
Applications of 
Network Flow:  
Solving Problems by  

Reduction to Network Flows



Today: Two (Fun) Max-Flow Min-Cut  
Applications

• Bipartite matching 
• Baseball elimination 

• We will solve these problems by reducing them to a 
network flow problem 

• We’ll show how to prove the correctness of a problem 
reduction for the maximum bipartite matching problem 

• We’ll look at a more complex reduction with the baseball 
elimination problem to show the power of flow networks



Bipartite Matching



Review: Matching in Graphs
Definition.  Given an undirected graph , a matching 

 of  is a subset of edges such that no two edges in  are 
incident on the same vertex. 

• Said differently, a node appears in at most one edge in 

G = (V, E)
M ⊆ E G M

M



Review: Bipartite Graphs
A graph is bipartite if its vertices can be partitioned into two 
subsets  such that every edge  connects  and 

 

• Bipartite matching problem. Given a bipartite graph 
 find a maximum matching.

X, Y e = (u, v) u ∈ X
v ∈ Y

G = (X ∪ Y, E)
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Reduction to Max Flow

x
Instance of X

y
Instance of Y

Algorithm for Y

Positive instance

Negative instance
Reduction

Algorithm for X

Finding the largest matching on a bipartite graph doesn't 
seem like a network flow problem: we must turn it into one! 

• Given: arbitrary instance  of bipartite matching problem 
:   and edges  between  and  

• Goal: Create a special instance  of a max-flow problem 
: flow network: , source , sink   s.t. 

• 1-1 correspondence.  There exists a matching of size  
iff there is a flow of value 

x
(X) A, B E A B

y
(Y ) G(V, E, c) s t ∈ V

k
k



Reduction to Max Flow
Goal: Let’s try to construct a flow network where  
means we have a matching of size . 

• Problems abound! Our bipartite graph, , is: 
• Sourceless and sinkless. 

• We’ll need an  and a  
• Undirected. 

• How should we fix this? Should we add edges? 
Convert existing edges to directed edges? Both? 

• Unweighted. 

•  has no edge capacities.  

• We need to add capacities s.t.  when we 
have a matching of size .

v( f ) = k
k

G

s t

G
v( f ) = k

k



Reduction to Max Flow
• Our bipartite graph, , is sourceless and sinkless. 

• It isn’t clear how to “select” an  and a  among the nodes in , 
so let’s add new source/sink nodes

G
s t G

G



Reduction to Max Flow
• Our bipartite graph, , is sourceless and sinkless. 

• It isn’t clear how to “select” an  and a  among the nodes in , 
so let’s add new source/sink nodes 
 
 
 
 
 
 
 
 
 
 

• How do we connect  and  to the nodes in ? Considerations: 
• Max flow = min cut 

• We want  when we have a matching of size .

G
s t G

s t G

v( f ) = k k

s t



Reduction to Max Flow
Observations: 

• The size of a maximum matching is  
• If max flow = min cut, two intuitive bottlenecks are  and  

 
 
 
 
 
 
 
 
 
 
 

• If we add edges from  to each node in , and from each node in  
to , flow across those edges could correspond to the vertex being 
matched

min( |A | , |B | )
fout(s) fin(t)

s A B
t

s

A B

t

Each vertex can be in at 
most one match



Reduction to Max Flow
Observations: 

• The size of a maximum matching is  
• If max flow = min cut, two intuitive bottlenecks are  and  

 
 
 
 
 
 
 
 
 
 
 

• If we add edges from  to each node in , and from each node in  
to , flow across those edges could correspond to the vertex being 
matched

min( |A | , |B | )
fout(s) fin(t)

s A B
t

s t

fout(s) fin(t)

A capacity of  on these 
edges would limit a vertex’s 

“matches” to at most 

c

c

A capacity of  on these 
edges would limit a vertex’s 

“matches” to at most 
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Reduction to Max Flow
Observations: 

• If we orient the undirected edges to originate in “ ” vertices and 
terminate in “ ” vertices, flow can travel from source to sink 
 
 
 
 
 
 
 
 
 
 
 
 

• We need to limit vertex matches to at most 1 match 
• Adding a capacity of 1 to all directed edges completes our reduction
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Do we need the capacity 
on “A to B” edges to be 1? 

Why or why not?



Description of Transformation
• Create a new directed graph  

• Add edge  to  for all nodes  

• Add edge  to  for all nodes  

• Add edge   in  if   

• Set capacity of all edges in   to 1

G′ = (A ∪ B ∪ {s, t}, E′ , c)
s → a E′ a ∈ A
b → t E′ b ∈ B
a → b E′ (a, b) ∈ E

E′ 
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Mapping Back to Original Problem
Calculate the maximum flow  on  

• One unit of flow corresponds to a matching of one vertex 
in  to one vertex in  

• A flow of  corresponds to a matching of size  

• Matching  includes all edges connecting vertices in  
to vertices in  that have positive flow 

k G′ 
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Anatomy of Problem 
Reductions

• Claim.   satisfies a property if and only if  satisfies a 
corresponding property 

• Proving a reduction is correct: prove both directions 
•  has a property (e.g. has matching of size    has a 

corresponding property (e.g. has a flow of value  
•  does not have a property (e.g. does not have matching of 

size    does not have a corresponding property 
(e.g. does not have a flow of value   

• Or equivalently (and this is often easier to prove): 
•  has a property (e.g. has flow of value    has a 

corresponding property (e.g. has a matching of value 

x y

x k) ⟹ y
k)

x
k) ⟹ y

k)

y k) ⟹ x
k)

( ⇒ )

( ⇐ )



Correctness of Reduction
• Claim .  

