3, \ldots) = 1/m$$
- Such hs called uniform random hash functions
- Good hash functions do behave this way in practice
- Lots of theoretical work about weaker assumptions on the hash functions
Hash table

- Hash function \(h \), array \(A \)
- Item \(i \) is stored in \(A[h(i)] \)
- \(m = 6 \)
Hash table

- Hash function h, array A
- Item i is stored in $A[h(i)]$

$\begin{array}{c}
\text{Amir} \\
\text{Beth} \\
\text{Chris}
\end{array}$

$\begin{array}{c}
\text{Amir} \\
\text{Amir}
\end{array}$

$h(\text{Amir}) = 3$
Hash table

- Hash function h, array A
- Item i is stored in $A[h(i)]$

$h(\text{Beth}) = 0$
Hash table

- Hash function h, array A
- Item i is stored in $A[h(i)]$
Hashtable Basics

• We said that even with $n < m$, we can’t guarantee those n items their own dedicated locations because we don’t know which particular n items from our universe U that we will be storing…

 • So we say a collision occurs when two unique items hash to the same slot ($h(x_1) = h(x_2), x_1 \neq x_2$)

• Practically, we need a way to manage collisions

 • Recall any strategies from data structures?

• Theoretically, we need a way to analyze the impact of collisions on our data structure performance

 • Our collision strategy needs to maintain our expected $O(1)$ performance (luckily, several do!)
Managing Collisions via Chaining

- Idea: store a linked list at each array entry (what kind?)
- When an item hashes to a slot, store it in the (possibly empty) linked list
Managing Collisions via Chaining

• Idea: store a linked list at each array entry (what kind?)
• When an item hashes to a slot, store it in the (possibly empty) linked list
Managing Collisions via Chaining

- Idea: store a linked list at each array entry (what kind?)
- When an item hashes to a slot, store it in the (possibly empty) linked list

$h(Nir) = 4$
Managing Collisions via Chaining

- Idea: store a linked list at each array entry (what kind?)
- When an item hashes to a slot, store it in the (possibly empty) linked list

$h(Nir) = 4$
Managing Collisions via Chaining

- Store a doubly linked list at each array entry
- When an item hashes to a slot, prepend it to the linked list

- How can we insert? (See above…)
- How can we lookup?
- How can we delete?

- (Harder) How much time do these operations take?
Managing Collisions via Chaining

- Store a doubly linked list at each array entry
- When an item hashes to a slot, **prepend** it to the linked list

Insert(k):
- Prepend k at the head of the list A[h(k)]

Runtime?
- $O(1)$ — exactly; not in expectation!
- Note, we assume k is not already in the hashtable
- If don’t want that assumption, do a lookup first!
Managing Collisions via Chaining

• Store a doubly linked list at each array entry
• When an item hashes to a slot, **prepend** it to the linked list

Delete(k):
 Scan the list $A[h(k)]$, and delete the entry with key k

• Runtime?
 • $O(L)$, where L is the length of the chain in slot $h(k)$
 • What do we expect L to be?
Hashing and Chain Length

Worst-case delete time in a hash table with chaining: number of balls in a particular bin. **Question:** Expected number of balls in a particular bin \(b \)?

- Let \(X_i \) denote indicator r.v. that item \(i \) hashes to the bucket \(b \)
 - Assuming uniform hashing, \(Pr(X_i = 1) = \frac{1}{m} \)

- Let \(X = \sum_{i=1}^{n} X_i \) denote the number of items that hash to bucket \(b \)

- By linearity of expectation, \(E[X] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} \frac{1}{m} = \frac{n}{m} \)
Managing Collisions via Chaining

- Store a doubly linked list at each array entry
- When an item hashes to a slot, **prepend** it to the linked list

Delete(k):

Scan the list $A[h(k)]$, and delete the entry with key k

- Runtime?
 - $O(L)$, where L is the length of the chain in slot $h(k)$
 - What do we expect L to be?
 - $E[L] = \frac{n}{m}$. We’ll also call this the hashtable’s **load factor**
Managing Collisions via Chaining

- Store a doubly linked list at each array entry
- When an item hashes to a slot, **prepend** it to the linked list

Lookup(\(k\)):

Scan the list \(A[h(k)]\); return the entry with key \(k\) if an entry exists

- Runtime?
 - (Surprisingly?) Lookup behavior is different in two cases!
 - “Successful” lookup vs. “unsuccessful”
 - Why?
Hashing and Chain Length

Worst-case lookup time in a hash table with chaining: number of balls in a particular bin. **Question:** what’s different about successful and unsuccessful cases?

- **Unsuccessful** lookup: must scan through entire chain
 - Cost is $O(L)$, and we showed that $E[L] = \frac{n}{m}$

- **Successful** lookup stops once we find the target element. The analysis is tricky because we always insert at the front of the list!
 - Expected cost to lookup item x when x is in the hashtable is the expected number of items that collided with x after x was inserted
Cost of Successful Lookup

- Assume that element x is equally likely to be any of table’s n elements
 - Number of elements checked is 1 plus number of elements that appear before x in list $A[h(x)]$
 - Observation: all elements are placed at the front of the list, so this is precisely the number of elements that:
 1. collided with x, and
 2. were inserted after x was
Cost of Successful Lookup

Expected number of collisions with \(x \) that occur after \(x \) is inserted?

- Let \(x_i \) be the \(i^{th} \) element inserted into the list
 - In other words, we insert \(x_1, x_2, \ldots, x_n \) into \(A \)
- Let \(X_{ij} \) be the indicator r.v. that equals 1 when \(h(x_i) = h(x_j) \)
 - Note: \(X_{ij} \) is 1 when there is a collision between \(x_i \) and \(x_j \), 0 otherwise
- Under our uniform hashing assumption, \(E[X_{ij}] = 1/m \)
- With this, can we reason about the number of elements examined in a successful search?
Cost of Successful Lookup

The expected number of elements examined in a successful search is:

\[E \left[\frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} X_{ij} \right) \right] \]

Since \(x \) may be any of the \(n \) elements we insert, we average the contribution of each of the \(n \) items

\# of comparisons to find \(x_i \) are 1 plus the expected number of collisions among all items inserted after \(x_i \)
Cost of Successful Lookup

\[
E \left[\frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} X_{ij} \right) \right]
= \frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} E[X_{ij}] \right)
= \frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} \frac{1}{m} \right)
= 1 + \frac{1}{mn} \sum_{i=1}^{n} (n - i)
= 1 + \frac{1}{mn} \left(\frac{n^2 - n(n+1)}{2} \right)
= 1 + \frac{n-1}{2m} = 1 + \frac{m}{2} - \frac{m}{2n} = \Theta \left(1 + \frac{n}{m} \right)
\]

by Linearity of Expectation

Same big-O!
Hashtable Summary

We can get close to $O(1)$ performance for insert, lookup, and delete operations ($O(1 + n/m)$ in expectation, where n/m can be controlled by resizing)

- There are other strategies for resolving collisions, but analyzing their performance is tricky
 - Linear probing: $h(k, i) = (h(k) + i) \mod m$
 - Quadratic probing: $h(k, i) = (h(k) + c_1i + c_2i^2) \mod m$
 - Double hashing: $h(k, i) = h(k || i)$
 - Power-of-two-choices: stored at $h_1(k)$ or $h_2(k)$, uses “cuckooing”

Hashtables are a great data structure for many applications

- As long as you don’t need to iterate or sort!