
Applications of
Network Flow:  
Solving Problems by  

Reduction to Network Flows

Today: Two (Fun) Max-Flow Min-Cut
Applications

• Bipartite matching

• Baseball elimination 

• We will solve these problems by reducing them to a
network flow problem

• We’ll show how to prove the correctness of a problem
reduction for the maximum bipartite matching problem

• We’ll look at a more complex reduction with the baseball
elimination problem to show the power of flow networks

Bipartite Matching

Review: Matching in Graphs
Definition. Given an undirected graph , a matching

 of is a subset of edges such that no two edges in are
incident on the same vertex.

• Said differently, a node appears in at most one edge in

G = (V, E)
M ⊆ E G M

M

Review: Bipartite Graphs
A graph is bipartite if its vertices can be partitioned into two
subsets such that every edge connects and

• Bipartite matching problem. Given a bipartite graph
 find a maximum matching.

X, Y e = (u, v) u ∈ X
v ∈ Y

G = (X ∪ Y, E)

1

2

3

4

5

1'

2'

3'

4'

5'

Reduction to Max Flow

x
Instance of X

y
Instance of Y

Algorithm for Y

Positive instance

Negative instance
Reduction

Algorithm for X

Finding the largest matching on a bipartite graph doesn't
seem like a network flow problem: we must turn it into one!

• Given: arbitrary instance of bipartite matching problem
: and edges between and

• Goal: Create a special instance of a max-flow problem
: flow network: , source , sink s.t.

• 1-1 correspondence. There exists a matching of size
iff there is a flow of value

x
(X) A, B E A B

y
(Y) G(V, E, c) s t ∈ V

k
k

Reduction to Max Flow
Goal: Let’s try to construct a flow network where
means we have a matching of size .

• Problems abound! Our bipartite graph, , is:

• Sourceless and sinkless.

• We’ll need an and a

• Undirected.

• How should we fix this? Should we add edges?
Convert existing edges to directed edges? Both?

• Unweighted.

• has no edge capacities.

• We need to add capacities s.t. when we
have a matching of size .

v(f) = k
k

G

s t

G
v(f) = k

k

Reduction to Max Flow
• Our bipartite graph, , is sourceless and sinkless.

• It isn’t clear how to “select” an and a among the nodes in ,
so let’s add new source/sink nodes

G
s t G

G

Reduction to Max Flow
• Our bipartite graph, , is sourceless and sinkless.

• It isn’t clear how to “select” an and a among the nodes in ,
so let’s add new source/sink nodes 
 
 
 
 
 
 
 
 
 
 

• How do we connect and to the nodes in ? Considerations:

• Max flow = min cut

• We want when we have a matching of size .

G
s t G

s t G

v(f) = k k

s t

Reduction to Max Flow
Observations:

• The size of a maximum matching is

• If max flow = min cut, two intuitive bottlenecks are and  

 
 
 
 
 
 
 
 
 
 
 

• If we add edges from to each node in , and from each node in
to , flow across those edges could correspond to the vertex being
matched

min(|A | , |B |)
fout(s) fin(t)

s A B
t

s

A B

t

Each vertex can be in at
most one match

Reduction to Max Flow
Observations:

• The size of a maximum matching is

• If max flow = min cut, two intuitive bottlenecks are and  

 
 
 
 
 
 
 
 
 
 
 

• If we add edges from to each node in , and from each node in
to , flow across those edges could correspond to the vertex being
matched

min(|A | , |B |)
fout(s) fin(t)

s A B
t

s t

fout(s) fin(t)

A capacity of on these
edges would limit a vertex’s

“matches” to at most

c

c

A capacity of on these
edges would limit a vertex’s

“matches” to at most

c

c

Reduction to Max Flow
Observations:

• If we orient the undirected edges to originate in “ ” vertices and
terminate in “ ” vertices, flow can travel from source to sink 
 
 
 
 
 
 
 
 
 
 
 
 

• We need to limit vertex matches to at most 1 match

• Adding a capacity of 1 to all directed edges completes our reduction

A
B

s t

1
1

1

1

1

1
11

1

1

1

1

1

1

1

1
1

1

1

1

Do we need the capacity
on “A to B” edges to be 1?

Why or why not?

Description of Transformation
• Create a new directed graph

• Add edge to for all nodes

• Add edge to for all nodes

• Add edge in if

• Set capacity of all edges in to 1

G′￼= (A ∪ B ∪ {s, t}, E′￼, c)
s → a E′￼ a ∈ A
b → t E′￼ b ∈ B
a → b E′￼ (a, b) ∈ E

E′￼

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

G′

1

G

1

3

5

1'

3'

5'

2

4

2'

4'

Mapping Back to Original Problem
Calculate the maximum flow on

• One unit of flow corresponds to a matching of one vertex
in to one vertex in

• A flow of corresponds to a matching of size

• Matching includes all edges connecting vertices in
to vertices in that have positive flow

k G′￼

A B
k k
M A

B

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

G′

1

G

1

3

5

1'

3'

5'

2

4

2'

4'

Anatomy of Problem
Reductions

• Claim. satisfies a property if and only if satisfies a
corresponding property

• Proving a reduction is correct: prove both directions

• has a property (e.g. has matching of size has a

corresponding property (e.g. has a flow of value

• does not have a property (e.g. does not have matching of

size does not have a corresponding property
(e.g. does not have a flow of value

• Or equivalently (and this is often easier to prove):

• has a property (e.g. has flow of value has a

corresponding property (e.g. has a matching of value

x y

x k) ⟹ y
k)

x
k) ⟹ y

k)

y k) ⟹ x
k)

(⇒)

(⇐)

Correctness of Reduction
• Claim .  

