NP Hardness Reductions

Overview So Far

- We have defined classes P and NP
- We have some notion of NP hardness and NP completeness
- We said a problem X is NP -hard \equiv if $X \in \mathrm{P}$ then $\mathrm{P}=\mathrm{NP}$
- Alternate definition: every problem in NP poly-time reduces to it
- A problem X is NP-complete if it is NP-hard and in NP

Focus on decision problems

Overview

- We have defined classes P and NP
- We have some notion of NP hardness and NP completeness
- We said a problem X is NP -hard \equiv if $X \in \mathrm{P}$ then $\mathrm{P}=\mathrm{NP}$
- Alternate definition: every problem in NP poly-time reduces to it
- A problem X is NP-complete if it is NP-hard and in NP
- (Cook-Levin). 3SAT/SAT is NP hard
- Today: Problem reductions!
- Strategy to prove a problem is NP hard: Reduce a known NP hard problem to it
- Will do a bunch of reductions next few days

Relative Hardness

- How do we compare the relative hardness of problems?
- Recurring idea in this class: reductions!
- Informally, we say a problem X reduces to a problem Y, if can use an algorithm for Y to solve X
- E.g., Bipartite matching reduces to max flow

Intuitively, if problem X reduces to problem Y, then solving X is no harder than solving Y

[Karp] Reductions

Definition. Decision problem X polynomial-time (Karp) reduces to decision problem Y if given any instance x of X, we can construct an instance y of Y in polynomial time s.t $x \in X$ if and only if $y \in Y$.

Notation. $X \leq_{p} Y$

- Solving X is no harder than solving Y : if we have an algorithm for Y, we can use it + a polynomial-time reduction to solve X

Algorithm for X

Reductions Quiz

Say $X \leq_{p} Y$. Which of the following can we infer?

- If X can be solved in polynomial time, then so can Y.
- X can be solved in poly time iff Y can be solved in poly time.
- If X cannot be solved in polynomial time, then neither can Y.
- If Y cannot be solved in polynomial time, then neither can X.

Algorithm for X

Reductions Quiz

Say $X \leq_{p} Y$. Which of the following can we infer?

- If X can be solved in polynomial time, then so can Y.
- X can be solved in poly time iff Y can be solved in poly time.
- If X cannot be solved in polynomial time, then neither can Y.
- If Y cannot be solved in polynomial time, then neither can X.

Algorithm for X

Digging Deeper

- Graph 2-Color reduces to Graph 3-color
- We'll see this soon
- Graph 2-Color can be solved in polynomial time
- How?
- Can decide if a graph is bipartite in $O(n+m)$ time using BFS
- Graph 3-color (we'll show) is NP hard and unlikely to have a polynomial-time solution

Intuitively, if problem X reduces to problem Y, then solving X is no harder than solving Y

Use of Reductions: $X \leq_{p} Y$

Design algorithms:

- If Y can be solved in polynomial time, we know X can also be solved in polynomial time

Establish intractability:

- If we know that X is known to be impossible/hard to solve in polynomial-time, then we can conclude the same about problem Y

Establish Equivalence:

- If $X \leq_{p} Y$ and $Y \leq_{p} X$ then X can be solved in poly-time iff Y can be solved in poly time and we use the notation $X \equiv_{p} Y$

NP hard: Operational Definition

- New definition of NP hard using reductions.
- A problem Y is NP hard, if for any problem $X \in \mathrm{NP}, X \leq_{p} Y$
- Recall we said Y is NP hard if $Y \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$.

Solving X is no harder
than solving Y

- Lets show that both definitions are equivalent
- (\Rightarrow) every problem in NP reduces to Y in poly-time, and if $Y \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$
- (\Leftarrow) Suppose $Y \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$: which means every problem in $\mathrm{NP}(=P)$ reduces to Y

Proving NP Hardness

- To prove problem Y is NP-hard
- Difficult to prove every problem in NP reduces to Y
- Instead, we use a known-NP-hard problem Z
- We know every problem X in NP, $X \leq_{p} Z$
- Notice that \leq_{p} is transitive
- Thus, enough to prove $Z \leq_{p} Y$

> TO PROVE THAT A PROBLEM Y IS NP HARD, REDUCE A KNOWN NP HARD PROBLEM Z to Y

Known NP Hard Problems?

