Introduction to Probability

 II
Random Variable

An event either does or does not happen. But what if we want to capture the magnitude of a probabilistic event?

- Suppose I flip n fair coins: the \# of heads is a random variable
- Number that comes up when we roll a fair die is a random variable
- If an algorithm's behavior is determined by "flipping some coins" then the running time of the algorithm is a random variable
- Definition. A random variable X is a function from a sample space S (with a probability measure) to some value set (e.g. real numbers, integers, etc.)

Random Variable: Example

- Suppose, for example, I flip a coin 10 times. Let X be the number of heads
- $\operatorname{Pr}[X=0]=1 / 2^{10}$
- $\operatorname{Pr}[X=10]=1 / 2^{10}$
- $\operatorname{Pr}[X=4]$?
- $\operatorname{Pr}[X=4]=\binom{10}{4} \frac{1}{2^{4}} \frac{1}{2^{6}}=\frac{105}{512}$
- A random variable that is 0 or 1 (indicating if something happens or not) is called an indicator random variable or Bernoulli random variable

Expectation

Every time you do the experiment, associated random variable can take a different value

- How can we characterize the average behavior of a random variable?
- Alternate Definition. Expected value of a random variable R defined on a sample space S is

$$
E(R)=\sum x \cdot \operatorname{Pr}(R=x)
$$

- Let R be the number that comes up when we roll a fair, six-sided die, then the expected value of R is

$$
\mathrm{E}(R)=\sum_{i=1}^{6} i \cdot \frac{1}{6}=\frac{1}{6}(1+2+3+4+5+6)=\frac{7}{2}
$$

To get the E to look good in latex, use \mathrm\{E\}
(We won't use \mathbb{E} in the slides, but if you really want to, it's \mathbb)

Conditional Expectation

- Definition. If A is an arbitrary event with $\operatorname{Pr}[A]>0$, the conditional expectation of X given A is

$$
E[X \mid A]:=\sum_{x} x \cdot \operatorname{Pr}[X=x \mid A]
$$

- (Law of total expectation) If $\left\{A_{1}, A_{2}, \ldots\right\}$ is a finite partition of the sample space:

$$
E(X)=\sum_{i} E\left(X \mid A_{i}\right) \cdot \operatorname{Pr}\left(A_{i}\right)
$$

Very useful!

Linearity of Expectation

- Very important tool in randomized algorithms
- Expectation of random variables obey a wonderful rule
- Informally, the expectation of a sum is the sum of the expectations.
- Formally, for any random variables $X_{1}, X_{2}, \ldots, X_{n}$ and any coefficients

$$
\begin{aligned}
& \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \\
& \mathrm{E}\left[\sum_{i=1}^{n}\left(\alpha_{i} \cdot X_{i}\right)\right]=\sum_{i=1}^{n}\left(\alpha_{i} \cdot \mathrm{E}\left[X_{i}\right]\right)
\end{aligned}
$$

Very useful!

- Note. Always true! Linearity of expectation does not require independence of random variables.

Bernoulli Distribution

- Suppose you run an experiment with probability of success p and failure $1-p$
- Example, coin toss where head is success and $\operatorname{Pr}(H)=p$
- Let X be a Bernoulli or indicator random variable that is 1 if we succeed, and 0 otherwise. Then,

$$
\begin{aligned}
E[X] & =\sum_{x} x \cdot \operatorname{Pr}[X=x] \\
& =0 \cdot \operatorname{Pr}[X=0]+1 \cdot \operatorname{Pr}[X=1] \\
& =p
\end{aligned}
$$

- Remember this: expectation of an indicator random variable is exactly the probability of success!

Expected Success: n Bernoulli Trials

- Consider n independent Bernoulli trials (with success probability p). Let R denote the number of successes
- R is said to follow a Binomial distribution (we'll revisit this)
- We want to know expected number of successes $\mathrm{E}(R)$
- Can write R as a sum of indicator random variables
- $R=\sum_{i} R_{i}$ where $R_{i}=0$ or $R_{i}=1$
. Then $\mathrm{E}[R]=\mathrm{E}\left[\sum_{i} R_{i}\right]$

Expected Success: n Bernoulli Trials

- Consider n independent Bernoulli trials (with success probability p). Let R denote the number of successes
- R is said to follow a Binomial distribution (we'll revisit this)
- We want to know expected number of successes $\mathrm{E}(R)$
- Can write R as a sum of indicator random variables
- $R=\sum_{i} R_{i}$ where $R_{i}=0$ or $R_{i}=1$
.Then $\mathrm{E}[R]=\mathrm{E}\left[\sum_{i} R_{i}\right]=\sum_{i} \mathrm{E}\left[R_{i}\right]$

