Network Flows
Admin/Announcements

• CS Preregistration Info Session during Colloquium. Learn about:
 • courses offered next semester
 • major applications & forms
 • thesis applications & timelines
 • study abroad guidelines
• TAs and becoming a TA
 • Fill out TA feedback forms by Monday
 • Submit TA applications by April 21
• Williams Entrepreneurship Summit this Saturday!
Story So Far

• Algorithmic design paradigms:

 • **Greedy**: often simplest algorithms to design, but only work for certain limited class of optimization problems

 • A good initial thought for most problems but rarely optimal

 • **Divide and Conquer**

 • Solving a problem by breaking it down into smaller subproblems and (often) combining results

 • **Dynamic programming**

 • Recursion with memoization: avoiding repeated work

 • Trade space (memoization structure representation) for time (reuse stored results of repeated computations)
New Algorithmic Paradigm

• **Network flows** model a variety of optimization problems

• These optimization problems look complicated with lots of constraints
 • At first they may seem to have nothing to do with networks or flows!

• Very powerful problem solving frameworks

• We'll focus on the concept of **problem reductions**
 • Problem A reduces to B if a solution to B leads to a solution to A

• We'll learn how to prove that our reductions are correct
What’s a Flow Network?

- A flow network is a directed graph $G = (V, E)$ with a
 - A **source** is a vertex s with in-degree 0
 - A **sink** is a vertex t with out-degree 0
 - Each edge $e \in E$ has **edge capacity** $c(e) > 0$
Assumptions

• Assume that each node v is on some s-t path, that is, $s \rightsquigarrow v \rightsquigarrow t$ exists, for any vertex $v \in V$

 • Implies G is connected and $m \geq n - 1$

• Assume capacities are positive integers

 • Will revisit this assumption & what happens otherwise

• Directed edge (u, v) written as $u \rightarrow v$

• For simplifying expositions, we will sometimes write $c(u \rightarrow v) = 0$ when $(u, v) \notin E$
What’s a Flow?

- Given a flow network, an \((s, t)\)-flow or just flow (if source \(s\) and sink \(t\) are clear from context) \(f : E \rightarrow \mathbb{Z}^+\) satisfies the following two constraints:

 - **[Flow conservation]** \(f_{in}(v) = f_{out}(v), \text{ for } v \neq s, t\) where

 \[
 f_{in}(v) = \sum_{u} f(u \rightarrow v)
 \]
 \[
 f_{out}(v) = \sum_{w} f(v \rightarrow w)
 \]

 - To simplify, \(f(u \rightarrow v) = 0\) if there is no edge from \(u\) to \(v\)
Feasible Flow

- And second, a feasible flow must satisfy the capacity constraints of the network, that is,

\[
\text{[Capacity constraint]} \quad \text{for each } e \in E, 0 \leq f(e) \leq c(e)
\]
• **Definition.** The **value** of a flow f, written $v(f)$, is $f_{out}(s)$.

$$v(f) = 5 + 10 + 10 = 25$$
Value of a Flow

- **Definition.** The value of a flow f, written $v(f)$, is $f_{out}(s)$.

- **Lemma.** $f_{out}(s) = f_{in}(t)$

Intuitively, why do you think this is true?

value $= 5 + 10 + 10 = 25$
Value of a Flow

Lemma. \(f_{out}(s) = f_{in}(t) \)

Proof. Let \(f(E) = \sum_{e \in E} f(e) \)

• Then, \(\sum_{v \in V} f_{in}(v) = f(E) = \sum_{v \in V} f_{out}(v) \)

• For every \(v \neq s, t \) flow conservation implies \(f_{in}(v) = f_{out}(v) \)

• Thus all terms cancel out on both sides except \(f_{in}(s) + f_{in}(t) = f_{out}(s) + f_{out}(t) \)

• But \(f_{in}(s) = f_{out}(t) = 0 \) ■
Value of a Flow

- **Lemma.** $f_{out}(s) = f_{in}(t)$
- **Corollary.** $v(f) = f_{in}(t)$.

\[\text{value} = 5 + 10 + 10 = 25 \]
Max-Flow Problem

- **Problem.** Given an s-t flow network, find a feasible s-t flow of maximum value.
Minimum Cut Problem
Cuts are Back!

- Cuts in graphs played a key role when we were designing algorithms for MSTs.
- What is the definition of a cut?
Cuts in Flow Networks

- **Recall.** A cut \((S, T)\) in a graph is a partition of vertices such that \(S \cup T = V\), \(S \cap T = \emptyset\) and \(S, T\) are non-empty.

