
Flow Networks:
Ford-Fulkerson Algorithm



Towards a Max-Flow Algorithm
Greedy strategy:


• Start with  for each edge


• Find an  path  where each edge has 


• “Augment” flow (as much as possible) along path 


• Repeat until you get stuck


• Let’s explore an example

f(e) = 0

s ↝ t P f(e) < c(e)

P
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Towards a Max-Flow Algorithm
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Is this the best we can do?
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Towards a Max-Flow Algorithm
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Why Greedy Fails
Problem: greedy can never “undo” a bad flow decision


• Consider the following flow network 
 
 
 
 
 

• Greedy could choose  as first 


• Takeaway:  Need a mechanism to “undo” bad flow decisions 

s → v → w → t P

s

t

w

v

1

2

2

22



Ford-Fulkerson 
Algorithm



Ford Fulkerson: Idea
Goal: Want to make “forward progress” while letting ourselves 
undo previous decisions if they’re getting in our way


• Idea: keep track of where we can push flow 


• Can push more flow along any edge with remaining 
capacity 


• Can also push flow “back” along any edge that already 
has flow down it (undo a previous flow push)


• We need a way to systematically track these decisions



Residual Graph
Given flow network  and a feasible flow  on , the 
residual graph  is defined as follows:


• Vertices in  are the same as in 


• (Forward edge) For  with residual capacity
, create  with capacity 


• (Backward edge) For  with , create  
  with capacity 

G = (V, E, c) f G
Gf = (V, Ef , cf )

Gf G

e ∈ E
c(e) − f(e) > 0 e ∈ Ef c(e) − f(e)

e ∈ E f(e) > 0
ereverse ∈ Ef f(e)

u v

flow

6 / 17

capacity

original flow network G

u v

residual
capacity

residual network Gf

11

6

reverse edge

“unused” or 
“remaining” capacity

“used” capacity that 
we can undo
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Flow Algorithm Idea
Now we have a residual graph that lets us make forward progress 
or push back existing flow.


• We will look for  paths in   rather than 


• Once we have a path, we will "augment" flow along it similar to 
greedy


• e.g., we find a bottleneck capacity edge on the path and 
push that much flow through it in 


• How do we translate this back to ?


• We increment existing flow on a forward edge


• Or we decrement flow on a backward edge

s ↝ t Gf G

Gf

G



Augmenting Path & Flow
• An augmenting path  is a simple  path in the 

residual graph 


• The bottleneck capacity  of an augmenting path  is the 
minimum capacity of any edge in .

P s ↝ t
Gf

b P
P

AUGMENT( f, P)                          


  ← bottleneck capacity of augmenting path P.

FOREACH edge e ∈ P :

IF (e ∈ E, that is, e is forward edge )  

               Increase f(e) in G by 

ELSE          
              Decrease f(e) in G by 

RETURN  f.


b

b

b

Some  path  in s ↝ t P Gf

If/else updates flow in 
, not G Gf

Path that repeats
no vertices



Ford-Fulkerson Algorithm
• Start with  for each edge 


• Find a simple  path  in the residual network 


• Augment flow along path  by bottleneck capacity 


• Repeat until you get stuck

f(e) = 0 e ∈ E
s ↝ t P Gf

P b

FORD–FULKERSON(G)                          

_____

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f. (routine from previous slide)



Ford-Fulkerson Example
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Analysis: Ford-Fulkerson



• Feasibility and value of flow:


• Show that each time we update the flow, we are routing a 
feasible  flow through the network


• And that value of this flow increases each time by that amount


• Optimality:


• Final value of flow is the maximum possible 


• Running time:


• How long does it take for the algorithm to terminate?


• Space:


• How much total space are we using?

s-t

Analysis Outline (Things to Prove)

Show this today, save rest for 
after P.S.



Ford-Fulkerson Algorithm
Running Time



Ford-Fulkerson Performance

Performance Questions:


• Does the while loop terminate?  


• If it terminates, can we bound the number of iterations?


• What is the Big-O running time of the whole algorithm?

FORD–FULKERSON(G)                          

_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.



Recall we proved that with each call to AUGMENT, we increase value 
of the  flow by 


• Assumption.  We assumed all capacities  are integers.


• Integrality invariant.  Throughout Ford–Fulkerson, every edge flow 
 and corresponding residual capacity is an integer.  Thus .


• Let  be the maximum capacity among edges 

leaving the source .  


• It must be that 


• Since,  increases by  in each iteration, it follows that FF 
algorithm terminates in at most  iterations.

s-t b = bottleneck(Gf , P)

c(e)

f(e) b ≥ 1

C = max
u

c(s → u)

s

v( f ) ≤ nC

v( f ) b ≥ 1
v( f ) = O(nC)

Ford-Fulkerson Running Time



Ford-Fulkerson Performance

We know there are  iterations. How many operations per iteration?


• Cost to find an augmenting path in ?


• Cost to augment flow on path?


• Cost to update ?

O(nC)
Gf

Gf

FORD–FULKERSON(G)                          

_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.



• Claim.  Ford-Fulkerson can be implemented to run in time 
, where  and .


• Proof.  Time taken by each iteration:


• Finding an augmenting path in 


•  has at most  edges, using BFS/DFS takes 

 time


• Augmenting flow in  takes  time


• Given new flow, we can build new residual graph in  time


• Overall,  time per iteration 

O(nmC) m = |E | ≥ n − 1 C = max
u

c(s → u)

Gf

Gf 2m
O(m + n) = O(m)

P O(n)

O(m)

O(m) ∎

Ford-Fulkerson Running Time
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