If the bipartite graph has matching of size
then flow-network has an integral flow of value .

(⇒)
(A, B, E) M k

G′￼ k

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

G′

1

G

1

3

5

1'

3'

5'

2

4

2'

4'

Correctness of Reduction
• Claim .  

If the bipartite graph has matching of size
then flow-network has an integral flow of value .

• Proof scketch (Complete proof in textbook).

• For every edge , let be the flow resulting
from sending 1 unit of flow along the path

• is a feasible flow (satisfies capacity and conservation)
and integral

•

(⇒)
(A, B, E) M k

G′￼ k

e = (a, b) ∈ M f

s → a → b → t

f

v(f) = k

• Claim .  
If flow-network has an integral flow of value , then the
bipartite graph has matching of size .

(⇐)
G′￼ k
(A, B, E) M k

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

1

G′

Correctness of Reduction

G

1

3

5

1'

3'

5'

2

4

2'

4'

• Claim .  
If flow-network has an integral flow of value , then the
bipartite graph has matching of size .

• Proof.

• Let set of edges from to with .

• No two edges in share a vertex, why?

•

• for any cut

• Let

(⇐)
G′￼ k
(A, B, E) M k

M = A B f(e) = 1

M

|M | = k

v(f) = fout(S) − fin(S) (S, V − S)

S = A ∪ {s}

Correctness of Reduction

• Proved matching of size iff flow of value

• Thus, max-flow iff max matching

• Running time of algorithm overall:

• Running time of reduction + running time of
solving the flow problem (flow alg. dominates)

• What is running time of Ford–Fulkerson algorithm for a
flow network with all unit capacities?

•

• Overall running time of finding max-cardinality bipartite
matching:

k k

O(nm)

O(nm)

Summary & Running Time

Baseball Elimination

The Baseball Elimination Problem
You are given the wins, and losses, and remaining schedule for all teams in
a league/division. Which teams have been mathematically eliminated from
contention (i.e., they cannot possibly come in first or tie for first place)?

Team Wins Losses Games
Left Angels Athletics Mariners Rangers

Angels 83 71 8 - 1 6 1

Athletics 80 79 3 1 - 0 2

Mariners 78 78 6 6 0 - 0

Rangers 77 82 3 1 2 0 -

The Baseball Elimination Problem
You are given the wins, and losses, and remaining schedule for all teams in
a league/division. Which teams have been mathematically eliminated from
contention (i.e., they cannot possibly come in first or tie for first place)?

Team Wins Losses Games
Left Angels Athletics Mariners Rangers

Angels 83 71 8 - 1 6 1

Athletics 80 79 3 1 - 0 2

Mariners 78 78 6 6 0 - 0

Rangers 77 82 3 1 2 0 -
Can the Rangers possibly

come in first place?  
Why or why not?

No! Even if the Rangers’ win
all remaining games, their

win total won’t surpass the
Angels’ current win total.

The Baseball Elimination Problem
You are given the wins, and losses, and remaining schedule for all teams in
a league/division. Which teams have been mathematically eliminated from
contention (i.e., they cannot possibly come in first or tie for first place)?

Team Wins Losses Games
Left Angels Athletics Mariners Rangers

Angels 83 71 8 - 1 6 1

Athletics 80 79 3 1 - 0 2

Mariners 78 78 6 6 0 - 0

Rangers 77 82 3 1 2 0 -

Can the Athetlics possibly
come in first place?  
Why or why not?

No! If the Angels lose all
remaining games (as

needed), 6 of them are
losses to the Mariners. The
Mariners will leapfrog the

Athletics and come in first!

A More Principled Approach
What we need is a way to prove that a team is eliminated. Let’s try
to reduce this problem to a max flow problem…

Team Wins Losses Games
Left Angels Athletics Mariners Rangers

Angels 83 71 8 - 1 6 1

Athletics 80 79 3 1 - 0 2

Mariners 78 78 6 6 0 - 0

Rangers 77 82 3 1 2 0 -

Let’s Leverage the Average

What is the maximum number of games the Athletics can win this season?

Team Wins Losses Games
Left

Angels Athletics Mariners Rangers

Angels 83 71 8 - 1 6 1

Athletics 80 79 3 1 - 0 2

Mariners 78 78 6 6 0 - 0

Rangers 77 82 3 1 2 0 -

The Angels and Mariners have how many wins between them?

How many remaining games will the Angels/Mariners play against each other?

Then how many wins must the Angles and Mariners have between them?

If two teams have 167 wins between them, then one team must have at least 
how many wins?

83

83+78 = 161

6

161+6 = 167

167/2 = 84⌈ ⌉

Let’s Leverage the Average

What is the maximum number of games the Athletics can win this season?

Team Wins Losses Games
Left

Angels Athletics Mariners Rangers

Angels 83 71 8 - 1 6 1

Athletics 80 79 3 1 - 0 2

Mariners 78 78 6 6 0 - 0

Rangers 77 82 3 1 2 0 -

The Angels and Mariners have how many wins between them?

How many remaining games will the Angels/Mariners play against each other?

Then how many wins must the Angles and Mariners have between them?

If two teams have 167 wins between them, then one team must have at least 
how many wins?

83

83+78 = 161

6

161+6 = 167

167/2 = 84⌈ ⌉

This is a short proof showing
that the Athletics cannot

possibly come in first

In general, if we have a set of integers that sum to , the value
of some integer in that set must be

• So, for any team , if there is some subset of teams
 where their (total number of current wins total

number of remaining head-to-head games) is more
than ’s maximum possible wins, is mathematically
eliminated from contention.

• For the Rangers, one subset is {Angels}

• 77+3=80 < 83+0=83

• For the Athletics, {Mariners, Rangers} does not ensure
elimination, but {Angels, Mariners} does

Finding the right subset of teams can serve as a proof that
some team is eliminated from contention

k N
≥ ⌈N/k⌉

t ∈ T
S ⊆ T − {t} +

÷ |S |
t t

S
t

Let’s Leverage the Average

We want to be able to talk about our problem/constraints,
so we’ll define some terms we use in our reduction.

• Let be a set of teams in some division

• E.g., { Angels, Athletics, Mariners, Rangers }

• If , then let be the number of wins by team

• E.g., if Angels, then

• If and are teams in , then let denote the
number of games remaining between and

• E.g., if Angels, Rangers, then

S

S =

x ∈ S w(x) x

x ← w(x) = 83

x y S g(x, y)
x y

x ← y ← g(x, y) = 1

Notation

We will next build a flow network that is unique to a single team, . It will
allow us to answer, for , “Has been eliminated from contention?”

• Idea: Assume wins all of its remaining games. Denote this number as .
We want to construct a flow network that includes all other teams (i.e.,

), but each team’s victories are constrained by (no team
can win more than games).

• For every team , create a node in the network, and connect it to .

• We want to make sure no team can have more than wins. A team
already has wins. What should the capacity be for the edge
connecting team to ?

•

x ∈ S
x ∈ S x

x m

S′￼= S − {x} m
m

i ∈ S′￼ t

i m i
w(i)

i t

m − w(i)

Defining the Reduction

Abstract Flow Network

s t

m − w(p)

m − w(q)

m − w(r)

p

q

r

Teams

.
.
.

.
.
.

If one unit of flow represents one win, then we need a way to model the
genesis of wins.

• Idea: In addition to team nodes, create a games node for the head-to-
head games between each pair of teams.

• The number of games between teams and is denoted by

• should be the capacity entering the game node from

• Flow leaving a game node represents a win, so each game node must
connect to the two teams that are playing

• The most wins a team could get is , but the conservation of
flow self-limits these edges (i.e., game node to team node)

• Using simplifies later analysis, so let’s use that as the capacity

i j g(i, j)

g(i, j) s

g(i, j)

∞

Defining the Reduction

Abstract Flow Network

s t

p

q

r

m − w(p)

m − w(q)

m − w(r)

Teams

.
.
.

.
.
.

{p,q}

{q,r}

.
.
.
g(q, r)

g(p, q)

Games

∞

∞

∞

∞

Now that we’ve built our flow network, how can we use it to solve the
problem? Let’s think about what we’ve constructed…

• We’ve constrained the number of games that each team can win by
assigning capacities to the edges leaving each team.

• We’ve represented each game yet to be played (by a team other than
). These games must be won by someone.

• Let denote the number of games yet to be played

• Let denote the max flow on our network.

• What does it mean when ?

• What does it mean when ?

m − w(i)

x

g

g *

g = g *

g * < g

Interpreting the Network

Each game is assigned as a win
to some team—and it falls

within the x-constrained limit!

There weren’t enough
“allowed” wins to meet the

remaining games played. Thus,
team x is eliminated!

Abstract Flow Network

s t

p

q

r

m − w(p)

m − w(q)

m − w(r)

Teams

.
.
.

.
.
.

{p,q}

{q,r}

.
.
.
g(q, r)

g(p, q)

Games

∞

∞

∞

∞

fout(s)

If , then all games were
successfully assigned as wins to some team, subject to
the constraints needed for team to have a chance.

fout(s) = c({s}, V − {s})

x

Abstract Flow Network

s t

p

q

r

m − w(p)

m − w(q)

m − w(r)

Teams

.
.
.

.
.
.

{p,q}

{q,r}

.
.
.
g(q, r)

g(p, q)

Games

∞

∞

∞

∞

fin(t)

If , then there were games that could not be successfully assigned
as wins to some team, subject to the constraints needed for team to have a chance. In

other words, there were more games played than teams were allowed to win.

fin(t) < c({t}, V − {t})
x

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