- **Definition.** An \((s, t)\)-cut is a cut \((S, T)\) s.t. \(s \in S\) and \(t \in T\).
Cut Capacity

- **Recall.** A cut \((S, T)\) in a graph is a partition of vertices such that \(S \cup T = V\), \(S \cap T = \emptyset\) and \(S, T\) are non-empty.

- **Definition.** An \((s, t)\)-cut is a cut \((S, T)\) s.t. \(s \in S\) and \(t \in T\).

- **Capacity** of a \((s, t)\)-cut \((S, T)\) is the sum of the capacities of edges leaving \(S\):

\[
c(S, T) = \sum_{v \in S, w \in T} c(v \rightarrow w)
\]
Quick Quiz

Question. What is the capacity of the s-t cut given by grey and white nodes?

A. 11 \((20 + 25 - 8 - 11 - 9 - 6)\)

B. 34 \((8 + 11 + 9 + 6)\)

C. 45 \((20 + 25)\)

D. 79 \((20 + 25 + 8 + 11 + 9 + 6)\)

\[c(S, T) = \sum_{v \in S, w \in T} c(v \to w) \]
Min Cut Problem

- **Problem.** Given an \(s-t \) flow network, find an \(s-t \) cut of minimum capacity.
Relationship between Flows and Cuts
Flows and Cuts

- Cuts represent "bottlenecks" in a flow network
- For any \((s, t)\)-cut, all flow needs to "exit" \(S\) to get to \(t\)
- We will formalize this intuition
Claim. Let f be any s-t flow and (S, T) be any s-t cut then $\nu(f) \leq c(S, T)$

- There are two s-t cuts for which this is easy to see (which ones?)
Claim. Let f be any s-t flow and (S, T) be any s-t cut then $\nu(f) \leq c(S, T)$

- There are two s-t cuts for which this is easy to see (which ones?)
Flows and Cuts

To prove this for any cut, we first relate the flow value in a network to the net flow leaving a cut

- **Lemma.** For any feasible (s, t)-flow f on $G = (V, E)$ and any (s, t)-cut, $v(f) = f_{out}(S) - f_{in}(S)$, where

 \[
 f_{out}(S) = \sum_{v \in S, w \in T} f(v \rightarrow w) \quad \text{(sum of flow ‘leaving’ S)}
 \]

 \[
 f_{in}(S) = \sum_{v \in S, w \in T} f(w \rightarrow v) \quad \text{(sum of flow ‘entering’ S)}
 \]

- **Note:** $f_{out}(S) = f_{in}(T)$ and $f_{in}(S) = f_{out}(T)$
Flows and Cuts

Proof. \(f_{out}(S) - f_{in}(S) \)

\[
= \sum_{v \in S, w \in T} f(v \to w) - \sum_{v \in S, u \in T} f(u \to v) \quad \text{[by definition]}
\]

\[
= \left[\sum_{v, w \in S} f(v \to w) - \sum_{v, u \in S} f(u \to v) \right] + \sum_{v \in S, w \in T} f(v \to w) - \sum_{v \in S, u \in T} f(u \to v)
\]

These are the same sum: they sum the flow of all edges with both vertices in \(S \)

Adding zero terms
Proof. \(f_{out}(S) - f_{in}(S) \)

\[
= \left[\sum_{v,w \in S} f(v \to w) - \sum_{v,u \in S} f(u \to v) \right] + \sum_{v \in S, w \in T} f(v \to w) - \sum_{v \in S, u \in T} f(u \to v)
\]

\[
= \sum_{v,w \in S} f(v \to w) + \sum_{v \in S, w \in T} f(v \to w) - \sum_{v,u \in S} f(u \to v) - \sum_{v \in S, u \in T} f(u \to v)
\]

\[
= \sum_{v \in S} \left(\sum_{w} f(v \to w) - \sum_{u} f(u \to v) \right)
\]

\[
= \sum_{v \in S} f_{out}(v) - f_{in}(v)
\]

\[
= f_{out}(S) = v(f) \hspace{1cm} \blacksquare
\]
Flows and Cuts

- We use this result to prove that the value of a flow cannot exceed the capacity of any cut in the network.

- **Claim.** Let f be any s-t flow and (S, T) be any s-t cut then
 \[v(f) \leq c(S, T) \]

- **Proof.**
 \[
 v(f) = f_{out}(S) - f_{in}(S) \\
 \leq f_{out}(S) = \sum_{v \in S, w \in T} f(v \to w) \\
 \leq \sum_{v \in S, w \in T} c(v, w) = c(S, T)
 \]

When is $v(f) = c(S, T)$?

