Flow Networks: Ford-Fulkerson Algorithm
Towards a Max-Flow Algorithm

Greedy strategy:

- Start with $f(e) = 0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck
- Let’s explore an example
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck

`ending flow value = 16`

Is this the best we can do?
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value = 16
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value = 16
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

Ending flow value = 16
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck

Ending flow value = 16
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value = 16
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value = 16
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value = 16
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck

$\text{max-flow value} = 19$
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck

max-flow value = 19
Why Greedy Fails

Problem: greedy can never “undo” a bad flow decision

- Consider the following flow network

![Flow Network Diagram](image)

- Greedy could choose $s \rightarrow v \rightarrow w \rightarrow t$ as first P

- **Takeaway**: Need a mechanism to “undo” bad flow decisions
Ford-Fulkerson Algorithm
Ford Fulkerson: Idea

Goal: Want to make “forward progress” while letting ourselves undo previous decisions if they’re getting in our way

- **Idea**: keep track of where we can push flow
 - Can push more flow along any edge with remaining capacity
 - Can also push flow “back” along any edge that already has flow down it (*undo* a previous flow push)

- We need a way to systematically track these decisions
Residual Graph

Given flow network $G = (V, E, c)$ and a feasible flow f on G, the **residual graph** $G_f = (V, E_f, c_f)$ is defined as follows:

- Vertices in G_f are the same as in G.
- **(Forward edge)** For $e \in E$ with residual capacity $c(e) - f(e) > 0$, create $e \in E_f$ with capacity $c(e) - f(e)$.
- **(Backward edge)** For $e \in E$ with $f(e) > 0$, create $e_{\text{reverse}} \in E_f$ with capacity $f(e)$.

Diagram:

- **Original flow network G**
 - $u \rightarrow v$ with flow 6 / capacity 17.

- **Residual network G_f**
 - $u \rightarrow v$ with residual capacity 11.
 - $v \rightarrow u$ with reverse edge and residual capacity 6.
Residual Graph

- **(Forward edge)** For $e \in E$ with residual capacity $c(e) - f(e) > 0$, create $e \in E_f$ with capacity $c(e) - f(e)$

- **(Backward edge)** For $e \in E$ with $f(e) > 0$, create $e_{\text{reverse}} \in E_f$ with capacity $f(e)$

What does it mean to push flow down a forward edge?

What does it mean to push flow down a reverse edge?
Flow Algorithm Idea

Now we have a residual graph that lets us make forward progress or push back existing flow.

- We will look for $s \leadsto t$ paths in G_f rather than G
- Once we have a path, we will "augment" flow along it similar to greedy
 - e.g., we find a bottleneck capacity edge on the path and push that much flow through it in G_f
- How do we translate this back to G?
 - We increment existing flow on a forward edge
 - Or we decrement flow on a backward edge
Augmenting Path & Flow

- An **augmenting path** P is a **simple** $s \leadsto t$ path in the residual graph G_f.

- The **bottleneck capacity** b of an augmenting path P is the minimum capacity of any edge in P.

Algorithm:

```
AUGMENT($f$, $P$)

$b \leftarrow$ bottleneck capacity of augmenting path $P$.

FOREACH edge $e \in P$:

IF ($e \in E$, that is, $e$ is forward edge)

Increase $f(e)$ in $G$ by $b$

ELSE

Decrease $f(e)$ in $G$ by $b$

RETURN $f$.
```

If/else updates flow in G, not G_f.
Ford-Fulkerson Algorithm

- Start with \(f(e) = 0 \) for each edge \(e \in E \)
- Find a simple \(s \leadsto t \) path \(P \) in the residual network \(G_f \)
- Augment flow along path \(P \) by bottleneck capacity \(b \)
- Repeat until you get stuck

\[
\text{FORD–FULKERSON}(G)
\]

