
Data Structures with “Randomness”:
Hashtables

Flashback to Data Structures…
Recall the Dictionary interface

• What are the Dictionary operations?

• What concrete Dictionary implementations did we study?

• What are the tradeoffs between binary search trees and hashtables?

• How often do we need to do successor/range operations?

• Similarly: How much does locality matter?

Let’s develop a data structure with excellent (expected)
point lookup/update performance but no support for

range operations.

• We have an underlying array of size

• We say this array has slots or buckets

• Suppose we want to store items, where < . What is ideal situation?

• If every element has a unique, designated location, get operations:

• Insert a new item update slot

• Look up an item check slot

• Delete an item clear slot

• Unfortunately we usually have a universe of items we may wish to store,
where is much much bigger than . Example universes?

• Punchline: even with < , we can’t guarantee those items their own
dedicated locations because we don’t know which particular items from
our universe that we will be storing…

m
m

n n m
O(1)

→
→

→
U

|U | m
n m n

n
U

Hashtable Basics

• But we still want operations! Plus, you’ve been told we achieve that!

• In reality, we settle for expected performance…
• Idea: use a hash function to map each item to a slot

• is a one-way function that maps the universe of keys to slots in
our array :

• So, we say an item with key hashes to slot , and that is the
item’s hash value

• Textbook gives example hash functions (and why some are bad)
• Textbook discusses universal hashing
• Instead, we’re going to focus on analyzing the data structure under

the assumption that we do in fact have a uniform hash function

O(1)
O(1)

h U
A

h : U → {0,1,…, m − 1}
k h(k) h(k)

Hash table

• We will assume hash function is ideal :

• For all , assume
• Assume the hashes of all items are

independent:

• Such s called uniform random hash functions
• Good hash functions do behave this way in

practice
• Lots of theoretical work about weaker assumptions

on the hash functions

h
i ∈ U, k Pr(h(i) = k) = 1/m

Pr(h(i) = k |h(i2) = k2, h(i3) = k3, …) = 1/m

h

Hash function: theory versus practice

Dahlgaard et al. 2017

Histograms of set similarity estimates

• Hash function , array

• Item is stored in

•

h A
i A[h(i)]

m = 6

Amir

Beth

Chris

Hash table

• Hash function , array

• Item is stored in

h A
i A[h(i)]

Hash table

Amir

Beth

Chris

Amir

h(Amir) = 3

Amir

Beth

Chris

Beth Amir

h(Beth) = 0

• Hash function , array

• Item is stored in

h A
i A[h(i)]

Hash table

Amir

Beth

Chris

Beth Amir Chris

h(Chris) = 4

• Hash function , array

• Item is stored in

h A
i A[h(i)]

Hash table

• We said that even with < , we can’t guarantee those items
their own dedicated locations because we don’t know which
particular items from our universe that we will be storing…

• So we say a collision occurs when two unique items hash to
the same slot ()

• Practically, we need a way to manage collisions
• Recall any strategies from data structures?

• Theoretically, we need a way to analyze the impact of collisions on
our data structure performance

• Our collision strategy needs to maintain our expected
performance (luckily, several do!)

n m n

n U

h(x1) = h(x2), x1 ≠ x2

O(1)

Hashtable Basics

Managing Collisions via Chaining

Amir

Beth

Chris

• Idea: store a linked list at each array entry (what kind?)
• When an item hashes to a slot, store it in the (possibly empty) linked

list

Amir ChrisBeth

Managing Collisions via Chaining

Amir

Beth

Chris

Amir ChrisBeth

• Idea: store a linked list at each array entry (what kind?)
• When an item hashes to a slot, store it in the (possibly empty) linked

list

Managing Collisions via Chaining

Amir

Beth

Chris

Nir

Amir Chris

h(Nir) = 4

Beth

• Idea: store a linked list at each array entry (what kind?)
• When an item hashes to a slot, store it in the (possibly empty) linked

list

• Idea: store a linked list at each array entry (what kind?)
• When an item hashes to a slot, store it in the (possibly empty) linked

list

Amir

Beth

Chris

Nir

Amir

Chris

h(Nir) = 4

Beth Nir

Managing Collisions via Chaining

• Store a doubly linked list at each array entry
• When an item hashes to a slot, prepend it to the

linked list

• How can we insert? (See above…)
• How can we lookup?
• How can we delete?

• (Harder) How much time do these operations
take?

 Amir

Chris

h(Nir) = 4

Beth Nir

Managing Collisions via Chaining

• Store a doubly linked list at each array entry
• When an item hashes to a slot, prepend it to the

linked list

 Amir

Chris

h(Nir) = 4

Beth Nir

Managing Collisions via Chaining

Insert():k
Prepend at the head of the list k A[h(k)]

• Runtime?
• — exactly; not in expectation!

• Note, we assume is not already in the hashtable
• If don’t want that assumption, do a lookup first!

