Randomized Quicksort

Randomized Algorithms \& Data Structures

- Monte-Carlo algorithms
- Find the correct answer most of the time
- Can usually amplify probability of success with repetitions
- Example, Karger's min cut (in textbook)
- Las-Vegas algorithms
- Always find the correct answer, e.g. RandQuick sort (today!)
- But the worst-case running-time guarantees are not strong (they hold in expectation or with high probability, but their goodness depends on randomness)
- Randomized data structures: hashing, search trees, filters, etc.

Randomized Algorithm I Randomized Selection

Randomized Selection

Problem. Find the $k^{\text {th }}$ smallest/largest element in an unsorted array

- Recall our selection algorithm from back in our divide and conquer unit (lecture 15):

Select (A, k) :
If $|A|=1: \quad$ return $A[1]$

Else:

Choose a pivot $p \leftarrow A[1, \ldots, n]$; let r be the rank of p
$r, A_{<p}, A_{>p} \leftarrow \operatorname{Partition}((A, p)$
If $k==r: \quad$ return p
Else if $k<r$: $\quad \operatorname{Select}\left(A_{<p}, k\right)$
Else: $\quad \operatorname{Select}\left(A_{>p}, k-r\right)$

Selection with a Good Pivot

- Recall: pivot is "good" if it reduced the array size by at least a constant
- Gives a recurrence $T(n) \leq T(\alpha n)+O(n)$ for some constant $\alpha<1$
- Expands to a decreasing geometric series $T(n)=O(n)$
- In the deterministic algorithm, how did we find a good pivot?
- Split array into groups of 5
- And computed the median of group medians
- The pivot guaranteed that $n \rightarrow 7 n / 10$
- Here is a silly idea: What if we pick the pivot uniformly at random?
- Seems like the pivot is "usually" around the midpoint
- What is the expected running time?

Randomized Selection

- Problem. Find the $k^{\text {th }}$ smallest/largest element in an unsorted array
- Recall our selection algorithm

Select (A, k) :

If $|A|=1: \quad$ return $A[1]$

Else:

Choose a pivot $p \leftarrow A[1, \ldots, n]$ uniformly at random; let r be the rank of p
$r, A_{<p}, A_{>p} \leftarrow \operatorname{Partition}((A, p)$
If $k==r: \quad$ return p
Else if $k<r$: $\quad \operatorname{Select}\left(A_{<p}, k\right)$
Else: $\quad \operatorname{Select}\left(A_{>p}, k-r\right)$

