Applications of Network Flow:
Solving Problems by Reduction to Network Flows
Reductions

• We will solve these problems by reducing them to a network flow problem

• We'll focus on the concept of problem reductions
Anatomy of Problem Reductions

At a high level, a problem X reduces to a problem Y if an algorithm for Y can be used to solve X

- **Reduction.** Convert an arbitrary instance x of X to a special instance y of Y such that there is a 1-1 correspondence between them.
Anatomy of Problem Reductions

- **Claim.** x satisfies a property iff y satisfies a corresponding property.
- Proving a reduction is correct: prove both directions.
- x has a property (e.g. has matching of size k) \implies y has a corresponding property (e.g. has a flow of value k).
- x does not have a property (e.g. does not have matching of size k) \implies y does not have a corresponding property (e.g. does not have a flow of value k).
- Or equivalently (and this is often easier to prove):
 - y has a property (e.g. has flow of value k) \implies x has a corresponding property (e.g. has a matching of value k).
Remaining Plan

We will explore one application of network flow in detail today

- Matching in bipartite graphs
- Matchings are super practical with many applications
- We have already seen one, can you remember?

Next meeting: another application reducible to network flow (playoff elimination)

- More practice with reductions
- (Reductions will come in handy on our next topic too!)
Bipartite Matching
Definition. Given an undirected graph $G = (V, E)$, a matching $M \subseteq E$ of G is a subset of edges such that no two edges in M are incident on the same vertex.

- Said differently, a node appears as an endpoint in at most one edge in M.
Review: Matching in Graphs

A perfect matching matches all nodes in G

- Max matching problem. Find a matching of maximum cardinality for a given graph
 - That is, a matching with maximum number of edges
- Observation: If it exists, a perfect matching is maximum!
A graph is **bipartite** if its vertices can be partitioned into two subsets X, Y such that every edge $e = (u, v)$ connects $u \in X$ and $v \in Y$

- **Bipartite matching problem.** Given a bipartite graph $G = (X \cup Y, E)$ find a maximum matching.
Bipartite Matching Examples

Can be used to model many assignment problems, e.g.:

- A is a set of jobs, B as a set of machines
- Edge (a_i, b_j) indicates where machine b_j is able to process job a_i
- Perfect matching: a way to assign each job to a machine that can process it, such that each machine is assigned exactly one job
- Assigning customers to stores, students to dorms, etc.

Note. This is a different problem than the one we studied for Gale-Shapely matching!
Maximum & Perfect Matchings

• One of the oldest problems in combinatorial algorithms:
 • Determine the largest matching in a bipartite graph
• This doesn't seem like a network flow problem, but we will turn it into one!
• Special case: Find a perfect matching in G if it exists
 • What conditions do we need for perfect matching?
 • Certainly need $|A| = |B|$,
 • What are the necessary and sufficient conditions?
 • Will use network flow to determine
Reduction to Max Flow

- Given arbitrary instance x of bipartite matching problem (X): A, B and edges E between A and B

- **Goal.** Create a special instance y of a max-flow problem (Y): flow network: $G(V, E, c)$, source s, sink $t \in V$ s.t.

- **1-1 correspondence.** There exists a matching of size k iff there is a flow of value k
Reduction to Max Flow

• Create a new directed graph $G' = (A \cup B \cup \{s, t\}, E', c)$
• Add edge $s \to a$ to E' for all nodes $a \in A$
• Add edge $b \to t$ to E' for all nodes $b \in B$
• Direct edge $a \to b$ in E' if $(a, b) \in E$
• Set capacity of all edges in E' to 1
Correctness of Reduction

- **Claim** (\Rightarrow).
 If the bipartite graph (A, B, E) has matching M of size k then flow-network G' has an integral flow of value k.

![Graphs](image)
Correctness of Reduction

- **Claim** (\Rightarrow).
 If the bipartite graph (A, B, E) has matching M of size k then flow-network G' has an integral flow of value k.

- **Proof** (Longer proof in textbook).
 - For every edge $e = (a, b) \in M$, let f be the flow resulting from sending 1 unit of flow along the path $s \to a \to b \to t$
 - f is a feasible flow (satisfies capacity and conservation) and integral
 - $v(f) = k$
Correctness of Reduction

- **Claim (⇐).**

 If flow-network G' has an integral flow of value k, then the bipartite graph (A, B, E) has matching M of size k.

Correctness of Reduction

- **Claim** (⇐).
 If flow-network G' has an integral flow of value k, then the bipartite graph (A, B, E) has matching M of size k.

- **Proof**.
 - Let $M = \text{set of edges from } A \text{ to } B \text{ with } f(e) = 1$.
 - No two edges in M share a vertex, why?
 - $|M| = k$
 - $v(f) = f_{\text{out}}(S) - f_{\text{in}}(S)$ for any $(S, V - S)$ cut
 - Let $S = A \cup \{s\}$

Edge capacities are 1
Summary & Running Time

- Proved matching of size k iff flow of value k
- Thus, max-flow iff max matching
- Running time of algorithm overall:
 - Running time of reduction + running time of solving the flow problem (dominates)
- What is running time of Ford–Fulkerson algorithm for a flow network with all unit capacities?
 - $O(nm)$
- Overall running time of finding max-cardinality bipartite matching: $O(nm)$
Acknowledgments

- Some of the material in these slides are taken from
 - Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf)
 - Shikha Singh