Flow Networks:
Ford-Fulkerson Algorithm

Towards a Max-Flow Algorithm

Greedy strategy:
« Start with f(e) = 0 for each edge
« Findans ~ t path P where each edge has f(e) < c(e)
e “Augment” flow (as much as possible) along path P
* Repeat until you get stuck

* Let's explore an example

Towards a Max-Flow Algorithm

« Start with f(e) = O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

flow }apacity
Qo0
Q 0/2 0, 0/6 o
. 8 ‘0

@ 0/10 Q 0/9 Q 0/10 @/O

value of flow

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ ¢ path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

s

O 0/2 ¢, 0/6 -

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

s

O WS 2 8/2 s, 0/6 -

Jomo Q—z/g —)O—Lg/m —)@ 8 +2=10

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

N

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

Is this the best we can do!?

ending flow value = 16

T

@ 6/10 Q 8/9 Q 10/10 @ 10 +6=16

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16
O @

N\ 2/2 e, 6/6 -

|
@—\: 6/10 —)O 8/9 @ 10/10 @ 10 +6=16

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

Y4
@— 6/'10'—)0 8/9 Q 10/10 @ 10 +6=16

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

is— @D
A\
]
)
A\
A\

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

!

(o2}
N
-
o
(o)

~N

©

-
o
N
-
o
-
o
+

(@)
I

—_
(@)

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

Do

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

N\ 2/2 &,

!
@ 6/10 Q 8/9 Q v, 10/10 @ 10 +6=16

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

SN

/|
@ 6/10 Q 8/9 Q 10/ 10 @ 10 +6 =16

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

max-flow value = 19

L

@ 9/10 Q 9/9 Q 10/10 @ 19

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

max-flow value = 19

OO

2 3
9/10 ©+ 9/9—)0 10/10 @ 19

Why Greedy Fails

Problem: greedy can never “undo” a bad flow decision

e (Consider the following flow network

0. 2 ()

() 2 ()

« Greedy could choose s = v = w — tasfirst P

 Takeaway: Need a mechanism to “undo” bad tlow decisions

Ford-Fulkerson
Algorithm

Ford Fulkerson: Idea

Goal: Want to make “torward progress” while letting ourselves
undo previous decisions if they're getting in our way

* ldea: keep track of where we can push flow

 Can push more flow along any edge with remaining
capacity

 (Can also push flow “back” along any edge that already
has flow down it (undo a previous flow push)

 We need a way to systematically track these decisions

Residual Graph

Given flow network G = (V, E, ¢) and a feasible flow f on G, the
residual graph G, = (V, E, cf) is defined as follows:

“unused” or
. Vertices in Gyare the same asin G ‘remaining” capacity

« (Forward edge) For e € E with residual capacity
c(e) — f(e) > 0, create e € E¢with capacity c(e) — f(e)

« (Backward edge) For e € E with f(e) > 0O, create

€reverse € Ef with capacity fle) —— “used” capacity that
we can undo

_ residual network G residual
original flow network G f

u 6/17 u 114 e
TN

reverse edge

Residual Graph

« (Forward edge) For e € E with residual capacity
c(e) — f(e) > 0O, create e € Ewith capacity c(e) — f(e)

« (Backward edge) For e € E with f(e) > 0O, create
€reverse € Ef with capacity f(e)

What does it mean to
push flow down a
reverse edge”?

What does it mean
to push flow down a

forward edge?

esidual network Gs residual
capacity

u 6/17 u 114
T Q\//“\@

flow capacity

original flow network G

reverse edge

Flow Algorithm Idea

Now we have a residual graph that lets us make forward progress
or push back existing flow.

« We will look for s ~ t paths in Gf rather than G

 Once we have a path, we will "augment” flow along it similar to
greedy

* e.g., we find a bottleneck capacity edge on the path and
push that much flow through it in G,

« How do we translate this back to G7
* We increment existing flow on a forward edge

 Or we decrement flow on a backward edge

Augmenting Path & Flow

« An augmenting path P is a simple s ~ ¢ path in the
residual graph Gf

Path that repeats
no vertices

« The bottleneck capacity b of an augmenting path P is the
minimum capacity of any edge in P.

Some s ~ t path P in G
AUGMENT(f, P)

b < bottleneck capacity of augmenting path P.

FOREACH edge e € P :

If/else updates flow in IF (e € E, that is, e is forward edge)
G,not G .
not &y Increase f{e) in G by b
ELSE
Decrease f{e) in G by b

RETURN f.

Ford-Fulkerson Algorithm

Start with f(e) = O for each edge e € E

Find a simple s ~ £ path P in the residual network Gf

Augment flow along path P by bottleneck capacity b

Repeat until you get stuck

FORD—-FULKERSON(G)

FOREACH edgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gy.