- For now: SAT (and a restricted version, 3SAT) (Cook-Levin Theorem)
- We will prove a whole repertoire of NP hard and NP complete problems by using reductions
- Before reducing 3SAT to other problems to prove them NP hard, let us review some easier reductions first (from our activit)

> TO PROVE THAT A PROBLEM Y IS NP HARD, REDUCE A KNOWN NP HARD PROBLEM Z TO Y

VERTEX-COVER \equiv_{p} IND-SET

IND-SET

Given a graph $G=(V, E)$, an independent set is a subset of vertices $S \subseteq V$ such that no two of them are adjacent, that is, for any $x, y \in S$, $(x, y) \notin E$

- What is the decision version of the IND-SET problem?
- IND-SET decision Problem. Given a graph $G=(V, E)$ and an integer k, does G have an independent set of size at least k ?

Vertex-Cover

Given a graph $G=(V, E)$, a vertex cover is a subset of vertices $T \subseteq V$ such that for every edge $e=(u, v) \in E$, either $u \in T$ or $v \in T$.

- What is the decision version of the VERTEX_COVER problem?
- VERTEX-COVER decision Problem. Given a graph $G=(V, E)$ and an integer k, does G have a vertex cover of size at most k ?

Our First Reduction

- VERTEX-COVER \leq_{p} IND-SET
- Suppose we know how to solve independent set, can we use it to solve vertex cover?
- Claim. S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$.
- Proof. (\Rightarrow) Consider an edge $e=(u, v) \in E$
- S is independent: u, v both cannot be in S
- At least one of $u, v \in V-S$
- $V-S$ covers e
- ■

Our First Reduction

- VERTEX-COVER \leq_{p} IND-SET
- Suppose we know how to solve independent set, can we use it to solve vertex cover?
- Claim. S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$.
- Proof. (\Leftarrow) Consider an edge $e=(u, v) \in E$
- $V-S$ is a vertex cover: at least one of u, v must be in $V-S$
- Both u, v cannot be in S
- Thus, S is an independent set. \square

Vertex Cover \equiv_{p} IND Set

- VERTEX-COVER \leq_{p} IND-SET
- Reduction. Let $G^{\prime}=G, k^{\prime}=n-k$.
- (\Rightarrow) If G has a vertex cover of size at most k then G^{\prime} has an independent set of size at least k^{\prime}
- (\Leftarrow) If G^{\prime} has an independent set of size at least k^{\prime} then G has a vertex cover of size at most k
- IND-SET \leq_{p} VERTEX-COVER
- Same reduction works: $G^{\prime}=G, k^{\prime}=n-k$
- VERTEX-COVER \equiv_{p} IND-SET

VERTEX-COVER \leq_{p} SET-COVER

Set Cover

Set-Cover. Given a set U of elements, a collection \mathcal{S} of subsets of U and an integer k, is there some collection of at most k subsets S_{1}, \ldots, S_{k} whose union covers U, that is, $U \subseteq \cup_{i=1}^{k} S_{i}$

$$
\begin{aligned}
& U=\{1,2,3,4,5,6,7\} \\
& S_{a}=\{3,7\} \quad S_{b}=\{2,4\} \\
& \left.S_{c}=\{3,4,5,6\}\right) \\
& S_{e}=\{1\} \\
& k=2
\end{aligned}
$$

Vertex Cover \leq_{p} Set Cover

- Theorem. VERTEX-COVER \leq_{p} SET-COVER
- Proof. Given instance $\langle G, k\rangle$ of vertex cover, construct an instance $\left\langle U, \mathcal{S}, k^{\prime}\right\rangle$ of set cover problem such that
- G has a vertex cover of size at most k if and only if $\left\langle U, \mathcal{S}, k^{\prime}\right\rangle$ has a set cover of size at most k.

Vertex Cover \leq_{p} Set Cover

- Theorem. VERTEX-COVER \leq_{p} SET-COVER
- Proof. Given instance $\langle G, k\rangle$ of vertex cover, construct an instance $\langle U, \mathcal{S}, k\rangle$ of set cover problem that has a set cover of size k iff G has a vertex cover of size k.
- Reduction. $U=E$, for each node $v \in V$, let $S_{v}=\{e \in E \mid e$ incident to $v\}$

vertex cover instance
($k=2$)

$$
\begin{array}{ll}
U=\left\{e_{1}, e_{2}, \ldots, e_{7}\right\} & \\
S_{a}=\left\{e_{3}, e_{7}\right\} & S_{b}=\left\{e_{2}, e_{4}\right\} \\
S_{c}=\left\{e_{3}, e_{4}, e_{5}, e_{6}\right\} & S_{d}=\left\{e_{5}\right\} \\
S_{e}=\left\{e_{1}\right\} & S_{f}=\left\{e_{1}, e_{2}, e_{6}, e_{7}\right\}
\end{array}
$$

