Data Structures with "Randomness": Hashtables

Flashback to Data Structures...

Recall the Dictionary interface

- What are the Dictionary operations?
- What concrete Dictionary implementations did we study?
- What are the tradeoffs between binary search trees and hashtables?
- How often do we need to do successor/range operations?
 - Similarly: How much does locality matter?

Let's develop a data structure with excellent (expected) point lookup/update performance but no support for range operations.

Hashtable Basics

- We have an underlying array of size *m*
 - We say this array has *m* slots or buckets
- Suppose we want to store n items, where n < m. What is ideal situation?
 - If every element has a unique, designated location, get O(1) operations:
 - Insert a new item \rightarrow update slot
 - Look up an item \rightarrow check slot
 - Delete an item \rightarrow clear slot
- Unfortunately we usually have a universe of items U we may wish to store, where |U| is <u>much much</u> bigger than *m*. Example universes?
 - Punchline: even with n < m, we can't guarantee those n items their own dedicated locations because we don't know which particular *n* items from our universe U that we will be storing...

- But we still want O(1) operations! Plus, you've been told we achieve that! • In reality, we settle for expected O(1) performance...
- Idea: use a hash function to map each item to a slot
 - h is a one-way function that maps the universe U of keys to slots in our array A:

 $h: U \to \{0, 1, ..., m-1\}$

- So, we say an item with key k hashes to slot h(k), and that h(k) is the item's hash value
 - Textbook gives example hash functions (and why some are bad)
 - Textbook discusses universal hashing
 - Instead, we're going to focus on analyzing the data structure under the assumption that we do in fact have a uniform hash function

Hash function: theory versus practice

- We will assume hash function h is ideal:
 - For all $i \in U, k$, assume Pr(h(i) = k) = 1/m
 - Assume the hashes of all items are independent: $Pr(h(i) = k | h(i_2) = k_2, h(i_3) = k_3, ...) = 1/m$
- Such hs called uniform random hash functions
- Good hash functions do behave this way in practice
- Lots of theoretical work about weaker assumptions on the hash functions

Histograms of set similarity estimates

- Hash function h, array A
- Item i is stored in A[h(i)]
- *m* = 6

- Hash function h, array A
- Item i is stored in A[h(i)]

Amir	

- Hash function h, array A
- Item i is stored in A[h(i)]

Amir		
------	--	--

- Hash function h, array A
- Item i is stored in A[h(i)]

Hashtable Basics

- We said that even with n < m, we can't guarantee those n items their own dedicated locations because we don't know which particular n items from our universe U that we will be storing...
 - So we say a collision occurs when two unique items hash to the same slot $(h(x_1) = h(x_2), x_1 \neq x_2)$
- Practically, we need a way to manage collisions
 - Recall any strategies from data structures?
- Theoretically, we need a way to analyze the impact of collisions on our data structure performance
 - Our collision strategy needs to maintain our expected O(1)performance (luckily, several do!)

- Idea: store a linked list at each array entry (what kind?)
- When an item hashes to a slot, store it in the (possibly empty) linked list

Amir Beth Chris

Beth		Amir	Chris	

- Idea: store a linked list at each array entry (what kind?)
- When an item hashes to a slot, store it in the (possibly empty) linked list

- Idea: store a linked list at each array entry (what kind?)
- When an item hashes to a slot, store it in the (possibly empty) linked list

- Idea: store a linked list at each array entry (what kind?)
- When an item hashes to a slot, store it in the (possibly empty) linked list

- Store a doubly linked list at each array entry
- When an item hashes to a slot, prepend it to the linked list
- How can we insert? (See above...)
- How can we lookup?
- How can we delete?
- (Harder) How much time do these operations take?

- Store a doubly linked list at each array entry
- When an item hashes to a slot, prepend it to the linked list

Insert(k): Prepend k at the head of the list A[h(k)]

- Runtime?
 - O(1) exactly; not in expectation!
 - Note, we assume k is not already in the hashtable
 - If don't want that assumption, do a lookup first!