RETURN f. (routine from previous slide)

Fora-Fulkerson Example

network G and flow f

@ 0/10

residual network Gr

() 10

QO

0/2

O

flow

NS

0/4

0/9

capacity

@

0/6

O

7
o value of flow

l
0/10 @ 0

residual capacity

/

0

—

Fora-Fulkerson Example

network G and flow f flow capacity

S S T

Q 0/2 0 0O/6 =
Q\\ & 0 value of flow

l
@ 0/10 Q 0/9 Q 0/10 @ 0

P in residual network Gs

: O
AN

6 0

e N

O I~ ¢ W ()

Fora-Fulkerson Example

network G and flow f flow capacity

NS
0\0/4 ®
\Q/O/Z S, 0O/6 0/7
& e\ © value of flow
@/ O oo O—— @) ¢

residual network Gr

Fora-Fulkerson Example

network G and flow f flow capacity

S S T

Q 0/2 S 0O/6 =
%\\ ‘8 0 value of flow

l
@ 0/10 Q 0/9 Q 8/10 @ 8

P in residual network Gs

Fora-Fulkerson Example

network G and flow f

l

O 2/2
2O

o b

residual network Gr

&——O

capacity

v

Sl @

0
S, 0/6 -
S 0 value of flow

2/9)O— 10/10—)@ 8+2 =10

Fora-Fulkerson Example

network G and flow f flow capacity

S S T

Q
N\ 2/9 S 0/6 <
\ ‘8 0 value of flow

l
@ 0/10 Q 2/9 Q 10/10 @ 10

P in residual network Gs

N

2 S 6 0

Fora-Fulkerson Example

network G and flow f

@

O 2/2
2O

SO

residual network Gr

)

capacity

v

‘ \value of flow

8/9)O 10/10 @ 10+6 =16

| Oc—nv—~0

Fora-Fulkerson Example

network G and flow f flow capacity

O -

Q ~
N 2/2 S 6/6
\ & 0 value of flow

l
@ 6/10 Q 8/9 Q 10/10 @ 16

fixes mistake from

P in residual network Gs second augmenting path

b >

Fora-Fulkerson Example

network G and flow f flow capacity

O 0/2 8, 6/6 S

O l \value of flow

@—8/10—)@ 8/9 Q 10/10 @ 18

residual network Gr 2
O 2 @
&
<3
2 (o4 6
O

Fora-Fulkerson Example

network G and flow f flow capacity

S I

Q
N 0/2 (< 6/6 -~
\ ‘8 0 value of flow

l
@ 8/10 Q 8/9 Q 10/10 @ 18

P in residual network Gs
’\Q \ \

(S —2>O0— ' —2>0—

Fora-Fulkerson Example

network G and flow f flow / capacity
3/4 >
Q 9
% 0/2 < 6/6 “7

O \ \value of flow

@—9/10—)@ 9/9)O 10/10 @ 19

residual network Gr 3

Ge—s—-0 9 O A1)

1 No s-t path left!

Fora-Fulkerson Example

network G and flow f

@

O 0/2
2O

Capacity of cut?

() O

residual network Gr

9/10

nodes reachable from s

flow

9/9

v

capacity

@

6/6

O

“
o value of flow
10/10 @ 19
9
bg

o0

No s-t path left!

Analysis: Ford-Fulkerson

Analysis Outline (Things to Prove)

e Feasibility and value of flow:

* Show that each time we update the flow, we are routing a
feasible s-f tlow through the network

* And that value of this flow increases each time by that amount
e Optimality:

* Final value of flow is the maximum possible
 Running time:

 How long does it take for the algorithm to terminate”
e Space:

Show this today, save rest for
« How much total space are we using? after PS.

Ford-Fulkerson Algorithm
Running Time

Ford-Fulkerson Performance

FORD-FULKERSON(G)

FOREACH edgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gv.

RETURN f.

Performance Questions:
e Does the while loop terminate”
e [fitterminates, can we bound the number of iterations?

 What is the Big-O running time of the whole algorithm?

Ford-Fulkerson Running Time

Recall we proved that with each call to AUGMENT, we increase value
of the s-7 flow by b = bottleneck(Gy, P)

« Assumption. We assumed all capacities c(e) are integers.

* Integrality invariant. Throughout Ford—Fulkerson, every edge flow
f(e) and corresponding residual capacity is an integer. Thus b > 1.

Let C = max c(s — u) be the maximum capacity among edges
u

leaving the source s.

e It mustbe that v(f) < nC

« Since, v(f) increases by b > 1 in each iteration, it follows that FF
algorithm terminates in at most v(f) = O(nC) iterations.

Ford-Fulkerson Performance

FORD-FULKERSON(G)

FOREACHedgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gy.

RETURN f.

We know there are O(nC) iterations. How many operations per iteration?

. Cost to find an augmenting path in Gf?

e (Cost to augment flow on path?

. Cost to update Gf’?

Ford-Fulkerson Running Time

Claim. Ford-Fulkerson can be implemented to run in time

O(nmC), wherem = |E| > n—1and C = maxc(s = u).

Proof. Time taken by each iteration:

Finding an augmenting path in Gf

. Gf has at most 2m edges, using BFS/DFS takes
O(m + n) = O(m) time

Augmenting flow in P takes O(n) time
Given new flow, we can build new residual graph in O(m) time

Overall, O(m) time per iteration B

Acknowledgments

e Some of the material in these slides are taken from

Kleinberg Tardos Slides by Kevin Wayne (https://
WWW.CS.princeton.edu/~wayne/kleinberg-tardos/pdf/

04GreedyAlgorithmsl.pdf)

Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE . pdf)

Shikha Singh

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

