Flow Networks: Ford-Fulkerson Algorithm

Towards a Max-Flow Algorithm

Greedy strategy:

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck
- Let's explore an example

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

> Is this the best we can do?

ending flow value $=16$

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value $=16$

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value $=16$

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value $=16$

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value $=16$

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value $=16$

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value $=16$

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value $=16$

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck
max-flow value $=19$

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

```
max-flow value = 19
```


Why Greedy Fails

Problem: greedy can never "undo" a bad flow decision

- Consider the following flow network

- Greedy could choose $s \rightarrow v \rightarrow w \rightarrow t$ as first P
- Takeaway: Need a mechanism to "undo" bad flow decisions

Ford-Fulkerson Algorithm

Ford Fulkerson: Idea

Goal: Want to make "forward progress" while letting ourselves undo previous decisions if they're getting in our way

- Idea: keep track of where we can push flow
- Can push more flow along any edge with remaining capacity
- Can also push flow "back" along any edge that already has flow down it (undo a previous flow push)
- We need a way to systematically track these decisions

Residual Graph

Given flow network $G=(V, E, c)$ and a feasible flow f on G, the residual graph $G_{f}=\left(V, E_{f}, c_{f}\right)$ is defined as follows:

- Vertices in G_{f} are the same as in G
- (Forward edge) For $e \in E$ with residual capacity $c(e)-f(e)>0$, create $e \in E_{f}$ with capacity $c(e)-f(e)$
- (Backward edge) For $e \in E$ with $f(e)>0$, create $e_{\text {reverse }} \in E_{f}$ with capacity $f(e)$
"used" capacity that we can undo
original flow network G

residual network G_{f}

Residual Graph

- (Forward edge) For $e \in E$ with residual capacity $c(e)-f(e)>0$, create $e \in E_{f}$ with capacity $c(e)-f(e)$
- (Backward edge) For $e \in E$ with $f(e)>0$, create $e_{\text {reverse }} \in E_{f}$ with capacity $f(e)$

residual network G_{f}

Flow Algorithm Idea

Now we have a residual graph that lets us make forward progress or push back existing flow.

- We will look for $s \leadsto t$ paths in G_{f} rather than G
- Once we have a path, we will "augment" flow along it similar to greedy
- e.g., we find a bottleneck capacity edge on the path and push that much flow through it in G_{f}
- How do we translate this back to G ?
- We increment existing flow on a forward edge
- Or we decrement flow on a backward edge

Augmenting Path \& Flow

- An augmenting path P is a simple $s \leadsto t$ path in the residual graph G_{f}

Path that repeats no vertices

- The bottleneck capacity b of an augmenting path P is the minimum capacity of any edge in P.

$$
\text { Some } s \leadsto t \text { path } P \text { in } G_{f}
$$

Augment (f, P)
$b \leftarrow$ bottleneck capacity of augmenting path P.
Foreach edge $e \in P$:
IF ($e \in E$, that is, e is forward edge)
Increase $f(e)$ in G by b
ElSE
Decrease $f(e)$ in G by b
RETURN f.

Ford-Fulkerson Algorithm

- Start with $f(e)=0$ for each edge $e \in E$
- Find a simple $s \leadsto t$ path P in the residual network G_{f}
- Augment flow along path P by bottleneck capacity b
- Repeat until you get stuck

FORD-FULKERSON(G)
FOREACH edge $e \in E: f(e) \leftarrow 0$.
$G_{f} \leftarrow$ residual network of G with respect to flow f.
While (there exists an s \leadsto t path P in G_{f})
$f \leftarrow \operatorname{AuGmEnt}(f, P)$.
Update G_{f}.
RETURN f.

Ford-Fulkerson Example

residual network \mathbf{G}_{f}

Ford-Fulkerson Example

P in residual network G_{f}

Ford-Fulkerson Example

residual network \mathbf{G}_{f}

Ford-Fulkerson Example

P in residual network G_{f}

Ford-Fulkerson Example

residual network \mathbf{G}_{f}

Ford-Fulkerson Example

P in residual network G_{f}

Ford-Fulkerson Example

residual network \mathbf{G}_{f}

Ford-Fulkerson Example

Analysis: Ford-Fulkerson

Analysis Outline (Things to Prove)

- Feasibility and value of flow:
- Show that each time we update the flow, we are routing a feasible s - t flow through the network
- And that value of this flow increases each time by that amount
- Optimality:
- Final value of flow is the maximum possible
- Running time:
- How long does it take for the algorithm to terminate?
- Space:

Show this today, save rest for after P.S.

Ford-Fulkerson Algorithm Running Time

Ford-Fulkerson Performance

```
Ford-FuLKERSON(G)
FOREACH edge e\inE:f(e)\leftarrow0.
G
WHile (there exists an s^\imatht path P in G}\mp@subsup{G}{f}{}
    f\leftarrow\operatorname{Augment ( }f,P).
    Update Gf.
RETURN }f\mathrm{ .
```


Performance Questions:

- Does the while loop terminate?
- If it terminates, can we bound the number of iterations?
- What is the Big-O running time of the whole algorithm?

Ford-Fulkerson Running Time

Recall we proved that with each call to AUGMENT, we increase value of the s - t flow by $b=\operatorname{bottleneck}\left(G_{f}, P\right)$

- Assumption. We assumed all capacities $c(e)$ are integers.
- Integrality invariant. Throughout Ford-Fulkerson, every edge flow $f(e)$ and corresponding residual capacity is an integer. Thus $b \geq 1$.
- Let $C=\max c(s \rightarrow u)$ be the maximum capacity among edges u leaving the source s.
- It must be that $v(f) \leq n C$
- Since, $v(f)$ increases by $b \geq 1$ in each iteration, it follows that FF algorithm terminates in at most $v(f)=O(n C)$ iterations.

Ford-Fulkerson Performance

```
FORD-FULKERSON(G)
FOREACH edge e\inE:f(e)\leftarrow0.
G
WHile (there exists an s}\mp@subsup{\textrm{s}}{}{~}\mathrm{ path P in G}\mp@subsup{G}{f}{}
    f\leftarrowAUGMENT}(f,P)
    Update Gf.
RETURN }f\mathrm{ .
```

We know there are $O(n C)$ iterations. How many operations per iteration?

- Cost to find an augmenting path in G_{f} ?
- Cost to augment flow on path?
- Cost to update G_{f} ?

Ford-Fulkerson Running Time

- Claim. Ford-Fulkerson can be implemented to run in time $O(n m C)$, where $m=|E| \geq n-1$ and $C=\max c(s \rightarrow u)$.
u
- Proof. Time taken by each iteration:
- Finding an augmenting path in G_{f}
- G_{f} has at most $2 m$ edges, using BFS/DFS takes $O(m+n)=O(m)$ time
- Augmenting flow in P takes $O(n)$ time
- Given new flow, we can build new residual graph in $O(m)$ time
- Overall, $O(m)$ time per iteration \square

Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:/l www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)
- Shikha Singh