If the bipartite graph  has matching  of size  
then flow-network  has an integral flow of value .

( ⇒ )
(A, B, E) M k
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Correctness of Reduction
• Claim .  

If the bipartite graph  has matching  of size  
then flow-network  has an integral flow of value . 

• Proof scketch (Complete proof in textbook). 

• For every edge , let  be the flow resulting 
from sending 1 unit of flow along the path 

  

•  is a feasible flow (satisfies capacity and conservation) 
and integral 

•   

( ⇒ )
(A, B, E) M k

G′ k

e = (a, b) ∈ M f

s → a → b → t

f

v( f ) = k



• Claim .  
If flow-network  has an integral flow of value , then the 
bipartite graph  has matching  of size .

( ⇐ )
G′ k
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• Claim .  
If flow-network  has an integral flow of value , then the 
bipartite graph  has matching  of size . 

• Proof. 

• Let set of edges from  to  with . 

• No two edges in  share a vertex, why? 

•   

•  for any  cut 

• Let 

( ⇐ )
G′ k
(A, B, E) M k

M = A B f(e) = 1

M

|M | = k

v( f ) = fout(S) − fin(S) (S, V − S)

S = A ∪ {s}

Correctness of Reduction



• Proved matching of size  iff flow of value  

• Thus, max-flow iff max matching 

• Running time of algorithm overall: 

• Running time of reduction + running time of 
solving the flow problem (flow alg. dominates) 

• What is running time of Ford–Fulkerson algorithm for a 
flow network with all unit capacities? 

•  

• Overall running time of finding max-cardinality bipartite 
matching: 

k k

O(nm)

O(nm)

Summary & Running Time



Baseball Elimination



The Baseball Elimination Problem
You are given the wins, and losses, and remaining schedule for all teams in 
a league/division. Which teams have been mathematically eliminated from 
contention (i.e., they cannot possibly come in first or tie for first place)?

Team Wins Losses Games 
Left Angels Athletics Mariners Rangers

Angels 83 71 8 - 1 6 1

Athletics 80 79 3 1 - 0 2

Mariners 78 78 6 6 0 - 0

Rangers 77 82 3 1 2 0 -



The Baseball Elimination Problem
You are given the wins, and losses, and remaining schedule for all teams in 
a league/division. Which teams have been mathematically eliminated from 
contention (i.e., they cannot possibly come in first or tie for first place)?

Team Wins Losses Games 
Left Angels Athletics Mariners Rangers

Angels 83 71 8 - 1 6 1

Athletics 80 79 3 1 - 0 2

Mariners 78 78 6 6 0 - 0

Rangers 77 82 3 1 2 0 -
Can the Rangers possibly 

come in first place?  
Why or why not?

No! Even if the Rangers’ win 
all remaining games, their 

win total won’t surpass the 
Angels’ current win total.



The Baseball Elimination Problem
You are given the wins, and losses, and remaining schedule for all teams in 
a league/division. Which teams have been mathematically eliminated from 
contention (i.e., they cannot possibly come in first or tie for first place)?

Team Wins Losses Games 
Left Angels Athletics Mariners Rangers

Angels 83 71 8 - 1 6 1

Athletics 80 79 3 1 - 0 2

Mariners 78 78 6 6 0 - 0

Rangers 77 82 3 1 2 0 -

Can the Athetlics possibly 
come in first place?  
Why or why not?

No! If the Angels lose all 
remaining games (as 

needed), 6 of them are 
losses to the Mariners. The 
Mariners will leapfrog the 

Athletics and come in first!



A More Principled Approach
What we need is a way to prove that a team is eliminated. Let’s try 
to reduce this problem to a max flow problem…

Team Wins Losses Games 
Left Angels Athletics Mariners Rangers

Angels 83 71 8 - 1 6 1

Athletics 80 79 3 1 - 0 2

Mariners 78 78 6 6 0 - 0

Rangers 77 82 3 1 2 0 -



Let’s Leverage the Average

What is the maximum number of games the Athletics can win this season?

Team Wins Losses Games 
Left

Angels Athletics Mariners Rangers

Angels 83 71 8 - 1 6 1

Athletics 80 79 3 1 - 0 2

Mariners 78 78 6 6 0 - 0

Rangers 77 82 3 1 2 0 -

The Angels and Mariners have how many wins between them?

How many remaining games will the Angels/Mariners play against each other?

Then how many wins must the Angles and Mariners have between them?

If two teams have 167 wins between them, then one team must have at least 
how many wins?

83

83+78 = 161

6

161+6 = 167

167/2  = 84⌈ ⌉



Let’s Leverage the Average

What is the maximum number of games the Athletics can win this season?

