Applications of Network Flow: Solving Problems by Reduction to Network Flows

Reductions

- We will solve these problems by reducing them to a network flow problem
- We'll focus on the concept of problem reductions

Anatomy of Problem Reductions

At a high level, a problem X reduces to a problem Y if an algorithm for Y can be used to solve X

• Reduction. Convert an arbitrary instance x of X to a special instance y of Y such that there is a 1-1 correspondence between them

Anatomy of Problem Reductions

- **Claim.** *x* satisfies a property iff *y* satisfies a *corresponding* property
- Proving a reduction is correct: prove both directions
- x has a property (e.g. has matching of size k) \implies y has a corresponding property (e.g. has a flow of value k)
- *x* does not have a property (e.g. does not have matching of size *k*) ⇒ *y* does not have a corresponding property (e.g. does not have a flow of value *k*)
- Or equivalently (and this is often easier to prove):
 - y has a property (e.g. has flow of value k) \implies x has a corresponding property (e.g. has a matching of value k)

Remaining Plan

We will explore one application of network flow in detail today

- Matching in bipartite graphs
- Matchings are super practical with many applications
- We have already seen one, can you remember?

Next meeting: another application reducible to network flow (playoff elimination)

- More practice with reductions
- (Reductions will come in handy on our next topic too!)

Bipartite Matching

Review: Matching in Graphs

Definition. Given an undirected graph G = (V, E), a matching $M \subseteq E$ of G is a subset of edges such that no two edges in M are incident on the same vertex.

- Said differently, a node appears as an endpoint in at most one edge in ${\cal M}$

Review: Matching in Graphs

A perfect matching matches all nodes in G

- Max matching problem. Find a matching of maximum cardinality for a given graph
 - That is, a matching with maximum number of edges
 - **Observation**: If it exists, a perfect matching is maximum!

Review: Bipartite Graphs

A graph is **bipartite** if its vertices can be partitioned into two subsets *X*, *Y* such that every edge e = (u, v) connects $u \in X$ and $v \in Y$

• **Bipartite matching problem.** Given a bipartite graph $G = (X \cup Y, E)$ find a maximum matching.

Bipartite Matching Examples

Can be used to model many assignment problems, e.g.:

- A is a set of jobs, B as a set of machines
- Edge (a_i, b_j) indicates where machine b_j is able to process job a_i
- Perfect matching: a way to assign each job to a machine that can process it, such that each machine is assigned exactly one job
- Assigning customers to stores, students to dorms, etc.
- Note. This is a different problem than the one we studied for Gale-Shapely matching!

Maximum & Perfect Matchings

- One of the oldest problems in combinatorial algorithms:
 - Determine the largest matching in a bipartite graph
- This doesn't seem like a network flow problem, but we will turn it into one!
- Special case: Find a perfect matching in G if it exists
 - What conditions do we need for perfect matching?
 - Certainly need |A| = |B|
 - What are the necessary and sufficient conditions?
 - Will use network flow to determine

Reduction to Max Flow

- Given arbitrary instance *x* of bipartite matching problem (*X*): *A*, *B* and edges *E* between *A* and *B*
- **Goal.** Create a special instance y of a max-flow problem (Y): flow network: G(V, E, c), source s, sink $t \in V$ s.t.
- 1-1 correspondence. There exists a matching of size k iff there is a flow of value k

Reduction to Max Flow

- Create a new directed graph $G' = (A \cup B \cup \{s, t\}, E', c)$
- Add edge $s \to a$ to E' for all nodes $a \in A$
- Add edge $b \to t$ to E' for all nodes $b \in B$
- Direct edge $a \rightarrow b$ in E' if $(a, b) \in E$
- Set capacity of all edges in E' to 1

• Claim (\Rightarrow).

If the bipartite graph (A, B, E) has matching M of size k then flow-network G' has an integral flow of value k.

• Claim (\Rightarrow).

If the bipartite graph (A, B, E) has matching M of size k then flow-network G' has an integral flow of value k.

- **Proof** (Longer proof in textbook).
 - For every edge $e = (a, b) \in M$, let f be the flow resulting from sending 1 unit of flow along the path $s \to a \to b \to t$
 - *f* is a feasible flow (satisfies capacity and conservation) and integral
 - v(f) = k

• Claim (\Leftarrow).

If flow-network G' has an integral flow of value k, then the bipartite graph (A, B, E) has matching M of size k.

G

• Claim (\Leftarrow).

If flow-network G' has an integral flow of value k, then the bipartite graph (A, B, E) has matching M of size k.

- Proof.
 - Let M = set of edges from A to B with f(e) = 1.
 - No two edges in M share a vertex, why? <

Edge capacities are I

- |M| = k
 - $v(f) = f_{out}(S) f_{in}(S)$ for any (S, V S) cut
 - Let $S = A \cup \{s\}$

Summary & Running Time

- Proved matching of size k iff flow of value k
- Thus, max-flow iff max matching
- Running time of algorithm overall:
 - Running time of reduction + running time of solving the flow problem (dominates)
- What is running time of Ford–Fulkerson algorithm for a flow network with all unit capacities?
 - *O*(*nm*)
- Overall running time of finding max-cardinality bipartite matching: O(nm)

Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (<u>https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf</u>)
 - Jeff Erickson's Algorithms Book (<u>http://jeffe.cs.illinois.edu/</u> <u>teaching/algorithms/book/Algorithms-JeffE.pdf</u>)
 - Shikha Singh