Data Structures with “Randomness’’:
Hashtables

Flashback to Data Structures...

Recall the Dictionary intertace

 \What are the Dictionary operations?

 \What concrete Dictionary implementations did we study?
 What are the tradeotfs between binary search trees and hashtables”
 How often do we need to do successor/range operations?

o Similarly: How much does locality matter?

Let’s develop a data structure with excellent (expected)

point lookup/update performance but no support for
range operations.

Hashtable Basics

« We say this array has m slots or buckets
e SUPPOSe we want to store n items, where n < m. What is ideal situation”
« If every element has a unique, designated location, get O(1) operations:
e Insert a new item — update slot
e Look up an item — check slot
e Delete an item — clear slot

« Unfortunately we usually have a universe of items U we may wish to store,
where | U| is much much bigger than m. Example universes?

o Punchline: even with n < m, we can't guarantee those n items their own
dedicated |locations because we don’'t know which particular n items from
our universe U that we will be storing...

Hash table

« But we still want O(1) operations! Plus, you've been told we achieve that!
. In reality, we settle for expected O(1) performance...

e |dea: use a hash function to map each item to a slot

 his a one-way function that maps the universe U of keys to slots in
our array A:

h:U- {0,1,...m-1}

« SO, we say an item with key k hashes to slot i(k), and that A(k) is the
tem’s hash value

o Textbook gives example hash functions (and why some are bad)
e [extbook discusses universal hashing

* |nstead, we're going to focus on analyzing the data structure under
the assumption that we do Iin fact have a uniform hash function

Hash function: theory versus practice

We will assume hash function A is ideal :
e Foralli € U, k, assume Pr(h(i) = k) = 1/m

e Assume the hashes of all items are
independent: Dahlgaard et al. 2017

Pr(h(i) = k| h(iy) = ky, h(iy) = ks, ...) = 1/m

MurmurHash3 "Random"
MSE=0.0012 SE=0.0011

Such As called uniform random hash functions

Good hash functions do behave this way in
practice

Lots of theoretical work about weaker assumptions
on the haSh fu WC’['OnS 0.2 0.3 04 05 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Histograms of set similarity estimates

Hash table

» Hash function A, array A
o ltemiis stored in Alh(7)]

° m:6

Beth
Chris

Hash table

» Hash function A, array A

o Item i is stored in Alh(i)]

Amir e
Beth /

Chris h(Amir) = 3

Hash table

» Hash function A, array A

o Item i is stored in Alh(i)]

Amir een | | feef]
Beth \

Chris h(Beth) = 0

Hash table

» Hash function A, array A

o Item i is stored in Alh(i)]

Amir g) f famefomef
Beth /

Chris h(Chris) = 4

Hashtable Basics

o We said that even with n < m, we can't guarantee those n items
their own dedicated locations because we don't know which
particular n items from our universe U that we will be storing...

e S0 we say a collision occurs when two unique items hash to
the same slot (h(x;) = h(x,), x; # X,)

 Practically, we need a way to manage collisions
* Recall any strategies from data structures?

* [heoretically, we need a way to analyze the impact of collisions on
our data structure performance

» Our collision strategy needs to maintain our expected O(1)
oerformance (luckily, several do!)

Managing Collisions via Chaining

* |dea: store a linked list at each array entry (what kind?)

 \When an item hashes to a slot, store it in the (possibly empty) linked
ISt

Amir

Beth

oms (o]] e loe]

Managing Collisions via Chaining

* |dea: store a linked list at each array entry (what kind?)

 \When an item hashes to a slot, store it in the (possibly empty) linked

ISt
Beth T T

T

Managing Collisions via Chaining

* |dea: store a linked list at each array entry (what kind?)

 \When an item hashes to a slot, store it in the (possibly empty) linked

ISt
Beth T T T

Nir /

h(Nir) = 4

Managing Collisions via Chaining

* |dea: store a linked list at each array entry (what kind?)

 \When an item hashes to a slot, store it in the (possibly empty) linked

N [o |

Beth T T T

Nir /

h(Nir) = 4

Managing Collisions via Chaining

o Store a doubly linked list at each array entry

When an item hashes to a slot, prepend it to the
iInked list

How can we insert? (See above...)

How can we lookup?

a

OW can we delete”?

(Harder) How much time do these operations

ke”?

Beth

Managing Collisions via Chaining

o Store a doubly linked list at each array entry

 When an item hashes to a slot, prepend it to the
iInked list

Insert(k):
Prepend k at the head of the list A[h(k)]

 Runtime?
« O(1) — exactly; not in expectation!
« Note, we assume k is not already in the hashtable

e |t don't want that assumption, do a lookup first!