Analyzing Randomized Selection

- Normally, we'd write a recurrence relation for a recursive function
- A bit complicated now-input sizes of later recursive calls depend on the random choices of pivots in earlier calls
- We will use a different accounting trick for running time
- Randomized selection makes at most one recursive call each time:
- Group multiple recursive call in "phases"
- Sum of work done by all calls is equal to the sum of the work done in all the phases

```
1 3 7

\section*{Analyzing in Phases}
- Idea: let a "phase" of the algorithm be the time it takes for the array size to drop by a constant factor (say \(n \rightarrow(3 / 4) \cdot n)\)
- If array shrinks by a constant factor in each phase and linear work is done in each phase, what would be the running time?
- \(T(n)=c\left(n+3 n / 4+(3 / 4)^{2} n+\ldots+1\right)=O(n)\)
- If we want a \(1 / 4\) th, \(3 / 4\) th split, what range should our pivot be in?
- Middle half of the array (if \(n\) size array, then pivot in \([n / 4,3 n / 4]\) )
- What is the probability of picking such a pivot?
- \(1 / 2\)
- Phase ends as soon as we pick a pivot in the middle half
- Expected \# of recursive calls until phase ends? 2

\section*{Expected Running Time}
- Let the algorithm be in phase \(j\) when the size of the array is
- At least \(n\left(\frac{3}{4}\right)^{j+1}\) but not greater that \(n\left(\frac{3}{4}\right)^{j}\)
- Expected number of iterations within a phase: 2
- Let \(X_{j}\) be the expected number of steps spent in phase \(j\)
- \(X=X_{0}+X_{1}+X_{2} \ldots\) be the total number of steps taken by the algorithm
- \(\mathrm{E}\left(X_{j}\right)=\mathrm{E}(\#\) recursive calls until \(j\) th phase ends \(\cdot \#\) steps in phase \(j\) )
- \(\mathrm{E}\left(X_{j}\right) \leq c n(3 / 4)^{j} \cdot \mathrm{E}(\#\) recursive calls until \(j\) th phase ends \()=2 c n(3 / 4)^{j}\)

\section*{Expected Running Time}
- Let \(X_{j}\) be the expected number of steps spent in phase \(j\)
- \(X=X_{0}+X_{1}+X_{2} \ldots\) be the total number of steps taken by the algorithm
- \(\mathrm{E}\left(X_{j}\right)=\mathrm{E}\) (\# of iterations until \(j\) th phase ends \(\cdot \#\) steps in phase \(j\) )
- \(\mathrm{E}\left(X_{j}\right) \leq n(3 / 4)^{j} \cdot \mathrm{E}(\#\) iterations until \(j\) th phase ends \()=2 c n(3 / 4)^{j}\)
- Now we can apply linearity of expectation:
. \(E[X]=\sum_{j} E\left[X_{j}\right] \leq \sum_{j} 2 c n\left(\frac{3}{4}\right)^{j}=2 c n \sum_{j}\left(\frac{3}{4}\right)^{j}\)
\[
=\Theta(n)
\]

\section*{Pivot Selection}
- Deterministic and random both take \(O(n)\) time
- What's the advantage of the deterministic algorithm?
- Worst-case guarantee-the random algorithm could be very slow sometimes
- What's the advantage of the random algorithm?
- Much much simpler and better constants hidden in \(O()\)
- Which should you use?
- Pretty much always random
- Question to ask yourself:
- how often is the randomized algorithm going to be much worse than \(O(n)\) ?

Randomized Algorithm II Randomized QuickSort

\section*{Randomized Quicksort}
- Recall deterministic Quicksort
- Depending on the choice pivot, could be \(O\left(n^{2}\right)\)
- What if we pick the pivot uniformly at random?
- We saw in randomized selection that this leads to good pivots half of the time
```

