
NP Hardness Reductions

Overview So Far
• We have defined classes

• We have some notion of hardness and completeness

• We said a problem is -hard if then

• Alternate definition: every problem in poly-time reduces to it

• A problem is -complete if it is -hard and in

𝖯 and 𝖭𝖯

𝖭𝖯 𝖭𝖯

X 𝖭𝖯 ≡ X ∈ 𝖯 𝖯 = 𝖭𝖯

𝖭𝖯

X 𝖭𝖯 𝖭𝖯 𝖭𝖯 We will define these
reductions today

𝖯

𝖭𝖯

𝖭𝖯 complete

hard𝖭𝖯
Focus on decision

problems

Overview
• We have defined classes

• We have some notion of hardness and completeness

• We said a problem is -hard if then

• Alternate definition: every problem in poly-time reduces to it

• A problem is -complete if it is -hard and in

• (Cook-Levin). 3SAT/SAT is hard

• Today: Problem reductions!

• Strategy to prove a problem is NP hard: Reduce a known NP hard
problem to it

• Will do a bunch of reductions next few days

𝖯 and 𝖭𝖯

𝖭𝖯 𝖭𝖯

X 𝖭𝖯 ≡ X ∈ 𝖯 𝖯 = 𝖭𝖯

𝖭𝖯

X 𝖭𝖯 𝖭𝖯 𝖭𝖯

𝖭𝖯

Relative Hardness
• How do we compare the relative hardness of problems?

• Recurring idea in this class: reductions!

• Informally, we say a problem reduces to a problem , if can use an
algorithm for to solve

• E.g., Bipartite matching reduces to max flow

X Y
Y X

Intuitively, if problem reduces to problem ,
then solving is no harder than solving

X Y
X Y

[Karp] Reductions
Definition. Decision problem polynomial-time (Karp) reduces to
decision problem if given any instance of , we can construct an
instance of in polynomial time s.t if and only if .

Notation.

• Solving is no harder than solving : if we have an algorithm for
, we can use it + a polynomial-time reduction to solve

X
Y x X

y Y x ∈ X y ∈ Y

X ≤p Y
X Y

Y X

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X

Reductions Quiz
Say . Which of the following can we infer?

• If can be solved in polynomial time, then so can .

• can be solved in poly time iff can be solved in poly time.

• If cannot be solved in polynomial time, then neither can .

• If cannot be solved in polynomial time, then neither can .

X ≤p Y

X Y

X Y

X Y

Y X

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X

Reductions Quiz
Say . Which of the following can we infer?

• If can be solved in polynomial time, then so can .

• can be solved in poly time iff can be solved in poly time.

• If cannot be solved in polynomial time, then neither can .

• If cannot be solved in polynomial time, then neither can .

X ≤p Y

X Y

X Y

X Y

Y X

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X

Digging Deeper
• Graph 2-Color reduces to Graph 3-color

• We'll see this soon

• Graph 2-Color can be solved in polynomial time

• How?

• Can decide if a graph is bipartite in time using BFS

• Graph 3-color (we’ll show) is NP hard and unlikely to have a
polynomial-time solution

O(n + m)

Intuitively, if problem reduces to problem ,
then solving is no harder than solving

X Y
X Y

Use of Reductions: X ≤p Y
Design algorithms:

• If can be solved in polynomial time, we know can also be
solved in polynomial time

Establish intractability:

• If we know that is known to be impossible/hard to solve in
polynomial-time, then we can conclude the same about problem

Establish Equivalence:

• If and then can be solved in poly-time iff can
be solved in poly time and we use the notation

Y X

X
Y

X ≤p Y Y ≤p X X Y
X ≡p Y

NP hard: Operational Definition
• New definition of NP hard using reductions.

• A problem is NP hard, if for any problem ,

• Recall we said is NP hard if .