Managing Collisions via Chaining

Chris
. | A
 Store a doubly linked list at each array entry Both m
* When an item hashes to a slot, prepend it to the 4 A 4

inked list LI I T [T 1

Delete(k):
Scan the list A[/h(k)], and delete the entry with key k

* Runtime?
« O(L), where L is the length of the chain in slot (k)
« \What do we expect L to be?

Hashing and Chain Length

Worst-case delete time in a hash table with chaining: number of balls in a
particular bin. Question: Expected number of balls in a particular bin b7

» Let X; denote indicator r.v. that item i hashes to the bucket b

. Assuming uniform hashing, Pr(X; = 1) = —
m

n
CLetX = Z X; denote the number of items that hash to bucket b
i=1

n n n 1
By linearity of expectation, E[X]| = E[ZXi] = Z E[X;] = Z — =
i=1 i=1 i=1

Managing Collisions via Chaining

Chris
N A
 Store a doubly linked list at each array entry Both m
» When an item hashes to a slot, prepend it to the 4 A A

inked list LI I T [T 1

Delete(k):
Scan the list A[/h(k)], and delete the entry with key k

* Runtime?
« O(L), where L is the length of the chain in slot (k)
« \What do we expect L to be?

n
. ElL] = —. We’'ll also call this the hashtable’s load factor
m

Managing Collisions via Chaining

Chris
A
 Store a doubly linked list at each array entry Both m
» When an item hashes to a slot, prepend it to the 4 A A

inked list LI I T [T 1

Lookup(k):
Scan the list A[h(k)]; return the entry with key £ if an entry exists

 Runtime?
e (Surprisingly?) Lookup behavior is different in two cases!

e “Successful” lookup vs. “unsuccesstul”
o \Why"

Hashing and Chain Length

Worst-case lookup time in a hash table with chaining: number of balls in a

particular bin. Question: what's different about successful and unsuccessful
cases”

* Unsuccessful lookup: must scan through entire chain

n
, Costis O(L), and we showed that E|L] = —
m

» Successful lookup stops once we find the target element. The analysis is
tricky because we always insert at the front of the list!

e Expected cost to lookup item x when x Is In the hashtable Is
the expected number of items that collided with x after x
was inserted

Cost of Successful Lookup

o Assume that element x is equally likely to be any of table’s n elements

» Number of elements checked is 1 plus number of elements that
appear before x in list A[h(x)]

* Observation: all elements are placed at the front of the list, so this is
precisely the number of elements that:

1. collided with x, and

2. were inserted after x was

Cost of Successful Lookup

—xpected number of collisions with x that occur after x is inserted”
e Let x; be the 1t element inserted into the list
« In other words, we insert xy, X,, ..., X, into A

. Let X;; be the indicator r.v. that equals 1 when h(x;) = h(xj)
» Note: X;; is 1 when there is a collision between x; and x;, O otherwise
. Under our uniform hashing assumption, E[X;;] = 1/m

e \WWith this, can we reason about the number of elements examined in a
successful search?

Cost of Successful Lookup

The expected number of elements examined in a successful search is:

17’1 n
E ;Z 1+) X,

i=1 j=i+1

Since x may be any of the n # of comparisons to find x; are 1 plus

the expected number of collisions
among all items inserted after x;

elements we insert, we average the
contribution of each of the n items

Cost of Successful Lookup

-3

J=i+1

1+ZE[]

1=

1

ngm—z) —1+%<

1

] (n2 n(n+1)> L
2

n—1

=14 —14m_m =01+
2

2m n

nm

n

m

_Z[1+],2+1] Zl+mn21

=

J=i+1

PIED)

1 zl>

nz—nz—n

(2

)

2

)

Hashtable Summary

We can get close to O(1) performance for insert, lookup, and delete

operations (O(1 4+ n/m) in expectation, where n/m can be controlled
by resizing)

* [here are other strategies for resolving collisions, but analyzing their
performance Is tricky

o Linear probing: h(k,i) = (h(k) + 1) mod m

» Quadratic probing: h(k, i) = (h(k) + c;i + C2i2) mod m
 Double hashing: h(k, 1) = h(k||i)

. Power-of-two-choices: stored at (k) or h,(k), uses “cuckooing”

Hashtables are a great data structure for many applications
 As |ong as you don't need to iterate or sort!

