
Applications of 
Network Flow:  
Solving Problems by  

Reduction to Network Flows



Reductions

• We will solve these problems by reducing them to a 
network flow problem 

• We'll focus on the concept of problem reductions



Anatomy of Problem 
Reductions
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At a high level, a problem  reduces to a problem  if 
an algorithm for  can be used to solve  
• Reduction.  Convert an arbitrary instance  of  to a 

special instance  of  such that there is a 1-1 
correspondence between them
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Anatomy of Problem 
Reductions

• Claim.   satisfies a property iff  satisfies a corresponding 
property 

• Proving a reduction is correct: prove both directions 
•  has a property (e.g. has matching of size    has a 

corresponding property (e.g. has a flow of value  
•  does not have a property (e.g. does not have matching of 

size    does not have a corresponding property 
(e.g. does not have a flow of value   

• Or equivalently (and this is often easier to prove): 
•  has a property (e.g. has flow of value    has a 

corresponding property (e.g. has a matching of value 
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Remaining Plan
We will explore one application of network flow in detail today 

• Matching in bipartite graphs 

• Matchings are super practical with many applications 

• We have already seen one, can you remember? 

Next meeting:  another application reducible to network flow 
(playoff elimination) 

• More practice with reductions 

• (Reductions will come in handy on our next topic too!)



Bipartite Matching



Review: Matching in Graphs
Definition.  Given an undirected graph , a matching 

 of  is a subset of edges such that no two edges in  are 
incident on the same vertex. 

• Said differently, a node appears as an endpoint in at most one 
edge in 

G = (V, E)
M ⊆ E G M

M



Review: Matching in Graphs
A perfect matching matches all nodes in  

• Max matching problem. Find a matching of maximum 
cardinality for a given graph 

• That is, a matching with maximum number of edges 

• Observation: If it exists, a perfect matching is maximum!

G



Review: Bipartite Graphs
A graph is bipartite if its vertices can be partitioned into two 
subsets  such that every edge  connects  and 

 

• Bipartite matching problem. Given a bipartite graph 
 find a maximum matching.

X, Y e = (u, v) u ∈ X
v ∈ Y

G = (X ∪ Y, E)
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Bipartite Matching Examples
Can be used to model many assignment problems, e.g.: 

•  is a set of jobs,  as a set of machines 

• Edge  indicates where machine  is able to process 
job  

• Perfect matching: a way to assign each job to a machine 
that can process it, such that each machine is assigned 
exactly one job 

• Assigning customers to stores, students to dorms, etc. 

• Note. This is a different problem than the one we studied for 
Gale-Shapely matching!
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Maximum & Perfect Matchings
• One of the oldest problems in combinatorial algorithms: 

• Determine the largest matching in a bipartite graph 

• This doesn't seem like a network flow problem, but we will 
turn it into one! 

• Special case:  Find a perfect matching in  if it exists  

• What conditions do we need for perfect matching? 

• Certainly need  

• What are the necessary and sufficient conditions? 

• Will use network flow to determine

G

|A | = |B |



Reduction to Max Flow

x
Instance of X

y
Instance of Y

Algorithm for Y

Positive instance

Negative instance
Reduction

Algorithm for X

• Given arbitrary instance  of bipartite matching problem 
:   and edges  between  and  

• Goal. Create a special instance  of a max-flow problem 
: flow network: , source , sink   s.t. 

• 1-1 correspondence.  There exists a matching of size  iff 
there is a flow of value 

x
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Reduction to Max Flow
• Create a new directed graph  

• Add edge  to  for all nodes  

• Add edge  to  for all nodes  

• Direct edge   in  if   

• Set capacity of all edges in   to 1

G′ = (A ∪ B ∪ {s, t}, E′ , c)
s → a E′ a ∈ A
b → t E′ b ∈ B

a → b E′ (a, b) ∈ E
E′ 
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Correctness of Reduction
• Claim .  

If the bipartite graph  has matching  of size  
then flow-network  has an integral flow of value .
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Correctness of Reduction
• Claim .  

If the bipartite graph  has matching  of size  
then flow-network  has an integral flow of value . 

• Proof (Longer proof in textbook). 

• For every edge , let  be the flow resulting 
from sending 1 unit of flow along the path 

  

•  is a feasible flow (satisfies capacity and conservation) 
and integral 

•   

( ⇒ )
(A, B, E) M k

G′ k

e = (a, b) ∈ M f

s → a → b → t

f

v( f ) = k



• Claim .  
If flow-network  has an integral flow of value , then the 
bipartite graph  has matching  of size .
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• Claim .  
If flow-network  has an integral flow of value , then the 
bipartite graph  has matching  of size . 

• Proof. 

• Let set of edges from  to  with . 

• No two edges in  share a vertex, why? 

•   

•  for any  cut 

• Let 

( ⇐ )
G′ k
(A, B, E) M k

M = A B f(e) = 1

M

|M | = k

v( f ) = fout(S) − fin(S) (S, V − S)

S = A ∪ {s}

Correctness of Reduction

Edge capacities are 1



• Proved matching of size  iff flow of value  

• Thus, max-flow iff max matching 

• Running time of algorithm overall: 

• Running time of reduction + running time of 
solving the flow problem (dominates) 

• What is running time of Ford–Fulkerson algorithm for a 
flow network with all unit capacities? 

•  

• Overall running time of finding max-cardinality bipartite 
matching: 

k k

O(nm)

O(nm)

Summary & Running Time
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