• Lets show that both definitions are equivalent

• every problem in NP reduces to in poly-time, and if ,
then

• Suppose , then : which means every problem
in reduces to

Y X ∈ 𝖭𝖯 X ≤p Y

Y Y ∈ 𝖯, then 𝖯 = 𝖭𝖯

(⇒) Y Y ∈ 𝖯
𝖯 = 𝖭𝖯

(⇐) Y ∈ 𝖯 𝖯 = 𝖭𝖯
𝖭𝖯(= 𝖯) Y

Solving X is no harder
than solving Y

Proving NP Hardness
• To prove problem is -hard

• Difficult to prove every problem in reduces to

• Instead, we use a known-NP-hard problem

• We know every problem in ,

• Notice that is transitive

• Thus, enough to prove

Y 𝖭𝖯

𝖭𝖯 Y

Z

X 𝖭𝖯 X ≤p Z

≤p

Z ≤p Y

To prove that a problem is NP hard,
reduce a known NP hard problem to

Y
Z Y

Known NP Hard Problems?
• For now: SAT (and a restricted version, 3SAT) (Cook-Levin Theorem)

• We will prove a whole repertoire of NP hard and NP complete
problems by using reductions

• Before reducing 3SAT to other problems to prove them NP hard, let us
review some easier reductions first (from our activit)

To prove that a problem is NP hard,
reduce a known NP hard problem to

Y
Z Y

VERTEX-COVER IND-SET≡p

IND-SET

Given a graph , an independent set is a subset of vertices
 such that no two of them are adjacent, that is, for any ,

• What is the decision version of the IND-SET problem?

• IND-SET decision Problem. Given a graph and an integer
, does have an independent set of size at least ?

G = (V, E)
S ⊆ V x, y ∈ S
(x, y) ∉ E

G = (V, E)
k G k

independent set of size 6

Vertex-Cover

Given a graph , a vertex cover is a subset of vertices
such that for every edge , either or .

• What is the decision version of the VERTEX_COVER problem?
• VERTEX-COVER decision Problem. Given a graph and an

integer , does have a vertex cover of size at most ?

G = (V, E) T ⊆ V
e = (u, v) ∈ E u ∈ T v ∈ T

G = (V, E)
k G k

vertex cover of size 4

independent set of size 6

Our First Reduction
• VERTEX-COVER IND-SET

• Suppose we know how to solve independent set, can we use it
to solve vertex cover?

• Claim. is an independent set of size iff is a vertex cover of
size .

• Proof. () Consider an edge

• is independent: both cannot be in

• At least one of

• covers

•

≤p

S k V − S
n − k

⇒ e = (u, v) ∈ E

S u, v S

u, v ∈ V − S

V − S e

∎

Our First Reduction
• VERTEX-COVER IND-SET

• Suppose we know how to solve independent set, can we use it
to solve vertex cover?

• Claim. is an independent set of size iff is a vertex cover of
size .

• Proof. () Consider an edge

• is a vertex cover: at least one of must be in

• Both cannot be in

• Thus, is an independent set.

≤p

S k V − S
n − k

⇐ e = (u, v) ∈ E

V − S u, v V − S

u, v S

S ∎

Vertex Cover IND Set≡p
• VERTEX-COVER IND-SET

• Reduction. Let .

• If has a vertex cover of size at most then has an
independent set of size at least

• If has an independent set of size at least then has a
vertex cover of size at most

• IND-SET VERTEX-COVER

• Same reduction works: ,

• VERTEX-COVER IND-SET

≤p

G′ = G, k′ = n − k

(⇒) G k G′

k′

(⇐) G′ k′ G
k

≤p

G′ = G k′ = n − k

≡p

VERTEX-COVER SET-COVER≤p

Set Cover
Set-Cover. Given a set of elements, a collection of subsets of and
an integer , is there some collection of at most subsets
whose union covers , that is,

U 𝒮 U
k k S1, …, Sk

U U ⊆ ∪k
i=1 Si

Vertex Cover Set Cover≤p

• Theorem. VERTEX-COVER SET-COVER

• Proof. Given instance of vertex cover, construct an instance
 of set cover problem such that

• has a vertex cover of size at most if and only if has a
set cover of size at most .

