NP Hardness Reductions
Overview So Far

- We have defined classes P and NP.
- We have some notion of NP hardness and NP completeness.
- We said a problem X is NP-hard \equiv if $X \in P$ then $P = NP$.
 - Alternate definition: every problem in NP poly-time reduces to it.
- A problem X is NP-complete if it is NP-hard and in NP.

Focus on decision problems.

We will define these reductions today.
Overview

- We have defined classes P and NP
- We have some notion of NP hardness and NP completeness
- We said a problem X is NP-hard \equiv if $X \in P$ then $P = NP$
 - Alternate definition: every problem in NP poly-time reduces to it
- A problem X is NP-complete if it is NP-hard and in NP
- (Cook-Levin). 3SAT/SAT is NP hard
- Today: Problem reductions!
 - Strategy to prove a problem is NP hard: Reduce a known NP hard problem to it
- Will do a bunch of reductions next few days
Relative Hardness

• How do we compare the relative hardness of problems?
• Recurring idea in this class: reductions!
• Informally, we say a problem X reduces to a problem Y, if can use an algorithm for Y to solve X
 • E.g., Bipartite matching reduces to max flow

Intuitively, if problem X reduces to problem Y, then solving X is no harder than solving $Y
[Karp] Reductions

Definition. Decision problem X polynomial-time (Karp) reduces to decision problem Y if given any instance x of X, we can construct an instance y of Y in polynomial time s.t. $x \in X$ if and only if $y \in Y$.

Notation. $X \leq_p Y$

- Solving X is no harder than solving Y: if we have an algorithm for Y, we can use it + a polynomial-time reduction to solve X
Reductions Quiz

Say $X \leq_p Y$. Which of the following can we infer?

• If X can be solved in polynomial time, then so can Y.
• X can be solved in poly time iff Y can be solved in poly time.
• If X cannot be solved in polynomial time, then neither can Y.
• If Y cannot be solved in polynomial time, then neither can X.
Say $X \leq_p Y$. Which of the following can we infer?

- If X can be solved in polynomial time, then so can Y.
- X can be solved in poly time iff Y can be solved in poly time.
- If X cannot be solved in polynomial time, then neither can Y.
- If Y cannot be solved in polynomial time, then neither can X.
Digging Deeper

- **Graph 2-Color** reduces to **Graph 3-color**
 - We'll see this soon
- **Graph 2-Color** can be solved in polynomial time
 - How?
 - Can decide if a graph is bipartite in $O(n + m)$ time using BFS
- **Graph 3-color** (we'll show) is NP hard and unlikely to have a polynomial-time solution

Intuitively, if problem X reduces to problem Y, then solving X is no harder than solving Y
Use of Reductions: $X \leq_p Y$

Design algorithms:

- If Y can be solved in polynomial time, we know X can also be solved in polynomial time

Establish intractability:

- If we know that X is known to be impossible/hard to solve in polynomial-time, then we can conclude the same about problem Y

Establish Equivalence:

- If $X \leq_p Y$ and $Y \leq_p X$ then X can be solved in poly-time iff Y can be solved in poly time and we use the notation $X \equiv_p Y$
NP hard: Operational Definition

• **New definition of NP hard using reductions.**

 • A problem Y is NP hard, if for any problem $X \in \text{NP}$, $X \leq_p Y$

• Recall we said Y is NP hard if $Y \in \text{P}$, then $\text{P} = \text{NP}$.

• Lets show that both definitions are equivalent

 • (\Rightarrow) every problem in NP reduces to Y in poly-time, and if $Y \in \text{P}$, then $\text{P} = \text{NP}$

 • (\Leftarrow) Suppose $Y \in \text{P}$, then $\text{P} = \text{NP}$: which means every problem in $\text{NP}(=\text{P})$ reduces to Y
To prove problem Y is NP-hard

- Difficult to prove every problem in NP reduces to Y
- Instead, we use a known-NP-hard problem Z
- We know every problem X in NP, $X \leq_p Z$
- Notice that \leq_p is transitive
- Thus, enough to prove $Z \leq_p Y$

To prove that a problem Y is NP hard, reduce a known NP hard problem Z to $Y
Known NP Hard Problems?

• For now: *SAT* (and a restricted version, *3SAT*) (Cook-Levin Theorem)

• We will prove a whole repertoire of NP hard and NP complete problems by using reductions

• Before reducing *3SAT* to other problems to prove them NP hard, let us review some easier reductions first (from our activit)

To prove that a problem *Y* is NP hard, reduce a known NP hard problem *Z* to *Y
VERTEX-COVER \equiv_p IND-SET
IND-SET

Given a graph $G = (V, E)$, an **independent set** is a subset of vertices $S \subseteq V$ such that no two of them are adjacent, that is, for any $x, y \in S$, $(x, y) \notin E$

- What is the **decision** version of the **IND-SET** problem?