- $f_{in}(S) = 0$, $f_{out}(S) = c(S, T)$
Max-Flow & Min-Cut

- Suppose the c_{min} is the capacity of the minimum cut in a network
- What can we say about the feasible flow we can send through it
 - cannot be more than c_{min}
- In fact, whenever we find any s-t flow f and any s-t cut (S, T) such that, $\nu(f) = c(S, T)$ we can conclude that:
 - f is the maximum flow, and,
 - (S, T) is the minimum cut
- The question now is, given any flow network with min cut c_{min}, is it always possible to route a feasible s-t flow f with $\nu(f) = c_{\text{min}}$?
Max-Flow Min-Cut Theorem

There is a beautiful, powerful relationship between these two problems in given by the following theorem.

- **Theorem.** Given any flow network G, there exists a feasible (s, t)-flow f and an (s, t)-cut (S, T) such that,

$$\nu(f) = c(S, T)$$

- Informally, in a flow network, the **max-flow = min-cut**

- This will guide our algorithm design for finding max flow

- (Will prove this theorem by construction in a bit.)
Aside: Network Flow History

• In 1950s, US military researchers Harris and Ross wrote a classified report about the rail network linking Soviet Union and Eastern Europe
 • Vertices were the geographic regions
 • Edges were railway links between the regions
 • Edge weights were the rate at which material could be shipped from one region to next
• Ross and Harris determined:
 • Maximum amount of stuff that could be moved from Russia to Europe (max flow)
 • Cheapest way to disrupt the network by removing rail links (min cut)
Network Flow History

Fig. 7 — Traffic pattern: entire network available

Legend:
- International boundary
- Railway operating division

Capacity: 12 each way per day. Required flow of 9 per day toward destinations (in direction of arrow) with equivalent number of returning trains in opposite direction.

All capacities in √1000’s of tons each way per day.

Destinations: Divisions 3, 6, 9 (Poland); 10 (Czechoslovakia); and 2, 3 (Austria).

Alternative destinations: Germany or East Germany.

Note: IX at Division 9, Poland.
Ford-Fulkerson Algorithm
Towards a Max-Flow Algorithm

We will design a max-flow algorithm and show that there is a s-t cut s.t. value of flow computed by algorithm $=$ capacity of cut

- Let's start with a greedy approach:
 - Pick an s-t path and push as much flow as possible down it
 - Repeat until you get stuck

Note: This won't actually work, but it gives us a sense of what we need to keep track of to improve it
Towards a Max-Flow Algorithm

Greedy strategy:

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck
- Let’s explore an example
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \rightsquigarrow t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck

Is this the best we can do?

Ending flow value = 16
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value = 16
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value = 16
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value = 16
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value = 16
Towards a Max-Flow Algorithm

- Start with \(f(e) = 0 \) for each edge
- Find an \(s \sim t \) path \(P \) where each edge has \(f(e) < c(e) \)
- “Augment” flow (as much as possible) along path \(P \)
- Repeat until you get stuck

ending flow value = 16
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value = 16
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- “Augment” flow (as much as possible) along path P
- Repeat until you get stuck

Ending flow value = 16
Towards a Max-Flow Algorithm

- Start with $f(e) = 0$ for each edge
- Find an $s \sim t$ path P where each edge has $f(e) < c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

max-flow value = 19
Towards a Max-Flow Algorithm

- Start with \(f(e) = 0 \) for each edge
- Find an \(s \sim t \) path \(P \) where each edge has \(f(e) < c(e) \)
- “Augment” flow (as much as possible) along path \(P \)
- Repeat until you get stuck

max-flow value = 19
Why Greedy Fails

Problem: greedy can never “undo” a bad flow decision

- Consider the following flow network

```
+---+ 2  +---+ 2  +---+ 2
|   |     |   |     |   |
+---+ 2  +---+ 1  +---+
|   |     |   |     |   |
+---+     +---+     +---+
  s     2     w     t
```

- Greedy could choose $s \rightarrow v \rightarrow w \rightarrow t$ as first P

- **Takeaway:** Need a mechanism to “undo” bad flow decisions
Ford-Fulkerson Algorithm
Ford Fulkerson: Idea

Goal: Want to make “forward progress” while letting ourselves undo previous decisions if they’re getting in our way

- **Idea**: keep track of where we can push flow
 - Can push more flow along any edge with remaining capacity
 - Can also push flow “back” along any edge that already has flow down it (**undo** a previous flow push)
- We need a way to systematically track these decisions
Residual Graph

Given flow network $G = (V, E, c)$ and a feasible flow f on G, the residual graph $G_f = (V, E_f, c_f)$ is defined as follows:

- Vertices in G_f same as G

- (Forward edge) For $e \in E$ with residual capacity $c(e) - f(e) > 0$, create $e \in E_f$ with capacity $c(e) - f(e)$

- (Backward edge) For $e \in E$ with $f(e) > 0$, create $e_{reverse} \in E_f$ with capacity $f(e)$
Flow Algorithm Idea

