Data Structures with "Randomness": Hashtables

Flashback to Data Structures...

Recall the Dictionary interface

- What are the Dictionary operations?
- What concrete Dictionary implementations did we study?
- What are the tradeoffs between binary search trees and hashtables?
- How often do we need to do successor/range operations?
- Similarly: How much does locality matter?

Let's develop a data structure with excellent (expected) point lookup/update performance but no support for range operations.

Hashtable Basics

- We have an underlying array of size m

- We say this array has m slots or buckets
- Suppose we want to store n items, where $n<m$. What is ideal situation?
- If every element has a unique, designated location, get $O(1)$ operations:
- Insert a new item \rightarrow update slot
- Look up an item \rightarrow check slot
- Delete an item \rightarrow clear slot
- Unfortunately we usually have a universe of items U we may wish to store, where $|U|$ is much much bigger than m. Example universes?
- Punchline: even with $n<m$, we can't guarantee those n items their own dedicated locations because we don't know which particular n items from our universe U that we will be storing...

Hash table

- But we still want $O(1)$ operations! Plus, you've been told we achieve that!
- In reality, we settle for expected $O(1)$ performance...
- Idea: use a hash function to map each item to a slot
- h is a one-way function that maps the universe U of keys to slots in our array A :

$$
h: U \rightarrow\{0,1, \ldots, m-1\}
$$

- So, we say an item with key k hashes to slot $h(k)$, and that $h(k)$ is the item's hash value
- Textbook gives example hash functions (and why some are bad)
- Textbook discusses universal hashing
- Instead, we're going to focus on analyzing the data structure under the assumption that we do in fact have a uniform hash function

Hash function: theory versus practice

- We will assume hash function h is ideal:
- For all $i \in U, k$, assume $\operatorname{Pr}(h(i)=k)=1 / m$
- Assume the hashes of all items are independent:

$$
\operatorname{Pr}\left(h(i)=k \mid h\left(i_{2}\right)=k_{2}, h\left(i_{3}\right)=k_{3}, \ldots\right)=1 / m
$$

Histograms of set similarity estimates

Hash table

- Hash function h, array A
- Item i is stored in $A[h(i)]$
- $m=6$

Amir

Beth
Chris

Hash table

- Hash function h, array A
- Item i is stored in $A[h(i)]$

Amir
Beth
Chris

Hash table

- Hash function h, array A
- Item i is stored in $A[h(i)]$

Amir
Beth
Chris

Hash table

- Hash function h, array A
- Item i is stored in $A[h(i)]$

Amir
Beth
Chris

Hashtable Basics

- We said that even with $n<m$, we can't guarantee those n items their own dedicated locations because we don't know which particular n items from our universe U that we will be storing...
- So we say a collision occurs when two unique items hash to the same slot $\left(h\left(x_{1}\right)=h\left(x_{2}\right), x_{1} \neq x_{2}\right)$
- Practically, we need a way to manage collisions
- Recall any strategies from data structures?
- Theoretically, we need a way to analyze the impact of collisions on our data structure performance
- Our collision strategy needs to maintain our expected $O(1)$ performance (luckily, several do!)

Managing Collisions via Chaining

- Idea: store a linked list at each array entry (what kind?)
- When an item hashes to a slot, store it in the (possibly empty) linked list

Amir
Beth
Chris

Managing Collisions via Chaining

- Idea: store a linked list at each array entry (what kind?)
- When an item hashes to a slot, store it in the (possibly empty) linked list

Amir
Beth
Chris

Managing Collisions via Chaining

- Idea: store a linked list at each array entry (what kind?)
- When an item hashes to a slot, store it in the (possibly empty) linked list

Managing Collisions via Chaining

- Idea: store a linked list at each array entry (what kind?)
- When an item hashes to a slot, store it in the (possibly empty) linked list

Managing Collisions via Chaining

- Store a doubly linked list at each array entry
- When an item hashes to a slot, prepend it to the linked list

- How can we insert? (See above...)
- How can we lookup?
- How can we delete?
- (Harder) How much time do these operations take?

Managing Collisions via Chaining

- Store a doubly linked list at each array entry
- When an item hashes to a slot, prepend it to the linked list

Insert(k):
Prepend k at the head of the list $A[h(k)]$

- Runtime?
- $O(1)$ - exactly; not in expectation!
- Note, we assume k is not already in the hashtable
- If don't want that assumption, do a lookup first!

Managing Collisions via Chaining

- Store a doubly linked list at each array entry
- When an item hashes to a slot, prepend it to the linked list

Delete (k) :
Scan the list $A[h(k)]$, and delete the entry with key k

- Runtime?
- $O(L)$, where L is the length of the chain in slot $h(k)$
- What do we expect L to be?

