
Data Structures with “Randomness”:  
Hashtables



Flashback to Data Structures…
Recall the Dictionary interface 

• What are the Dictionary operations? 

• What concrete Dictionary implementations did we study? 

• What are the tradeoffs between binary search trees and hashtables? 

• How often do we need to do successor/range operations? 

• Similarly: How much does locality matter?

Let’s develop a data structure with excellent (expected) 
point lookup/update performance but no support for 

range operations.



• We have an underlying array of size   

• We say this array has  slots or buckets 

• Suppose we want to store  items, where  < . What is ideal situation? 

• If every element has a unique, designated location, get  operations: 

• Insert a new item  update slot 

• Look up an item  check slot 

• Delete an item  clear slot 

• Unfortunately we usually have a universe of items  we may wish to store, 
where  is much much bigger than . Example universes? 

• Punchline: even with  < , we can’t guarantee those  items their own 
dedicated locations because we don’t know which particular  items from 
our universe  that we will be storing…
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• But we still want  operations! Plus, you’ve been told we achieve that! 

• In reality, we settle for expected  performance… 
• Idea: use a hash function to map each item to a slot 

•  is a one-way function that maps the universe  of keys to slots in 
our array : 
          

• So, we say an item with key  hashes to slot , and that  is the 
item’s hash value 

• Textbook gives example hash functions (and why some are bad) 
• Textbook discusses universal hashing 
• Instead, we’re going to focus on analyzing the data structure under 

the assumption that we do in fact have a uniform hash function
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• We will assume hash function  is ideal : 

• For all , assume  
• Assume the hashes of all items are 

independent: 
 

• Such s called uniform random hash functions 
• Good hash functions do behave this way in 

practice 
• Lots of theoretical work about weaker assumptions 

on the hash functions

h
i ∈ U, k Pr(h(i) = k) = 1/m

Pr(h(i) = k |h(i2) = k2, h(i3) = k3, …) = 1/m

h

Hash function: theory versus practice

Dahlgaard et al. 2017
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• Hash function , array  

• Item  is stored in  

•
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m = 6
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• Hash function , array  

• Item  is stored in 
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• Hash function , array  

• Item  is stored in 
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• We said that even with  < , we can’t guarantee those  items 
their own dedicated locations because we don’t know which 
particular  items from our universe  that we will be storing… 

• So we say a collision occurs when two unique items hash to 
the same slot ( ) 

• Practically, we need a way to manage collisions 
• Recall any strategies from data structures? 

• Theoretically, we need a way to analyze the impact of collisions on 
our data structure performance 

• Our collision strategy needs to maintain our expected  
performance (luckily, several do!)
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Managing Collisions via Chaining
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• Idea: store a linked list at each array entry (what kind?) 
• When an item hashes to a slot, store it in the (possibly empty) linked 

list
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• Idea: store a linked list at each array entry (what kind?) 
• When an item hashes to a slot, store it in the (possibly empty) linked 
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• Idea: store a linked list at each array entry (what kind?) 
• When an item hashes to a slot, store it in the (possibly empty) linked 

list
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• Store a doubly linked list at each array entry 
• When an item hashes to a slot, prepend it to the 

linked list 

• How can we insert? (See above…) 
• How can we lookup? 
• How can we delete? 

• (Harder) How much time do these operations 
take?
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• Store a doubly linked list at each array entry 
• When an item hashes to a slot, prepend it to the 

linked list
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Managing Collisions via Chaining

Insert( ):k
Prepend  at the head of the list k A[h(k)]

• Runtime? 
•  — exactly; not in expectation! 

• Note, we assume  is not already in the hashtable 
• If don’t want that assumption, do a lookup first!
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Delete( ):k
Scan the list , and delete the entry with key A[h(k)] k

• Runtime? 

• , where  is the length of the chain in slot  

• What do we expect  to be?

O(L) L h(k)
L

• Store a doubly linked list at each array entry 
• When an item hashes to a slot, prepend it to the 

linked list



Hashing and Chain Length
Worst-case delete time in a hash table with chaining: number of balls in a 
particular bin. Question: Expected number of balls in a particular bin ? 

• Let  denote indicator r.v. that item  hashes to the bucket  

• Assuming uniform hashing,  

•
Let  denote the number of items that hash to bucket  

•
By linearity of expectation, 
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Delete( ):k
Scan the list , and delete the entry with key A[h(k)] k

• Runtime? 

• , where  is the length of the chain in slot  

• What do we expect  to be? 

• . We’ll also call this the hashtable’s load factor

O(L) L h(k)
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E[L] = n
m

• Store a doubly linked list at each array entry 
• When an item hashes to a slot, prepend it to the 

linked list
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Lookup( ):k
Scan the list ; return the entry with key  if an entry existsA[h(k)] k

• Runtime? 
• (Surprisingly?) Lookup behavior is different in two cases! 

• “Successful” lookup vs. “unsuccessful” 
• Why?

• Store a doubly linked list at each array entry 
• When an item hashes to a slot, prepend it to the 

linked list



Hashing and Chain Length
Worst-case lookup time in a hash table with chaining: number of balls in a 
particular bin. Question: what’s different about successful and unsuccessful 
cases? 

• Unsuccessful lookup: must scan through entire chain 

• Cost is , and we showed that  

• Successful lookup stops once we find the target element. The analysis is 
tricky because we always insert at the front of the list! 

• Expected cost to lookup item  when  is in the hashtable is 
the expected number of items that collided with  after  
was inserted
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Cost of Successful Lookup
• Assume that element  is equally likely to be any of table’s  elements 

• Number of elements checked is 1 plus number of elements that 
appear before  in list  

• Observation: all elements are placed at the front of the list, so this is 
precisely the number of elements that: 

1. collided with , and 

2. were inserted after  was
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Cost of Successful Lookup
Expected number of collisions with  that occur after  is inserted? 

• Let  be the th element inserted into the list 

• In other words, we insert  into  

• Let  be the indicator r.v. that equals 1 when   

• Note:  is 1 when there is a collision between  and , 0 otherwise 

• Under our uniform hashing assumption,  

• With this, can we reason about the number of elements examined in a 
successful search?
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E[Xij] = 1/m



Cost of Successful Lookup
The expected number of elements examined in a successful search is: 
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Cost of Successful Lookup
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Hashtable Summary
We can get close to  performance for insert, lookup, and delete 
operations (  in expectation, where  can be controlled 
by resizing) 

• There are other strategies for resolving collisions, but analyzing their 
performance is tricky 

• Linear probing:  
• Quadratic probing:  
• Double hashing:  
• Power-of-two-choices: stored at  or , uses “cuckooing” 

Hashtables are a great data structure for many applications 
• As long as you don’t need to iterate or sort!
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