Quicksort(A):
If }|A|<3:Sort(A)\mathrm{ directly
Else: choose a pivot element p}\leftarrow
A<p},\mp@subsup{A}{>p}{}\leftarrow\mathrm{ Partition around }
Quicksort(}\mp@subsup{A}{<p}{}
Quicksort(}\mp@subsup{A}{>p}{}

```

\section*{Randomized Quicksort}
- Intuitively half the pivots will be good, half bad
- We will analyze quick sort using another accounting trick (see the textbook for example similar to selection's approach of analyzing "phases")
- Total work done can be split into to types:
- Work done making recursive calls (this is a lower order term, it turns out)
- Work partitioning the elements
- How many recursive calls in the worst case?
- Imagine worst pivot being chosen each time
- \(O(n)\)

\section*{Randomized Quicksort}
- We thus need to bound the work partitioning elements
- Partitioning an array of size \(n\) around a pivot \(p\) takes exactly \(n-1\) comparisons
- We won't look at partitions made in each recursive call, which depend on the choice of random pivot
- Idea: Instead, account for the total work done by the partition step by summing up the total number of comparisons made
- Two ways to count total comparisons:
- Look at the size of arrays across recursive calls and sum
- Look at all pairs of elements and count total \# of times they are compared (this is easier to do in this case)

\section*{Aside: Randomized Analysis}
- Often multiple ways to determine a randomized algorithm's cost
- We can split into phases, or count the cost directly. We can calculate each probability, or use linearity of expectation
- Intrinsically some "cleverness" involved in choosing the way that gets you a clean answer
- We'll focus on problems where there's a clear path to finding the solution (either it follows directly from the question, or we'll revisit problems you've seen before). More complex problems abound if you look!
- That said, here's a very clever way to calculate Quicksort's running time

\section*{Counting Total Comparisons}
- Just for analysis, let \(B\) denote the sorted version of input array \(A\), that is, \(B[i]\) is the \(i^{\text {th }}\) smallest element in \(A\)
- Define random variable \(X_{i j}\) as the number of times Quicksort compares \(B[i]\) and \(B[j]\)
- Observation: \(X_{i j}=0\) or \(X_{i j}=1\), why?
- \(B[i], B[j]\) only compared when one of them is the current pivot; pivots are excluded from future recursive calls
. Let \(T=\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{i j}\) be the total number of comparisons made
by randomized Quicksort


\section*{Expected Running Time}
. Goal: \(E[T]=E\left[\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{i j}\right]=\sum_{i=1}^{n} \sum_{j=i+1}^{n} E\left[X_{i j}\right]\)
- \(E\left[X_{i j}\right]=\operatorname{Pr}\left[X_{i j}=1\right]\)
- When is \(X_{i j}=1\) ? That is, when are \(B[i]\) and \(B[j]\) compared?
- Consider a particular recursive call. Let rank of pivot \(p\) be \(r\).
- Let's think about where \(B[i], B[j]\) lie with respect to \(p\)

\section*{Expected Running Time}
- Goal: \(E[T]=E\left[\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{i j}\right]=\sum_{i=1}^{n} \sum_{j=i+1}^{n} E\left[X_{i j}\right]\)
- \(E\left[X_{i j}\right]=\operatorname{Pr}\left[X_{i j}=1\right]\)
- When is \(X_{i j}=1\) ? That is, when are \(B[i]\) and \(B[j]\) compared?
- Consider a particular recursive call. Let rank of pivot \(p\) be \(r\).
- Case 1. One of them is the pivot: \(r=i\) or \(r=j\)
- Case 2. Pivot is between them: \(r>i\) and \(r<j\)
- Case 3. Both less than the pivot: \(r>i, j\)
- Case 4. Both greater than the pivot: \(r<i, j\)

\section*{Comparisons for Each Case}
- Case 1. \(r=i\) or \(r=j\)
- \(B[i]\) and \(B[j]\) are compared once and one of them is excluded from all future calls
- Case 2. \(r>i\) and \(r<j\)
- \(B[i]\) and \(B[j]\) are both compared to the pivot but not to each other, after which they are in different recursive calls: will never be compared again
- Case 3. \(r>i, j\) and Case 4. \(r<i, j\)
- \(B[i]\) and \(B[j]\) are not compared to each other, they are both in the same subarray and may be compared in the future
- Takeaway: \(B[i], B[j]\) are compared for the 1 st time when one of them is chosen as pivot from \(B[i], B[i+1], \ldots, B[j]\) \& never again

\section*{Expected Running Time}
- \(\operatorname{Pr}\left[X_{i j}=1\right]=\operatorname{Pr}(\) one of them is picked as pivot from \(B[i], B[i+1], \ldots, B[j]\)
- \(\operatorname{Pr}\left[X_{i j}=1\right]=\frac{2}{j-i+1}\)
. \(E[T]=\sum_{i=1}^{n} \sum_{j=i+1}^{n} E\left[X_{i j}\right]=2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{1}{j-i+1}\)

\section*{Expected Running Time}
- \(B[i]\) and \(B[j]\) are compared iff one of them is the first pivot chosen from the range \(B[i], B[i+1], \ldots, B[j]\)
- \(\operatorname{Pr}\left[X_{i j}=1\right]=\frac{2}{j-i+1}\) At each round, the probability that \(X_{i j}=1\) conditioned on the event that we are in Case 1 or Case 2.
(In Cases 3 and 4, \(X_{i j}=0\) )
- \(E[T]=\sum_{i=1}^{n} \sum_{j=i+1}^{n} E\left[X_{i j}\right]=2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{1}{j-i+1}\)
. For fixed \(i\), inner sum is \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots \frac{1}{n-i+1} \leq \sum_{\ell=2}^{n} \frac{1}{\ell}=O(\log n)\)
- Thus, expected number of comparisons is:
\[
E[T]=O(n \log n)
\]

\section*{Quick Sort Summary}
- Las Vegas algorithms like Quicksort and Selection are always correct and their running time guarantees hold in expectation
- We can actually prove that the number of comparisons made by Quicksort is \(O(n \log n)\) with high probability
- W.H.P. means that the the probability that the running time of quicksort is more than a constant \(c\) factor away from its expectation is very small (polynomially small: less than \(1 / n^{c}\) for \(c \geq 1\) )
- Whp bounds are called concentration bounds
- Whp: ideal guarantees possible for a randomized algorithm

\section*{Acknowledgments}
- Some of the material in these slides are taken from
- Shikha Singh
- Kleinberg Tardos Slides by Kevin Wayne (https:// www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/teaching/ algorithms/book/Algorithms-JeffE.pdf)```