Expected Success: n Bernoulli Trials

- Consider n independent Bernoulli trials (with success probability p). Let R denote the number of successes
- R is said to follow a Binomial distribution (we'll revisit this)
- We want to know expected number of successes $\mathrm{E}(R)$
- Can write R as a sum of indicator random variables
- $R=\sum_{i} R_{i}$ where $R_{i}=0$ or $R_{i}=1$
- Then $\mathrm{E}[R]=\mathrm{E}\left[\sum_{i} R_{i}\right]=\sum_{i} \mathrm{E}\left[R_{i}\right]=\sum_{i=1}^{n} p=n p$

Uniform Distribution

- With a uniform distribution, every outcome is equally likely
- Examples:
- fair coin toss (heads and tails are equally likely)
- fair die roll (all numbers are equally likely)
- Let X be the random variable of the experiment and S be the sample space
- $\operatorname{Pr}[X=x]=\frac{1}{|S|}$
- $E[X]=\sum_{x \in S} x \cdot \operatorname{Pr}(X=x)=\frac{1}{|S|} \cdot \sum_{x \in S} x$

Card Guessing: Memoryless

- To entertain your family you have them shuffle deck of n cards and then turn over one card at a time. Before each card is turned, you predict its identity. Assume you have no psychic abilities or memory to remember cards
- Your strategy: guess uniformly at random
- How many predictions do you expect to be correct?
- Let X denote the random variable equal to the \# of correct guesses and X_{i} denote the indicator variable that the $i^{\text {th }}$ guess is correct
. Thus, $X=\sum_{i=1}^{n} X_{i}$ and $\mathrm{E}[X]=\mathrm{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right]$
- $\mathrm{E}\left[X_{i}\right]=0 \cdot \operatorname{Pr}\left(X_{i}=0\right)+1 \cdot \operatorname{Pr}\left(X_{i}=1\right)=\operatorname{Pr}\left(X_{i}=1\right)=1 / n$
- Thus, $\mathrm{E}[X]=1$

Card Guessing: Memoryful

- Suppose we play the same game but now assume you have the ability to remember cards that have already been turned
- Your strategy: guess uniformly at random among cards that have not been turned over
- Let X denote the random variable equal to the \# of correct guesses and X_{i} denote the indicator variable that the $\boldsymbol{i}^{\text {th }}$ guess is correct
- Thus, $X=\sum_{i=1}^{n} X_{i}$ and $\mathrm{E}[X]=\mathrm{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right]$
- $\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left(X_{i}=1\right)=\frac{1}{n-i+1}$
-Thus, $\mathrm{E}[X]=\sum_{i=1}^{n} \frac{1}{n-i+1}=\sum_{i=1}^{n} \frac{1}{i}$

After we've seen i cards, we can rule out those i cards from our range of guesses

Harmonic Numbers

- The $n^{\text {th }}$ harmonic number, denoted H_{n} is defined as
$H_{n}=\sum_{i=1}^{n} \frac{1}{i}$
- Theorem. $H_{n}=\Theta(\log n)$
- Proof Idea. Upper and lower bound area under the curve

$$
\uparrow \quad H_{n} \leq 1+\int_{1}^{n} \frac{d x}{x}=\ln n+1
$$

Card Guessing: Memoryful

- Suppose we play the same game but now assume you have the ability to remember cards that have already been turned
- Your strategy: guess uniformly at random among cards that have not been turned over
- Let X denote the r.v. equal to the number of correct predictions and X_{i} denote the indicator variable that the i th guess is correct
- Thus, $X=\sum_{i=1}^{n} X_{i}$ and $E[X]=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]$
- $E\left[X_{i}\right]=\operatorname{Pr}\left(X_{i}=1\right)=\frac{1}{n-i+1}$
. Thus, $E[X]=\sum_{i=1}^{n} \frac{1}{n-i+1}=\sum_{i=1}^{n} \frac{1}{i}=\Theta(\log n)$

Geometric Distribution

- Let's say we do a sequence of Bernoulli trials X_{1}, X_{2}, \ldots where X_{i} where each trial is successful $\left(X_{i}=1\right)$ with probability p, and fails $\left(X_{i}=0\right)$ with probability $1-p$
- Question: what is the expected number of trials until the first success?
- In expectation, what is the value of the first i such that $X_{i}=1$?
- E.g. number of coin flips until heads ($p=1 / 2$)
- E.g. number if times I roll a die until I get a $1(p=1 / 6)$
- One way to solve it is to just do the sum:
- $\sum_{i=1}^{\infty} i(1-p)^{i-1} p$

