Algorithms: SAT and 3-SAT

Model 1: SAT

Each variable x_{i} represents a Boolean value (T or F). An assignment consists in specifying a T or F value for each variable. Recall that \wedge denotes logical AND, and \vee denotes logical OR. \bar{x} denotes logical negation. For example, $x_{1} \wedge \overline{x_{3}}$ means " x_{1} and not x_{3} ".

	Examples	Non-examples
Term	x_{1}	$x_{1} \wedge x_{2}$
	x_{3}	$x_{2} \vee x_{4}$
	$\overline{x_{3}}$	
Clause	x_{1}	$x_{1} \wedge x_{2}$
	$x_{1} \vee x_{2}$	$x_{2} \vee \overline{x_{3}} \wedge x_{4}$
	$\overline{x_{1}} \vee x_{3} \vee x_{2}$	$x_{1} \Rightarrow x_{5}$
	$\overline{x_{3}}$	
	$\overline{x_{5}} \vee x_{3} \vee \overline{x_{7}} \vee x_{9}$	
CNF	x_{1}	
formula	$x_{2} \vee x_{5} \vee \overline{x_{1}}$	$\left.x_{1} \wedge x_{3}\right) \vee\left(x_{2} \wedge x_{5}\right)$
	$\left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{3}} \vee x_{5} \vee x_{9} \vee x_{8} \vee x_{2}\right)$	
	$x_{4} \wedge\left(x_{1} \vee x_{2}\right) \wedge \overline{x_{5}} \wedge\left(x_{1} \vee \overline{x_{3}} \vee x_{5}\right)$	
	$x_{1} \wedge\left(\overline{x_{1}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right)$	
	$x_{1} \wedge \overline{x_{3}}$	$\left.\left.\left.\left.x_{5} \wedge x_{6}\right)\right)\right)\right)$
3-CNF	$x_{2} \vee x_{5} \vee \overline{x_{1}}$	
formula	$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee x_{3} \vee \overline{x_{1}}\right)$	$x_{1} \vee x_{2}$
	$\left(x_{4} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee x_{1}\right) \wedge\left(x_{2} \vee x_{2} \vee x_{3}\right)$	$\left(x_{4} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{2} \vee \overline{x_{3}}\right) \wedge\left(x_{2} \vee x_{2} \vee x_{3}\right)$

(Page intentionally left blank.)

1 Based on the examples and non-examples of terms in the first row of the chart, write down a definition of a term.

2 Based on the examples and non-examples, write a definition of a clause. Be sure to use the word term in your definition.

3 Again based on the model, write a definition of a CNF formula. Be sure to use the word clause.

CNF stands for conjunctive normal form.

4 Consider the assignment setting each x_{i} to T when i is even, and F when i is odd. For each CNF formula in the left-hand column, say whether it evaluates to T or F (i.e. whether it is satisfied) under this assignment using the usual rules of Boolean logic.

5 Find an assignment that makes $x_{1} \wedge\left(\overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{1}}\right) \wedge\left(x_{2} \vee \overline{x_{1}}\right)$ true. (You only need to specify values for x_{1}, x_{2}, and x_{3}.) Such an assignment is called a satisfying assignment.

6 Does every clause have some assignment which makes it true (i.e. a
© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.
satisfying assignment)? If so, explain why; if not, give a counterexample.

7 Does every CNF formula have a satisfying assignment? If so, explain why; if not, give a counterexample.

8 Based on your previous answer, state an interesting decision problem about CNF formulas.

This is a famous decision problem called SAT. If we restrict every clause to have exactly three terms-as in the 3-CNF formulas shown in the model-the corresponding decision problem is known as 3-SAT.

9 Explain why $3-$ SAT \leq_{P} SAT.

It turns out that SAT $\leq_{P} 3$-SAT as well, although this is extremely nonobvious! In fact, 3 is the smallest k for which SAT $\leq_{p} k$-SAT. 1-SAT is trivial and 2-SAT can be solved in linear time by a very clever application of DFS.

It turns out that we can reduce 3-SAT to another problem we have studied before:

Theorem 1. 3 -SAT \leq_{P} Independent-Set.
Let's prove it!
10 In order to show 3 -SAT \leq_{p} Independent-Set, we need to assume that we have a black box to solve \qquad , and show how we can use it to construct a solution to \qquad .

11 Draw a picture of the situation using nested boxes. What are the inputs and outputs?

Recall that the Independent-Set problem takes as input a graph G and a natural number k, and outputs whether there is an independent set in G of size k or greater.

12 Fill in this statement based on your picture: given a \qquad , we have to construct a \qquad
and pick a \qquad such that the newly constructed \qquad
has \qquad
if and only if the original input \qquad .
© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

Model 2: 3-SAT \leq_{P} Independent-Set

Let's first consider formula F and graph A.

13 What is the relationship of formula F to graph A ?
© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

14 How many clauses does F have? How many vertices does A have?

15 What is the size of a maximum independent set in graph A ?

16 In general, instead of formula F, suppose we started with a $3-\mathrm{CNF}$ formula F^{\prime} having k clauses. How would we make the corresponding graph A^{\prime} ?

17 How many vertices would A^{\prime} have?

18 What would be the size of a maximum independent set in A^{\prime} ?

Now consider graph B.

19 How is graph B related to graph A ?

20 In general, if we started with some 3-CNF formula F^{\prime} and made it into a graph A^{\prime} of triangles, what do you think we would add to turn it into a corresponding graph B^{\prime} ?

21 Find a maximal independent set in B.

22 Explain how you can use your independent set to find a satisfying assignment for F.

23 Explain why in a satisfying assignment, at least one term must be true in each clause.

24 Explain how you could use any satisfying assignment for F to find an independent set of size 3 in B.

25 Would the previous arguments still work if we used graph A instead of graph B ? In other words, what is the importance of the edges added in graph B ?
© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