≤p

⟨G, k⟩
⟨U, 𝒮, k′ ⟩

G k ⟨U, 𝒮, k′ ⟩
k

Instance of
VertexCover ⟨G, k⟩

Instance of
SetCover ⟨G′ , k′ ⟩

Algorithm for SetCover

Yes

No

Yes

No
Poly time

Algorithm for VertexCover

• Theorem. VERTEX-COVER SET-COVER

• Proof. Given instance of vertex cover, construct an instance
 of set cover problem that has a set cover of size iff has

a vertex cover of size .

• Reduction. , for each node , let

≤p

⟨G, k⟩
⟨U, 𝒮, k⟩ k G

k

U = E v ∈ V
Sv = {e ∈ E | e incident to v}

vertex cover instance
(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = { } Sb = { }

Sc = { } Sd = { }

Se = { } Sf = { }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

Vertex Cover Set Cover≤p

Correctness
• Claim. If has a vertex cover of size at most , then can be

covered using at most subsets.

• Proof. Let be a vertex cover in

• Then, is a set cover of of the same size

(⇒) G k U
k

X ⊆ V G

Y = {Sv | v ∈ X} U

vertex cover instance
(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = { } Sb = { }

Sc = { } Sd = { }

Se = { } Sf = { }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

cff

Correctness
• Claim. If can be covered using at most subsets then

has a vertex cover of size at most .

• Proof. Let be a set cover of size

• Then, is a vertex cover of size

(⇐) U k G
k

Y ⊆ 𝒮 k

X = {v | Sv ∈ Y} k

vertex cover instance
(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = { } Sb = { }

Sc = { } Sd = { }

Se = { } Sf = { }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

cff

Class Exercise
IND-SET Clique≤p

Clique

• A clique in an undirected graph is a subset of nodes such that every
two nodes are connected by an edge. A -clique is a clique that
contains nodes.

• CLIQUE. Given a graph and a number , does contain a
-clique?

k
k

G k G k

Clique

• A clique in an undirected graph is a subset of nodes such that every
two nodes are connected by an edge. A -clique is a clique that
contains nodes.

• CLIQUE. Given a graph and a number , does contain a
-clique?

• CLIQUE

• Certificate: a subset of vertices

• Poly-time verifier: check is each pair of vertices have an edge
between them and if size of subset is

k
k

G k G k

∈ 𝖭𝖯

k

IND-SET to CLIQUE

• Theorem. IND-SET CLIQUE.

• In class exercise. Reduce IND-SET to Clique. Given instance of
independent set, construct an instance of clique such that

• has independent set of size iff has clique of size .

≤p

⟨G, k⟩
⟨G′ , k′ ⟩

G k G′ k′

Instance of
IND-SET ⟨G, k⟩

Instance of
CLIQUE ⟨G′ , k′ ⟩

Algorithm for CLIQUE

Yes

No

Yes

No
Poly time

Algorithm for IND-SET

• Theorem. IND-SET CLIQUE.

• Proof. Given instance of independent set, we construct
an instance of clique such that has independent set
of size iff has clique of size

• Reduction.

• Let , where iff and

• has an independent set of size , then is a
clique in

• has a clique of size , then is an independent
set in

≤p

⟨G, k⟩
⟨G′ , k′ ⟩ G

k G′ k′

G′ = (V, E) e = (u, v) ∈ E e ∉ E k′ = k

(⇒) G S k S
G′

(⇐) G′ Q k Q
G

IND-SET to CLIQUE

Reductions: General Pattern
• Describe a polynomial-time algorithm to transform an arbitrary

instance of Problem into a special instance of Problem

• Prove that:

• If is a “yes” instance of , then is a “yes” instance of

• If is a “yes” instance of , then is a “yes” instance of
 if is a "no" instance of , then is a "no" instance of

x X y Y

x X y Y

y Y x X
⟺ x X y Y

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X

Reductions: General Pattern
• Describe a polynomial-time algorithm to transform an arbitrary

instance of Problem into a special instance of Problem

• Notice that correctness of reductions are not symmetric:

• the “if” proof needs to handle arbitrary instances of

• the “only if” needs to handle the special instance of

x X y Y

X

Y

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