\[\begin{align*}
\text{FOREACH} \hspace{1em} &\text{edge } e \in E : f(e) \leftarrow 0. \\
G_f &\leftarrow \text{residual network of } G \text{ with respect to flow } f. \\
\text{WHILE} &\hspace{1em} \text{(there exists an } s \leadsto t \text{ path } P \text{ in } G_f) \\
&\quad f \leftarrow \text{AUGMENT}(f, P). \\
&\quad \text{Update } G_f. \\
\text{RETURN} &\hspace{1em} f.
\end{align*}\]
Ford-Fulkerson Example

network G and flow f

residual network G_f
Ford-Fulkerson Example

network G and flow f

P in residual network G_f
Ford-Fulkerson Example

network G and flow f

residual network Gf
Ford-Fulkerson Example

network G and flow f

P in residual network G_f
Ford-Fulkerson Example

network G and flow f

residual network G_f

value of flow $8+2 = 10$
Ford-Fulkerson Example

network G and flow f

P in residual network G_f
Ford-Fulkerson Example

network G and flow f

residual network G_f

value of flow $10 + 6 = 16$
Ford-Fulkerson Example

network G and flow f

flow capacity

value of flow

16

P in residual network G_f

fixes mistake from second augmenting path
Ford-Fulkerson Example

- Network G and flow f
- Residual network G_f
- Value of flow: 18
Ford-Fulkerson Example

network G and flow f

P in residual network G_f
Ford-Fulkerson Example

network G and flow f

residual network G_f

No s-t path left!
Ford-Fulkerson Example

network G and flow f

residual network G_f

nodes reachable from s

Capacity of cut?

value of flow 19

No s-t path left!
Analysis: Ford-Fulkerson
Analysis Outline (Things to Prove)

• Feasibility and value of flow:
 • Show that each time we update the flow, we are routing a feasible $s-t$ flow through the network
 • And that value of this flow increases each time by that amount

• Optimality:
 • Final value of flow is the maximum possible

• Running time:
 • How long does it take for the algorithm to terminate?

• Space:
 • How much total space are we using?

Show this today, save rest for after P.S.
Ford-Fulkerson Algorithm

Running Time
Ford-Fulkerson Performance

Ford–Fulkerson \((G)\)

Foreach edge \(e \in E: f(e) \leftarrow 0.\)

\(G_f \leftarrow \text{residual network of } G \text{ with respect to flow } f.\)

While (there exists an \(s \rightarrow t\) path \(P\) in \(G_f\))

\(f \leftarrow \text{Augment}(f, P).\)

Update \(G_f.\)

Return \(f.\)

Performance Questions:

- Does the while loop terminate?
- If it terminates, can we bound the number of iterations?
- What is the Big-O running time of the whole algorithm?
Ford-Fulkerson Running Time

Recall we proved that with each call to AUGMENT, we increase **value of the s-t flow** by $b = \text{bottleneck}(G_f, P)$.

- **Assumption.** We assumed all capacities $c(e)$ are integers.

- **Integrality invariant.** Throughout Ford–Fulkerson, every edge flow $f(e)$ and corresponding residual capacity is an integer. Thus $b \geq 1$.

- Let $C = \max_{u} c(s \rightarrow u)$ be the maximum capacity among edges leaving the source s.

- It must be that $v(f) \leq nC$

- Since, $v(f)$ increases by $b \geq 1$ in each iteration, it follows that FF algorithm terminates in at most $v(f) = O(nC)$ iterations.
We know there are $O(nC)$ iterations. How many operations per iteration?

- Cost to find an augmenting path in G_f?
- Cost to augment flow on path?
- Cost to update G_f?
Claim. Ford-Fulkerson can be implemented to run in time $O(nmC)$, where $m = |E| \geq n - 1$ and $C = \max_u c(s \to u)$.

Proof. Time taken by each iteration:

- Finding an augmenting path in G_f
 - G_f has at most $2m$ edges, using BFS/DFS takes $O(m + n) = O(m)$ time
- Augmenting flow in P takes $O(n)$ time
- Given new flow, we can build new residual graph in $O(m)$ time
- Overall, $O(m)$ time per iteration \blacksquare
Acknowledgments

• Some of the material in these slides are taken from

 • Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf)

 • Shikha Singh