- **IND-SET decision Problem.** Given a graph $G = (V, E)$ and an integer k, does G have an independent set of size at least k?

![Diagram of a graph with an independent set of size 6]
Vertex-Cover

Given a graph $G = (V, E)$, a **vertex cover** is a subset of vertices $T \subseteq V$ such that for every edge $e = (u, v) \in E$, either $u \in T$ or $v \in T$.

- What is the **decision** version of the **VERTEX_COVER** problem?
- **VERTEX-COVER decision Problem.** Given a graph $G = (V, E)$ and an integer k, does G have a vertex cover of size at most k?
Our First Reduction

- **VERTEX-COVER \(\leq_p\) IND-SET**
 - Suppose we know how to solve independent set, can we use it to solve vertex cover?

- **Claim.** \(S\) is an independent set of size \(k\) iff \(V - S\) is a vertex cover of size \(n - k\).

- **Proof.** (\(\Rightarrow\)) Consider an edge \(e = (u, v) \in E\)
 - \(S\) is independent: \(u, v\) both cannot be in \(S\)
 - At least one of \(u, v \in V - S\)
 - \(V - S\) covers \(e\)
 - \(\square\)
Our First Reduction

• **VERTEX-COVER** \(\leq_p\) **IND-SET**

 • Suppose we know how to solve independent set, can we use it to solve vertex cover?

• **Claim.** \(S\) is an independent set of size \(k\) iff \(V - S\) is a vertex cover of size \(n - k\).

• **Proof.** (\(\iff\)) Consider an edge \(e = (u, v) \in E\)

 • \(V - S\) is a vertex cover: at least one of \(u, v\) must be in \(V - S\)

 • Both \(u, v\) cannot be in \(S\)

 • Thus, \(S\) is an independent set. ■
Vertex Cover \equiv_p IND Set

- **VERTEX-COVER \leq_p IND-SET**

- **Reduction.** Let $G' = G$, $k' = n - k$.

 - (\Rightarrow) If G has a vertex cover of size at most k then G' has an independent set of size at least k'

 - (\Leftarrow) If G' has an independent set of size at least k' then G has a vertex cover of size at most k

- **IND-SET \leq_p VERTEX-COVER**

 - Same reduction works: $G' = G$, $k' = n - k$

- **VERTEX-COVER \equiv_p IND-SET**
VERTEX-COVER \leq_p SET-COVER
Set Cover

Set-Cover. Given a set U of elements, a collection \mathcal{S} of subsets of U and an integer k, is there some collection of at most k subsets S_1, \ldots, S_k whose union covers U, that is, $U \subseteq \bigcup_{i=1}^{k} S_i$

$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$
$S_a = \{ 3, 7 \}$
$S_b = \{ 2, 4 \}$
$S_c = \{ 3, 4, 5, 6 \}$
$S_d = \{ 5 \}$
$S_e = \{ 1 \}$
$S_f = \{ 1, 2, 6, 7 \}$

$k = 2$

a set cover instance
Vertex Cover \leq_p Set Cover

- **Theorem.** $\text{VERTEX-COVER} \leq_p \text{SET-COVER}$

- **Proof.** Given instance $\langle G, k \rangle$ of vertex cover, construct an instance $\langle U, \mathcal{S}, k' \rangle$ of set cover problem such that

 - G has a vertex cover of size at most k if and only if $\langle U, \mathcal{S}, k' \rangle$ has a set cover of size at most k.

Diagram:

- **Instance of VertexCover** $\langle G, k \rangle$
 - Poly time
 - Algorithm for VertexCover
- **Instance of SetCover** $\langle G', k' \rangle$
 - Algorithm for SetCover
 - Yes
 - No
 - Yes
 - No

Poly time
Vertex Cover \leq_p Set Cover

- **Theorem.** VERTEX-COVER \leq_p SET-COVER

- **Proof.** Given instance $\langle G, k \rangle$ of vertex cover, construct an instance $\langle U, S, k \rangle$ of set cover problem that has a set cover of size k iff G has a vertex cover of size k.