Hashing and Chain Length

Worst-case delete time in a hash table with chaining: number of balls in a particular bin. Question: Expected number of balls in a particular bin b ?

- Let X_{i} denote indicator r.v. that item i hashes to the bucket b
- Assuming uniform hashing, $\operatorname{Pr}\left(X_{i}=1\right)=\frac{1}{m}$
. Let $X=\sum_{i=1}^{n} X_{i}$ denote the number of items that hash to bucket b
. By linearity of expectation, $E[X]=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=\sum_{i=1}^{n} \frac{1}{m}=\frac{n}{m}$

Managing Collisions via Chaining

- Store a doubly linked list at each array entry
- When an item hashes to a slot, prepend it to the linked list

Delete (k) :
Scan the list $A[h(k)]$, and delete the entry with key k

- Runtime?
- $O(L)$, where L is the length of the chain in slot $h(k)$
- What do we expect L to be?
. $E[L]=\frac{n}{m}$. We'll also call this the hashtable's load factor

Managing Collisions via Chaining

- Store a doubly linked list at each array entry
- When an item hashes to a slot, prepend it to the linked list

Lookup (k):
Scan the list $A[h(k)]$; return the entry with key k if an entry exists

- Runtime?
- (Surprisingly?) Lookup behavior is different in two cases!
- "Successful" lookup vs. "unsuccessful"
- Why?

Hashing and Chain Length

Worst-case lookup time in a hash table with chaining: number of balls in a particular bin. Question: what's different about successful and unsuccessful cases?

- Unsuccessful lookup: must scan through entire chain
. Cost is $O(L)$, and we showed that $E[L]=\frac{n}{m}$
- Successful lookup stops once we find the target element. The analysis is tricky because we always insert at the front of the list!
- Expected cost to lookup item x when x is in the hashtable is the expected number of items that collided with x after x was inserted

Cost of Successful Lookup

- Assume that element x is equally likely to be any of table's n elements
- Number of elements checked is 1 plus number of elements that appear before x in list $A[h(x)]$
- Observation: all elements are placed at the front of the list, so this is precisely the number of elements that:

1. collided with x, and
2. were inserted after x was

Cost of Successful Lookup

Expected number of collisions with x that occur after x is inserted?

- Let x_{i} be the $i^{\text {th }}$ element inserted into the list
- In other words, we insert $x_{1}, x_{2}, \ldots, x_{n}$ into A
- Let $X_{i j}$ be the indicator r.v. that equals 1 when $h\left(x_{i}\right)=h\left(x_{j}\right)$
- Note: $X_{i j}$ is 1 when there is a collision between x_{i} and $x_{j}, 0$ otherwise
- Under our uniform hashing assumption, $E\left[X_{i j}\right]=1 / \mathrm{m}$
- With this, can we reason about the number of elements examined in a successful search?

Cost of Successful Lookup

The expected number of elements examined in a successful search is:

$$
E\left[\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} X_{i j}\right)\right]
$$

Since x may be any of the n elements we insert, we average the contribution of each of the n items
\# of comparisons to find x_{i} are 1 plus the expected number of collisions among all items inserted after x_{i}

Cost of Successful Lookup

$$
\begin{aligned}
E\left[\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} X_{i j}\right)\right] & =\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} E\left[X_{i j}\right]\right) \text { by Linearity of Expectation } \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} \frac{1}{m}\right)=\frac{1}{n} \sum_{i=1}^{n} 1+\frac{1}{m n} \sum_{j=i+1}^{n} 1 \\
& =1+\frac{1}{m n} \sum_{i=1}^{n}(n-i)=1+\frac{1}{m n}\left(\sum_{i=1}^{n} n-\sum_{i=1}^{n} i\right) \\
& =1+\frac{1}{m n}\left(n^{2}-\frac{n(n+1)}{2}\right)=1+\frac{1}{n m}\left(\frac{2 n^{2}-n^{2}-n}{2}\right) \\
& =1+\frac{n-1}{2 m}=1+\frac{\frac{n}{m}}{2}-\frac{\frac{n}{m}}{2 n}=O\left(1+\frac{n}{m}\right)
\end{aligned}
$$

Hashtable Summary

We can get close to $O(1)$ performance for insert, lookup, and delete operations $(O(1+n / m)$ in expectation, where n / m can be controlled by resizing)

- There are other strategies for resolving collisions, but analyzing their performance is tricky
- Linear probing: $h(k, i)=(h(k)+i) \bmod m$
- Quadratic probing: $h(k, i)=\left(h(k)+c_{1} i+c_{2} i^{2}\right) \bmod m$
- Double hashing: $h(k, i)=h(k \| i)$
- Power-of-two-choices: stored at $h_{1}(k)$ or $h_{2}(k)$, uses "cuckooing" Hashtables are a great data structure for many applications
- As long as you don't need to iterate or sort!

