
Applications of
Network Flow:
Solving Problems by

Reduction to Network Flows

Reductions

• We will solve these problems by reducing them to a
network flow problem

• We'll focus on the concept of problem reductions

Anatomy of Problem
Reductions

x
Instance of X

y
Instance of Y

Algorithm for Y

Positive instance

Negative instance
Reduction

Algorithm for X

At a high level, a problem reduces to a problem if
an algorithm for can be used to solve
• Reduction. Convert an arbitrary instance of to a

special instance of such that there is a 1-1
correspondence between them

X Y
Y X

x X
y Y

Anatomy of Problem
Reductions

• Claim. satisfies a property iff satisfies a corresponding
property

• Proving a reduction is correct: prove both directions
• has a property (e.g. has matching of size has a

corresponding property (e.g. has a flow of value
• does not have a property (e.g. does not have matching of

size does not have a corresponding property
(e.g. does not have a flow of value

• Or equivalently (and this is often easier to prove):
• has a property (e.g. has flow of value has a

corresponding property (e.g. has a matching of value

x y

x k) ⟹ y
k)

x
k) ⟹ y

k)

y k) ⟹ x
k)

Remaining Plan
We will explore one application of network flow in detail today

• Matching in bipartite graphs

• Matchings are super practical with many applications

• We have already seen one, can you remember?

Next meeting: another application reducible to network flow
(playoff elimination)

• More practice with reductions

• (Reductions will come in handy on our next topic too!)

Bipartite Matching

Review: Matching in Graphs
Definition. Given an undirected graph , a matching

 of is a subset of edges such that no two edges in are
incident on the same vertex.

• Said differently, a node appears as an endpoint in at most one
edge in

G = (V, E)
M ⊆ E G M

M

Review: Matching in Graphs
A perfect matching matches all nodes in

• Max matching problem. Find a matching of maximum
cardinality for a given graph

• That is, a matching with maximum number of edges

• Observation: If it exists, a perfect matching is maximum!

G

Review: Bipartite Graphs
A graph is bipartite if its vertices can be partitioned into two
subsets such that every edge connects and

• Bipartite matching problem. Given a bipartite graph
 find a maximum matching.

X, Y e = (u, v) u ∈ X
v ∈ Y

G = (X ∪ Y, E)

1

2

3

4

5

1'

2'

3'

4'

5'

Bipartite Matching Examples
Can be used to model many assignment problems, e.g.:

• is a set of jobs, as a set of machines

• Edge indicates where machine is able to process
job

• Perfect matching: a way to assign each job to a machine
that can process it, such that each machine is assigned
exactly one job

• Assigning customers to stores, students to dorms, etc.

• Note. This is a different problem than the one we studied for
Gale-Shapely matching!

A B

(ai, bj) bj

ai

Maximum & Perfect Matchings
• One of the oldest problems in combinatorial algorithms:

• Determine the largest matching in a bipartite graph

• This doesn't seem like a network flow problem, but we will
turn it into one!

• Special case: Find a perfect matching in if it exists

• What conditions do we need for perfect matching?

• Certainly need

• What are the necessary and sufficient conditions?

• Will use network flow to determine

G

|A | = |B |

Reduction to Max Flow

x
Instance of X

y
Instance of Y

Algorithm for Y

Positive instance

Negative instance
Reduction

Algorithm for X

• Given arbitrary instance of bipartite matching problem
: and edges between and

• Goal. Create a special instance of a max-flow problem
: flow network: , source , sink s.t.

• 1-1 correspondence. There exists a matching of size iff
there is a flow of value

x
(X) A, B E A B

y
(Y) G(V, E, c) s t ∈ V

k
k

Reduction to Max Flow
• Create a new directed graph

• Add edge to for all nodes

• Add edge to for all nodes

• Direct edge in if

• Set capacity of all edges in to 1

G′ = (A ∪ B ∪ {s, t}, E′ , c)
s → a E′ a ∈ A
b → t E′ b ∈ B

a → b E′ (a, b) ∈ E
E′

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

G′

1

G

1

3

5

1'

3'

5'

2

4

2'

4'

Correctness of Reduction
• Claim .

If the bipartite graph has matching of size
then flow-network has an integral flow of value .

(⇒)
(A, B, E) M k

G′ k

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

G′

1

G

1

3

5

1'

3'

5'

2

4

2'

4'

Correctness of Reduction
• Claim .

If the bipartite graph has matching of size
then flow-network has an integral flow of value .

• Proof (Longer proof in textbook).

• For every edge , let be the flow resulting
from sending 1 unit of flow along the path

• is a feasible flow (satisfies capacity and conservation)
and integral

•

(⇒)
(A, B, E) M k

G′ k

e = (a, b) ∈ M f

s → a → b → t

f

v(f) = k

• Claim .
If flow-network has an integral flow of value , then the
bipartite graph has matching of size .

(⇐)
G′ k
(A, B, E) M k

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

1

G′

Correctness of Reduction

G

1

3

5

1'

3'

5'

2

4

2'

4'

• Claim .
If flow-network has an integral flow of value , then the
bipartite graph has matching of size .

• Proof.

• Let set of edges from to with .

• No two edges in share a vertex, why?

•

• for any cut

• Let

(⇐)
G′ k
(A, B, E) M k

M = A B f(e) = 1

M

|M | = k

v(f) = fout(S) − fin(S) (S, V − S)

S = A ∪ {s}

Correctness of Reduction

Edge capacities are 1

• Proved matching of size iff flow of value

• Thus, max-flow iff max matching

• Running time of algorithm overall:

• Running time of reduction + running time of
solving the flow problem (dominates)

• What is running time of Ford–Fulkerson algorithm for a
flow network with all unit capacities?

•

• Overall running time of finding max-cardinality bipartite
matching:

k k

O(nm)

O(nm)

Summary & Running Time

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

• Shikha Singh

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