- **Reduction.** $U = E$, for each node $v \in V$, let $S_v = \{ e \in E \mid e \text{ incident to } v \}$

$$\begin{align*}
U &= \{ e_1, e_2, \ldots, e_7 \} \\
S_a &= \{ e_3, e_7 \} & S_b &= \{ e_2, e_4 \} \\
S_c &= \{ e_3, e_4, e_5, e_6 \} & S_d &= \{ e_5 \} \\
S_e &= \{ e_1 \} & S_f &= \{ e_1, e_2, e_6, e_7 \}
\end{align*}$$

vertex cover instance
(k = 2)

set cover instance
(k = 2)
Correctness

- **Claim.** \(\Rightarrow \) If \(G \) has a vertex cover of size at most \(k \), then \(U \) can be covered using at most \(k \) subsets.

- **Proof.** Let \(X \subseteq V \) be a vertex cover in \(G \)
 - Then, \(Y = \{ S_v \mid v \in X \} \) is a set cover of \(U \) of the same size.

[Diagram of a graph with vertices labeled with set cover instance and vertex cover instance, with \(U = \{ e_1, e_2, \ldots, e_7 \} \), \(S_a = \{ e_3, e_7 \} \), \(S_b = \{ e_2, e_4 \} \), \(S_c = \{ e_3, e_4, e_5, e_6 \} \), \(S_d = \{ e_5 \} \), \(S_e = \{ e_1 \} \), \(S_f = \{ e_1, e_2, e_6, e_7 \} \).]
Correctness

• **Claim.** (↕) If U can be covered using at most k subsets then G has a vertex cover of size at most k.

• **Proof.** Let $Y \subseteq \mathcal{S}$ be a set cover of size k
 • Then, $X = \{ v \mid S_v \in Y \}$ is a vertex cover of size k

![Diagram of a graph with vertex cover instance (k = 2) and set cover instance (k = 2)]

- $U = \{ e_1, e_2, \ldots, e_7 \}$
- $S_a = \{ e_3, e_7 \}$
- $S_b = \{ e_2, e_4 \}$
- $S_c = \{ e_3, e_4, e_5, e_6 \}$
- $S_d = \{ e_5 \}$
- $S_e = \{ e_1 \}$
- $S_f = \{ e_1, e_2, e_6, e_7 \}$
Class Exercise

IND-SET \leq_p Clique
Clique

- A clique in an undirected graph is a subset of nodes such that every two nodes are connected by an edge. A k-clique is a clique that contains k nodes.

- CLIQUE. Given a graph G and a number k, does G contain a k-clique?
A **clique** in an undirected graph is a subset of nodes such that every two nodes are connected by an edge. A k-clique is a clique that contains k nodes.

CLIQUE. Given a graph G and a number k, does G contain a k-clique?

CLIQUE \in NP

- **Certificate:** a subset of vertices
- **Poly-time verifier:** check if each pair of vertices have an edge between them and if size of subset is k
IND-SET to CLIQUE

- **Theorem.** IND-SET \leq_p CLIQUE.

- **In class exercise.** Reduce IND-SET to Clique. Given instance $\langle G, k \rangle$ of independent set, construct an instance $\langle G', k' \rangle$ of clique such that

 - G has independent set of size k iff G' has clique of size k'.
IND-SET to CLIQUE

• **Theorem.** IND-SET \leq_p CLIQUE.

• **Proof.** Given instance $\langle G, k \rangle$ of independent set, we construct an instance $\langle G', k' \rangle$ of clique such that G has independent set of size k iff G' has clique of size k'

• **Reduction.**
 • Let $G' = (V, \bar{E})$, where $e = (u, v) \in \bar{E}$ iff $e \notin E$ and $k' = k$
 • (\Rightarrow) G has an independent set S of size k, then S is a clique in G'
 • (\Leftarrow) G' has a clique Q of size k, then Q is an independent set in G
Reductions: General Pattern

• Describe a polynomial-time algorithm to transform an arbitrary instance \(x \) of Problem \(X \) into a special instance \(y \) of Problem \(Y \)

• Prove that:
 • If \(x \) is a “yes” instance of \(X \), then \(y \) is a “yes” instance of \(Y \)
 • If \(y \) is a “yes” instance of \(Y \), then \(x \) is a “yes” instance of \(X \)
 \(\iff \) if \(x \) is a "no" instance of \(X \), then \(y \) is a "no" instance of \(Y \)
Reductions: General Pattern

- Describe a polynomial-time algorithm to transform an arbitrary instance x of Problem X into a special instance y of Problem Y.

- Notice that correctness of reductions are not symmetric:
 - the “if” proof needs to handle arbitrary instances of X.
 - the “only if” needs to handle the special instance of Y.

![Diagram of polynomial-time algorithm for reductions](image)
Acknowledgments

• Some of the material in these slides are taken from
 • Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf)