
NP Hardness Reductions



Overview So Far
• We have defined classes   

• We have some notion of  hardness and  completeness 

• We said a problem  is -hard  if  then   

• Alternate definition: every problem in  poly-time reduces to it 

• A problem  is -complete if it is -hard and in 
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Overview
• We have defined classes   

• We have some notion of  hardness and  completeness 

• We said a problem  is -hard  if  then   

• Alternate definition: every problem in  poly-time reduces to it 

• A problem  is -complete if it is -hard and in  

• (Cook-Levin). 3SAT/SAT is  hard 

• Today: Problem reductions! 

• Strategy to prove a problem is NP hard: Reduce a known NP hard 
problem to it  

• Will do a bunch of reductions next few days
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Relative Hardness
• How do we compare the relative hardness of problems? 

• Recurring idea in this class: reductions! 

• Informally, we say a problem  reduces to a problem , if can use an 
algorithm for  to solve  

• E.g., Bipartite matching reduces to max flow

X Y
Y X

Intuitively, if problem  reduces to problem ,  
then solving  is no harder than solving 
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[Karp] Reductions
Definition.  Decision problem  polynomial-time (Karp) reduces to 
decision problem  if given any instance  of , we can construct an 
instance  of  in polynomial time s.t   if and only if . 

Notation.    

• Solving  is no harder than solving :  if we have an algorithm for 
, we can use it + a polynomial-time reduction to solve 
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Reductions Quiz
Say . Which of the following can we infer? 

• If  can be solved in polynomial time, then so can . 

•  can be solved in poly time iff  can be solved in poly time. 

• If  cannot be solved in polynomial time, then neither can . 

• If  cannot be solved in polynomial time, then neither can .
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Digging Deeper
• Graph 2-Color reduces to Graph 3-color

• We'll see this soon  

• Graph 2-Color can be solved in polynomial time 

• How? 

• Can decide if a graph is bipartite in  time using BFS 

• Graph 3-color (we’ll show) is NP hard and unlikely to have a 
polynomial-time solution

O(n + m)

Intuitively, if problem  reduces to problem ,  
then solving  is no harder than solving 
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Use of Reductions:  X ≤p Y
Design algorithms: 

• If  can be solved in polynomial time, we know  can also be 
solved in polynomial time 

Establish intractability: 

• If we know that  is known to be impossible/hard to solve in 
polynomial-time, then we can conclude the same about problem  

Establish Equivalence: 

• If  and  then  can be solved in poly-time iff  can 
be solved in poly time and we use the notation 

Y X

X
Y

X ≤p Y Y ≤p X X Y
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NP hard:  Operational Definition
• New definition of NP hard using reductions.   

• A problem  is NP hard, if for any problem ,   

• Recall we said  is NP hard if . 

• Lets show that both definitions are equivalent 

•  every problem in NP reduces to  in poly-time, and if , 
then  

•  Suppose , then : which means every problem 
in  reduces to 

Y X ∈ 𝖭𝖯 X ≤p Y

Y Y ∈ 𝖯, then 𝖯 = 𝖭𝖯
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( ⇐ ) Y ∈ 𝖯 𝖯 = 𝖭𝖯
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Solving X is no harder 
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Proving NP Hardness
• To prove problem  is -hard 

• Difficult to prove every problem in  reduces to  

• Instead, we use a known-NP-hard problem  

• We know every problem  in ,  

• Notice that  is transitive  

• Thus, enough to prove 

Y 𝖭𝖯

𝖭𝖯 Y

Z

X 𝖭𝖯 X ≤p Z

≤p

Z ≤p Y

To prove that a problem  is NP hard, 
reduce a known NP hard problem  to 
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Known NP Hard Problems?
• For now:  SAT (and a restricted version, 3SAT)  (Cook-Levin Theorem) 

• We will prove a whole repertoire of NP hard and NP complete 
problems by using reductions 

• Before reducing 3SAT to other problems to prove them NP hard, let us 
review some easier reductions first (from our activit)

To prove that a problem  is NP hard, 
reduce a known NP hard problem  to 
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VERTEX-COVER    IND-SET≡p



IND-SET

Given a graph , an independent set is a subset of vertices 
 such that no two of them are adjacent, that is, for any ,  

 
• What is the decision version of the IND-SET problem? 

• IND-SET decision Problem.  Given a graph  and an integer 
, does  have an independent set of size at least ?

G = (V, E)
S ⊆ V x, y ∈ S
(x, y) ∉ E

G = (V, E)
k G k

independent set of size 6



Vertex-Cover

Given a graph , a vertex cover is a subset of vertices  
such that for every edge , either  or . 

• What is the decision version of the VERTEX_COVER problem? 
• VERTEX-COVER decision Problem.  Given a graph  and an 

integer , does  have a vertex cover of size at most ?

G = (V, E) T ⊆ V
e = (u, v) ∈ E u ∈ T v ∈ T

G = (V, E)
k G k

vertex cover of size 4

independent set of size 6



Our First Reduction
• VERTEX-COVER    IND-SET 

• Suppose we know how to solve independent set, can we use it 
to solve vertex cover? 

• Claim.    is an independent set of size  iff  is a vertex cover of 
size .  

• Proof. ( ) Consider an edge   

•  is independent:  both cannot be in  

• At least one of   

•  covers    

•

≤p

S k V − S
n − k

⇒ e = (u, v) ∈ E

S u, v S

u, v ∈ V − S

V − S e

∎



Our First Reduction
• VERTEX-COVER    IND-SET 

• Suppose we know how to solve independent set, can we use it 
to solve vertex cover? 

• Claim.    is an independent set of size  iff  is a vertex cover of 
size .  

• Proof. ( ) Consider an edge   

•  is a vertex cover: at least one of  must be in  

• Both  cannot be in   

• Thus,  is an independent set.  

≤p

S k V − S
n − k

⇐ e = (u, v) ∈ E

V − S u, v V − S

u, v S

S ∎



Vertex Cover  IND Set≡p
• VERTEX-COVER    IND-SET 

• Reduction.  Let  .  

•  If  has a vertex cover of size at most  then  has an 
independent set of size at least   

•  If  has an independent set of size at least  then  has a 
vertex cover of size at most  

• IND-SET    VERTEX-COVER  

• Same reduction works: ,  

• VERTEX-COVER    IND-SET

≤p

G′ = G, k′ = n − k

( ⇒ ) G k G′ 

k′ 

( ⇐ ) G′ k′ G
k

≤p

G′ = G k′ = n − k

≡p



VERTEX-COVER    SET-COVER≤p



Set Cover
Set-Cover. Given a set  of elements, a collection  of subsets of  and 
an integer , is there some collection of at most  subsets  
whose union covers , that is,  

U 𝒮 U
k k S1, …, Sk

U U ⊆ ∪k
i=1 Si



Vertex Cover  Set Cover≤p

• Theorem.  VERTEX-COVER    SET-COVER 

• Proof.   Given instance  of vertex cover, construct an instance 
 of set cover problem such that  

•  has a vertex cover of size at most  if and only if  has a 
set cover of size at most .

≤p

⟨G, k⟩
⟨U, 𝒮, k′ ⟩

G k ⟨U, 𝒮, k′ ⟩
k

Instance of  
VertexCover ⟨G, k⟩

Instance of  
SetCover ⟨G′ , k′ ⟩

Algorithm for SetCover

Yes

No

Yes

No
Poly time

Algorithm for VertexCover



• Theorem.  VERTEX-COVER    SET-COVER 

• Proof.   Given instance  of vertex cover, construct an instance 
 of set cover problem that has a set cover of size  iff  has 

a vertex cover of size .  

• Reduction.   , for each node , let
 

≤p

⟨G, k⟩
⟨U, 𝒮, k⟩ k G

k

U = E v ∈ V
Sv = {e ∈ E | e incident to v}

vertex cover instance 
(k = 2)

e1 

e2 e3 

e5 

e4 

e6 

e7 

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = {  }   Sb = { }

Sc = { }  Sd = {  } 

Se = {  }   Sf  =  {  }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

Vertex Cover  Set Cover≤p



Correctness
• Claim.   If  has a vertex cover of size at most , then  can be 

covered using at most  subsets. 

• Proof. Let  be a vertex cover in  

• Then,  is a set cover of  of the same size  

( ⇒ ) G k U
k

X ⊆ V G

Y = {Sv | v ∈ X} U

vertex cover instance 
(k = 2)

e1 

e2 e3 
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e4 

e6 

e7 

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = {  }   Sb = { }

Sc = { }  Sd = {  } 

Se = {  }   Sf  =  {  }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

cff



Correctness
• Claim.   If  can be covered using at most  subsets then  

has a vertex cover of size at most . 

• Proof. Let  be a set cover of size   

• Then,  is a vertex cover of size  

( ⇐ ) U k G
k

Y ⊆ 𝒮 k

X = {v | Sv ∈ Y} k

vertex cover instance 
(k = 2)

e1 

e2 e3 

e5 

e4 

e6 

e7 

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = {  }   Sb = { }

Sc = { }  Sd = {  } 

Se = {  }   Sf  =  {  }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

cff



Class Exercise 
IND-SET    Clique≤p



Clique

• A clique in an undirected graph is a subset of nodes such that every 
two nodes are connected by an edge. A -clique is a clique that 
contains  nodes. 

• CLIQUE.  Given a graph  and a number , does  contain a 
-clique?

k
k

G k G k



Clique

• A clique in an undirected graph is a subset of nodes such that every 
two nodes are connected by an edge. A -clique is a clique that 
contains  nodes. 

• CLIQUE.  Given a graph  and a number , does  contain a 
-clique? 

• CLIQUE  

• Certificate: a subset of vertices  

• Poly-time verifier: check is each pair of vertices have an edge 
between them and if size of subset is 

k
k

G k G k

∈ 𝖭𝖯

k



IND-SET to CLIQUE

• Theorem.  IND-SET  CLIQUE. 

• In class exercise.  Reduce IND-SET to Clique. Given instance  of 
independent set, construct an instance  of clique such that  

•  has independent set of size  iff  has clique of size .

≤p

⟨G, k⟩
⟨G′ , k′ ⟩

G k G′ k′ 

Instance of  
IND-SET ⟨G, k⟩

Instance of  
CLIQUE ⟨G′ , k′ ⟩

Algorithm for CLIQUE

Yes

No

Yes

No
Poly time

Algorithm for IND-SET



• Theorem.  IND-SET  CLIQUE. 

• Proof. Given instance  of independent set, we construct 
an instance  of clique such that  has independent set 
of size  iff  has clique of size  

• Reduction.  

• Let , where  iff  and  

•   has an independent set  of size , then   is a 
clique in  

•   has a clique  of size , then  is an independent 
set in 

≤p

⟨G, k⟩
⟨G′ , k′ ⟩ G

k G′ k′ 

G′ = (V, E) e = (u, v) ∈ E e ∉ E k′ = k

( ⇒ ) G S k S
G′ 

( ⇐ ) G′ Q k Q
G

IND-SET to CLIQUE



Reductions: General Pattern
• Describe a polynomial-time algorithm to transform an arbitrary 

instance  of Problem  into a special instance  of Problem  

• Prove that: 

• If  is a “yes” instance of , then  is a “yes” instance of  

• If  is a “yes” instance of , then  is a “yes” instance of   
 if  is a "no" instance of , then  is a "no" instance of 

x X y Y

x X y Y

y Y x X
⟺ x X y Y

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X



Reductions: General Pattern
• Describe a polynomial-time algorithm to transform an arbitrary 

instance  of Problem  into a special instance  of Problem  

• Notice that correctness of reductions are not symmetric:  

• the “if” proof needs to handle arbitrary instances of  

• the “only if” needs to handle the special instance of 

x X y Y

X

Y

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X
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