Team Wins Losses Games 
Left

Angels Athletics Mariners Rangers

Angels 83 71 8 - 1 6 1

Athletics 80 79 3 1 - 0 2

Mariners 78 78 6 6 0 - 0

Rangers 77 82 3 1 2 0 -

The Angels and Mariners have how many wins between them?

How many remaining games will the Angels/Mariners play against each other?

Then how many wins must the Angles and Mariners have between them?

If two teams have 167 wins between them, then one team must have at least 
how many wins?

83

83+78 = 161

6

161+6 = 167

167/2  = 84⌈ ⌉

This is a short proof showing 
that the Athletics cannot 

possibly come in first



In general, if we have a set of  integers that sum to , the value 
of some integer in that set must be  

• So, for any team , if there is some subset of teams 
 where their (total number of current wins  total 

number of remaining head-to-head games)   is more 
than ’s maximum possible wins,  is mathematically 
eliminated from contention. 

• For the Rangers, one subset is {Angels} 
• 77+3=80 < 83+0=83 

• For the Athletics, {Mariners, Rangers} does not ensure 
elimination, but {Angels, Mariners} does 

Finding the right subset  of teams can serve as a proof that 
some team  is eliminated from contention

k N
≥ ⌈N/k⌉

t ∈ T
S ⊆ T − {t} +

÷ |S |
t t

S
t

Let’s Leverage the Average



We want to be able to talk about our problem/constraints, 
so we’ll define some terms we use in our reduction. 

• Let  be a set of teams in some division 

• E.g.,  { Angels, Athletics, Mariners, Rangers } 

• If , then let  be the number of wins by team  

• E.g., if Angels, then  

• If  and  are teams in , then let  denote the 
number of games remaining between  and  

• E.g., if Angels, Rangers, then 

S

S =

x ∈ S w(x) x

x ← w(x) = 83

x y S g(x, y)
x y

x ← y ← g(x, y) = 1

Notation



We will next build a flow network that is unique to a single team, . It will 
allow us to answer, for , “Has  been eliminated from contention?” 

• Idea: Assume  wins all of its remaining games. Denote this number as . 
We want to construct a flow network that includes all other teams (i.e., 

), but each team’s victories are constrained by  (no team 
can win more than  games). 

• For every team , create a node in the network, and connect it to . 

• We want to make sure no team  can have more than  wins. A team  
already has  wins. What should the capacity be for the edge 
connecting team  to ? 

•

x ∈ S
x ∈ S x

x m

S′ = S − {x} m
m

i ∈ S′ t

i m i
w(i)

i t

m − w(i)

Defining the Reduction



Abstract Flow Network

s t

m − w(p)

m − w(q)

m − w(r)
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If one unit of flow represents one win, then we need a way to model the 
genesis of wins.  

• Idea: In addition to team nodes, create a games node for the head-to-
head games between each pair of teams. 

• The number of games between teams  and  is denoted by  

•  should be the capacity entering the game node from  

• Flow leaving a game node represents a win, so each game node must 
connect to the two teams that are playing 

• The most wins a team could get is , but the conservation of 
flow self-limits these edges (i.e., game node to team node) 

• Using  simplifies later analysis, so let’s use that as the capacity

i j g(i, j)

g(i, j) s

g(i, j)

∞

Defining the Reduction



Abstract Flow Network

s t

p

q

r

m − w(p)

m − w(q)

m − w(r)

Teams

. . .

. . .

{p,q}

{q,r}

. . .
g(q, r)

g(p, q)

Games

∞

∞

∞

∞



Now that we’ve built our flow network, how can we use it to solve the 
problem? Let’s think about what we’ve constructed… 

• We’ve constrained the number of games that each team can win by 
assigning capacities  to the edges leaving each team. 

• We’ve represented each game yet to be played (by a team other than 
). These games must be won by someone. 

• Let  denote the number of games yet to be played 

• Let  denote the max flow on our network. 

• What does it mean when ?  

• What does it mean when ?

m − w(i)

x

g

g *

g = g *

g * < g

Interpreting the Network 

Each game is assigned as a win 
to some team—and it falls 

within the x-constrained limit!

There weren’t enough 
“allowed” wins to meet the 

remaining games played. Thus, 
team x is eliminated!



Abstract Flow Network

s t

p

q

r

m − w(p)

m − w(q)

m − w(r)

Teams

. . .

. . .

{p,q}

{q,r}

. . .
g(q, r)

g(p, q)

Games

∞

∞

∞

∞

fout(s)

If , then all games were 
successfully assigned as wins to some team, subject to 
the constraints needed for team  to have a chance.

fout(s) = c({s}, V − {s})

x



Abstract Flow Network

s t

p

q

r

m − w(p)

m − w(q)

m − w(r)

Teams

. . .

. . .

{p,q}

{q,r}

. . .
g(q, r)

g(p, q)

Games

∞

∞

∞

∞

fin(t)

If , then there were games that could not be successfully assigned 
as wins to some team, subject to the constraints needed for team  to have a chance. In 

other words, there were more games played than teams were allowed to win.

fin(t) < c({t}, V − {t})
x
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