O(1)
k

 Amir

Chris

h(Nir) = 4

Beth Nir

Managing Collisions via Chaining

Delete():k
Scan the list , and delete the entry with key A[h(k)] k

• Runtime?

• , where is the length of the chain in slot

• What do we expect to be?

O(L) L h(k)
L

• Store a doubly linked list at each array entry
• When an item hashes to a slot, prepend it to the

linked list

Hashing and Chain Length
Worst-case delete time in a hash table with chaining: number of balls in a
particular bin. Question: Expected number of balls in a particular bin ?

• Let denote indicator r.v. that item hashes to the bucket

• Assuming uniform hashing,

•
Let denote the number of items that hash to bucket

•
By linearity of expectation,

b

Xi i b

Pr(Xi = 1) = 1
m

X =
n

∑
i=1

Xi b

E[X] = E[
n

∑
i=1

Xi] =
n

∑
i=1

E[Xi] =
n

∑
i=1

1
m

= n
m

 Amir

Chris

h(Nir) = 4

Beth Nir

Managing Collisions via Chaining

Delete():k
Scan the list , and delete the entry with key A[h(k)] k

• Runtime?

• , where is the length of the chain in slot

• What do we expect to be?

• . We’ll also call this the hashtable’s load factor

O(L) L h(k)
L

E[L] = n
m

• Store a doubly linked list at each array entry
• When an item hashes to a slot, prepend it to the

linked list

 Amir

Chris

h(Nir) = 4

Beth Nir

Managing Collisions via Chaining

Lookup():k
Scan the list ; return the entry with key if an entry existsA[h(k)] k

• Runtime?
• (Surprisingly?) Lookup behavior is different in two cases!

• “Successful” lookup vs. “unsuccessful”
• Why?

• Store a doubly linked list at each array entry
• When an item hashes to a slot, prepend it to the

linked list

Hashing and Chain Length
Worst-case lookup time in a hash table with chaining: number of balls in a
particular bin. Question: what’s different about successful and unsuccessful
cases?

• Unsuccessful lookup: must scan through entire chain

• Cost is , and we showed that

• Successful lookup stops once we find the target element. The analysis is
tricky because we always insert at the front of the list!

• Expected cost to lookup item when is in the hashtable is
the expected number of items that collided with after
was inserted

O(L) E[L] = n
m

x x
x x

Cost of Successful Lookup
• Assume that element is equally likely to be any of table’s elements

• Number of elements checked is 1 plus number of elements that
appear before in list

• Observation: all elements are placed at the front of the list, so this is
precisely the number of elements that:

1. collided with , and

2. were inserted after was

x n

x A[h(x)]

x
x

Cost of Successful Lookup
Expected number of collisions with that occur after is inserted?

• Let be the th element inserted into the list

• In other words, we insert into

• Let be the indicator r.v. that equals 1 when

• Note: is 1 when there is a collision between and , 0 otherwise

• Under our uniform hashing assumption,

• With this, can we reason about the number of elements examined in a
successful search?

x x
xi i

x1, x2, …, xn A

Xij h(xi) = h(xj)

Xij xi xj

E[Xij] = 1/m

Cost of Successful Lookup
The expected number of elements examined in a successful search is:

 E
1
n

n

∑
i=1

1 +
n

∑
j=i+1

Xij

Since may be any of the
elements we insert, we average the
contribution of each of the items

x n

n

of comparisons to find are 1 plus
the expected number of collisions
among all items inserted after

xi

xi

Cost of Successful Lookup

E
1
n

n

∑
i=1

1 +
n

∑
j=i+1

Xij = 1
n

n

∑
i=1

1 +
n

∑
j=i+1

E[Xij] by Linearity of Expectation

= 1
n

n

∑
i=1

1 +
n

∑
j=i+1

1
m

= 1
n

n

∑
i=1

1 + 1
mn

n

∑
j=i+1

1

= 1 + 1
mn

n

∑
i=1

(n − i) = 1 + 1
mn (

n

∑
i=1

n −
n

∑
i=1

i)
= 1 + 1

mn (n2 − n(n + 1)
2) = 1 + 1

nm (2n2 − n2 − n
2)

= 1 + n − 1
2m = 1 +

n
m

2 −
n
m

2n
= O(1 + n

m
) Same big-O!

Hashtable Summary
We can get close to performance for insert, lookup, and delete
operations (in expectation, where can be controlled
by resizing)

• There are other strategies for resolving collisions, but analyzing their
performance is tricky

• Linear probing:
• Quadratic probing:
• Double hashing:
• Power-of-two-choices: stored at or , uses “cuckooing”

Hashtables are a great data structure for many applications
• As long as you don’t need to iterate or sort!

O(1)
O(1 + n/m) n/m

h(k, i) = (h(k) + i) mod m
h(k, i) = (h(k) + c1i + c2i2) mod m

h(k, i) = h(k | | i)
h1(k) h2(k)