Geometric Expectation (using the sum)

$$
\begin{aligned}
& \sum_{i=1}^{\infty} i(1-p)^{i-1} p=\sum_{i=1}^{\infty} \sum_{k=1}^{i}(1-p)^{i-1} p= \\
& \sum_{k=1}^{\infty} \sum_{i=k}^{\infty}(1-p)^{i-1} p=\sum_{k=1}^{\infty} p(1-p)^{k-1} \sum_{i=0}^{\infty}(1-p)^{i}= \\
& \sum_{k=1}^{\infty} p(1-p)^{k-1} \frac{1}{1-(1-p)}=\sum_{k=1}^{\infty}(1-p)^{k-1}=\sum_{k=0}^{\infty}(1-p)^{k}=\frac{1}{p}
\end{aligned}
$$

Geometric Expectation (using the sum)

- Want to know, how many tries in expectation until first success
- Let's think about this recursively

$$
X \leftarrow\left\{\begin{array}{l}
1 \text { with prob. } p \\
0 \text { with prob. }(1-p)
\end{array}\right.
$$

FindNumTries:
If $X=1$
\quad Return 1
If $X=0$
Return 1+ FindNumTries

If we fail in the first try, we start over from scratch!

- Let F be the number returned by FindNumTries, what want $\mathrm{E}(F)$

Geometric Expectation (using the sum)

- Let F be the number of times FindNumtries is called, what is $\mathrm{E}(F)$?
- $\mathrm{E}(F)=\mathrm{E}\left(F \mid X_{1}=1\right) \cdot \operatorname{Pr}\left(X_{1}=1\right)+\mathrm{E}\left(F \mid X_{1}=0\right) \cdot \operatorname{Pr}\left(X_{1}=0\right)$

$$
=(1+0) \cdot p+(1+E(F)) \cdot(1-p)
$$

- $E(F)=1 / p$

```
FindNumTries:
If }X=
    Return 1
If }X=
    Return 1+ FindNumTries
```


Coupon/Pokemon Collector Problem

Gotta' Catch 'Em All

- Suppose there are n different types of Pokemon cards
- In each trial we purchase a pack that contains a Pokemon card, where
- each of the n Pokemon are equally likely to be in a pack
- We repeat until we have at least one of each type of card, how many packs does it take in expectation to collect all?
- Let X be the r.v. equal to the number of packs bought until you first have
 a card of each type. Goal: compute $E[X]$
- We break X into smaller random variables
- Idea: we make progress every time we get a card we don't already have

Pokemon Collector Problem

- Let X_{i} denote the "length of the i th phase", that is, the number of packs bought during the i th phase (i th phase ends as soon as we see the i th distinct card)
- Thus, $X=\sum_{1=1}^{n} X_{i}$

- Each phase can be though of as flipping a biased coin until we see a head, where seeing a head = getting a new card

Pokemon Collector Problem

- $E\left[X_{i}\right]$ is the expected number of coin flips until success (expectation of a geometric r.v.)

- We know, $E\left[X_{i}\right]=1 / p_{i}$ where p_{i} is the probability of success/ probability of seeing a heads during a coin flip in the i th phase
- Before the i th phase starts, we don't have $n-i+1$ Pokemon
- Remember: each of the n Pokemon are equally likely to be in a pack

Pokemon Collector Problem

- $E\left[X_{i}\right]$ is the expected number of coin flips until success (expectation of a geometric r.v.)

- We know, $E\left[X_{i}\right]=1 / p_{i}$ where p_{i} is the probability of success/ probability of seeing a heads during a coin flip in the i th phase
- $p_{i}=\frac{n-i+1}{n}$

Pokemon Collector Problem

- We know, $E\left[X_{i}\right]=1 / p_{i}$ where p_{i} is the probability of success/ probability of seeing a heads during a coin flip in the i th phase

- $E\left[X_{i}\right]=$ Expected[number of flips until first heads $]=1 / p_{i}=\frac{n-i+1}{n}$
- $E[X]=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=\sum_{i=1}^{n} \frac{n}{n-i+1}=\sum_{i=1}^{n} \frac{n}{i}=n H_{n}=\Theta(n \log n)$

Taking Stock...

- We've run through a lot of probability vocabulary and rules...
- We've applied some of those rules to answer "interesting" questions
- What's next?
- Analyzing previously-explored algorithms that have randomness
- Analyzing previously-explored data structures that have randomness
- Using randomness to simplify the implementation of common APIs

Acknowledgments

- Some of the material in these slides are taken from
- Shikha Singh
- Kleinberg Tardos Slides by Kevin Wayne (https:// www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/ algorithms/book/Algorithms-JeffE.pdf)
- Hamiltonian cycle reduction images from Michael Sipser's Theory of Computation Book