- Store a doubly linked list at each array entry
- When an item hashes to a slot, prepend it to the linked list

Delete(k): Scan the list A[h(k)], and delete the entry with key k

- Runtime? lacksquare
 - O(L), where L is the length of the chain in slot h(k)
 - What do we expect *L* to be?

Hashing and Chain Length

Worst-case delete time in a hash table with chaining: number of balls in a particular bin. Question: Expected number of balls in a particular bin b?

• Let X_i denote indicator r.v. that item i hashes to the bucket b

. Let
$$X = \sum_{i=1}^{n} X_i$$
 denote the number

By linearity of expectation, E[X] =

• Assuming uniform hashing, $Pr(X_i = 1) = \mathcal{M}$

r of items that hash to bucket b

$$= E\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} E[X_{i}] = \sum_{i=1}^{n} \frac{1}{m} = \frac{n}{m}$$

- Store a doubly linked list at each array entry
- When an item hashes to a slot, prepend it to the linked list

Delete(k): Scan the list A[h(k)], and delete the entry with key k

- Runtime? lacksquare
 - O(L), where L is the length of the chain in slot h(k)
 - What do we expect *L* to be?

•
$$E[L] = \frac{n}{m}$$
. We'll also call this

the hashtable's **load factor**

- Store a doubly linked list at each array entry
- When an item hashes to a slot, prepend it to the linked list

Lookup(k): Scan the list A[h(k)]; return the entry with key k if an entry exists

- Runtime?
 - (Surprisingly?) Lookup behavior is different in two cases!
 - "Successful" lookup vs. "unsuccessful"
 - Why?

array entry epend it to the

or is different in two cases!

Hashing and Chain Length

cases?

- Unsuccessful lookup: must scan through entire chain
 - Cost is O(L), and we showed that $E[L] = \frac{n}{-1}$ \mathcal{M}
- Successful lookup stops once we find the target element. The analysis is tricky because we always insert at the front of the list!
 - Expected cost to lookup item x when x is in the hashtable is the expected number of items that collided with x **after** x was inserted

Worst-case lookup time in a hash table with chaining: number of balls in a particular bin. Question: what's different about successful and unsuccessful

- Assume that element x is equally likely to be any of table's n elements
 - Number of elements checked is 1 plus number of elements that appear before x in list A[h(x)]
 - Observation: all elements are placed at the front of the list, so this is precisely the number of elements that:
 - 1. collided with *x*, and
 - 2. were inserted after *x* was

Expected number of collisions with x that occur after x is inserted?

- Let x_i be the i^{th} element inserted into the list
 - In other words, we insert x_1, x_2, \ldots, x_n into A
- Let X_{ii} be the indicator r.v. that equals 1 when $h(x_i) = h(x_i)$
 - Note: X_{ij} is 1 when there is a collision between x_i and x_j , 0 otherwise
- Under our uniform hashing assumption, $E[X_{ij}] = 1/m$
- With this, can we reason about the number of elements examined in a successful search?

The expected number of elements examined in a successful search is:

Since *x* may be any of the *n* elements we insert, we average the contribution of each of the *n* items

of comparisons to find x_i are 1 plus the expected number of collisions among all items inserted <u>after x_i </u>

Hashtable Summary

We can get close to O(1) performance for insert, lookup, and delete operations (O(1 + n/m)) in expectation, where n/m can be controlled by resizing)

- performance is tricky
 - Linear probing: h(k, i) = (h(k))
 - Quadratic probing: h(k, i) =
 - Double hashing: h(k, i) = h(k)
 - Power-of-two-choices: stored

Hashtables are a great data structure

As long as you don't need to iterate or sort!

There are other strategies for resolving collisions, but analyzing their

$$k) + i) \mod m$$

 $(h(k) + c_1i + c_2i^2) \mod m$
 $k \mid \mid i)$
at $h_1(k)$ or $h_2(k)$, uses "cuckooing"
e for many applications