set cover instance
($k=2$)

correctnese

- Claim. (\Rightarrow) If G has a vertex cover of size at most k, then U can be covered using at most k subsets.
- Proof. Let $X \subseteq V$ be a vertex cover in G
- Then, $Y=\left\{S_{v} \mid v \in X\right\}$ is a set cover of U of the same size

vertex cover instance
($k=2$)

$$
\begin{array}{ll}
U=\left\{e_{1}, e_{2}, \ldots, e_{7}\right\} & \\
S_{a}=\left\{e_{3}, e_{7}\right\} & S_{b}=\left\{e_{2}, e_{4}\right\} \\
S_{c}=\left\{e_{3}, e_{4}, e_{5}, e_{6}\right\} & S_{d}=\left\{e_{5}\right\} \\
S_{e}=\left\{e_{1}\right\} & S_{f}=\left\{e_{1}, e_{2}, e_{6}, e_{7}\right\}
\end{array}
$$

set cover instance
(k = 2)

correctnese

- Claim. (\Leftarrow) If U can be covered using at most k subsets then G has a vertex cover of size at most k.
- Proof. Let $Y \subseteq \mathcal{S}$ be a set cover of size k
- Then, $X=\left\{v \mid S_{v} \in Y\right\}$ is a vertex cover of size k

vertex cover instance
($k=2$)

$$
\begin{array}{ll}
U=\left\{e_{1}, e_{2}, \ldots, e_{7}\right\} & \\
S_{a}=\left\{e_{3}, e_{7}\right\} & S_{b}=\left\{e_{2}, e_{4}\right\} \\
S_{c}=\left\{e_{3}, e_{4}, e_{5}, e_{6}\right\} & S_{d}=\left\{e_{5}\right\} \\
S_{e}=\left\{e_{1}\right\} & S_{f}=\left\{e_{1}, e_{2}, e_{6}, e_{7}\right\}
\end{array}
$$

set cover instance
($k=2$)

Class Exercise

IND-SET \leq_{p} Clique

Clique

- A clique in an undirected graph is a subset of nodes such that every two nodes are connected by an edge. A k-clique is a clique that contains k nodes.
- CLIQUE. Given a graph G and a number k, does G contain a k -clique?

Clique

- A clique in an undirected graph is a subset of nodes such that every two nodes are connected by an edge. A k-clique is a clique that contains k nodes.
- CLIQUE. Given a graph G and a number k, does G contain a k -clique?
- CLIQUE \in NP
- Certificate: a subset of vertices
- Poly-time verifier: check is each pair of vertices have an edge between them and if size of subset is k

IND-SET to CLIQUE

- Theorem. IND-SET \leq_{p} CLIQUE.
- In class exercise. Reduce IND-SET to Clique. Given instance $\langle G, k\rangle$ of independent set, construct an instance $\left\langle G^{\prime}, k^{\prime}\right\rangle$ of clique such that
- G has independent set of size k iff G^{\prime} has clique of size k^{\prime}.

IND-SET to CLIQUE

- Theorem. IND-SET \leq_{p} CLIQUE.
- Proof. Given instance $\langle G, k\rangle$ of independent set, we construct an instance $\left\langle G^{\prime}, k^{\prime}\right\rangle$ of clique such that G has independent set of size k iff G^{\prime} has clique of size k^{\prime}
- Reduction.
- Let $G^{\prime}=(V, \bar{E})$, where $e=(u, v) \in \bar{E}$ iff $e \notin E$ and $k^{\prime}=k$
- $(\Rightarrow) G$ has an independent set S of size k, then S is a clique in G^{\prime}
- $(\Leftarrow) G^{\prime}$ has a clique Q of size k, then Q is an independent set in G

Reductions: General Pattern

- Describe a polynomial-time algorithm to transform an arbitrary instance x of Problem X into a special instance y of Problem Y
- Prove that:
- If x is a "yes" instance of X, then y is a "yes" instance of Y
- If y is a "yes" instance of Y, then x is a "yes" instance of X \Longleftrightarrow if x is a "no" instance of X, then y is a "no" instance of Y

Reductions: General Pattern

- Describe a polynomial-time algorithm to transform an arbitrary instance x of Problem X into a special instance y of Problem Y
- Notice that correctness of reductions are not symmetric:
- the "if" proof needs to handle arbitrary instances of X
- the "only if" needs to handle the special instance of Y

Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:// www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)