• Now we have a residual graph that lets us make forward progress or push back existing flow

• We will look for $s \sim t$ paths in G_f rather than G

• Once we have a path, we will "augment" flow along it similar to greedy

 • find bottleneck capacity edge on the path and push that much flow through it in G_f

• When we translate this back to G, this means:

 • We increment existing flow on a forward edge

 • Or we decrement flow on a backward edge
Augmenting Path & Flow

- An **augmenting path** P is a **simple** $s \rightsquigarrow t$ path in the residual graph G_f

- The **bottleneck capacity** b of an augmenting path P is the minimum capacity of any edge in P.

```
AUGMENT($f$, $P$)

$b \leftarrow$ bottleneck capacity of augmenting path $P$.

FOREACH edge $e \in P$

    IF ($e \in E$, that is, $e$ is forward edge)

        Increase $f(e)$ in $G$ by $b$

    ELSE

        Decrease $f(e)$ in $G$ by $b$

RETURN $f$.
```
Ford-Fulkerson Algorithm

- Start with \(f(e) = 0 \) for each edge \(e \in E \)
- Find a simple \(s \rightarrow t \) path \(P \) in the residual network \(G_f \)
- Augment flow along path \(P \) by bottleneck capacity \(b \)
- Repeat until you get stuck

\[
\text{FORD–FULKERSON}(G)
\]

\begin{align*}
\text{FOREACH} & \quad \text{edge} \ e \in E : \ f(e) \leftarrow 0. \\
\text{G}_f & \leftarrow \text{residual network of} \ G \ \text{with respect to} \ \text{flow} \ f. \\
\text{WHILE} & \quad (\text{there exists an} \ s \rightarrow t \ \text{path} \ P \ \text{in} \ G_f) \\
& \qquad \quad f \leftarrow \text{AUGMENT}(f, P). \\
& \quad \text{Update} \ G_f. \\
\text{RETURN} & \quad f.
\end{align*}
Ford-Fulkerson Example

network G and flow f

residual network G_f
Ford-Fulkerson Example

network G and flow f

flow capacity

value of flow 0

P in residual network G_f
Ford-Fulkerson Example

network G and flow f

residual network G_f
Ford-Fulkerson Example

network G and flow f

value of flow 8

P in residual network G_f
Ford-Fulkerson Example

network G and flow f

residual network G_f
Ford-Fulkerson Example

network G and flow f

value of flow 10

P in residual network G_f
Ford-Fulkerson Example

network G and flow f

residual network G_f

value of flow

$10 + 6 = 16$
Ford-Fulkerson Example

network G and flow f

P in residual network G_f

flow capacity

value of flow 16

fixes mistake from second augmenting path
Ford-Fulkerson Example

network G and flow f

residual network G_f
Ford-Fulkerson Example

network G and flow f

P in residual network G_f
Ford-Fulkerson Example

network G and flow f

residual network G_f

No s-t path left!
Ford-Fulkerson Example

network G and flow f

capacity

flow

Capacity of cut?

residual network G_f

nodes reachable from s

value of flow $= 19$

No s-t path left!
Analysis: Ford-Fulkerson
Analysis Outline

- Feasibility and value of flow:
 - Show that each time we update the flow, we are routing a feasible s-t flow through the network
 - And that value of this flow increases each time by that amount
- Optimality:
 - Final value of flow is the maximum possible
- Running time:
 - How long does it take for the algorithm to terminate?
- Space:
 - How much total space are we using?
Feasibility of Flow

- **Claim.** Let f be a feasible flow in G and let P be an augmenting path in G_f with bottleneck capacity b. Let $f' \leftarrow \text{AUGMENT}(f, P)$, then f' is a feasible flow.

- **Proof.** Only need to verify constraints on the edges of P (since $f' = f$ for other edges). Let $e = (u, v) \in P$

 - If e is a forward edge: $f'(e) = f(e) + b$

 $\leq f(e) + (c(e) - f(e)) = c(e)$

 - If e is a backward edge: $f'(e) = f(e) - b$

 $\geq f(e) - f(e) = 0$

- Conservation constraint hold on any node in $u \in P$:

 - $f_{in}(u) = f_{out}(u)$, therefore $f'_{in}(u) = f'_{out}(u)$ for both cases
Value of Flow: Making Progress

• **Claim.** Let \(f \) be a feasible flow in \(G \) and let \(P \) be an augmenting path in \(G_f \) with bottleneck capacity \(b \). Let \(f' \leftarrow \text{AUGMENT}(f, P) \), then \(v(f') = v(f) + b \).

• **Proof.**
 * First edge \(e \in P \) must be out of \(s \) in \(G_f \)
 * \((P \text{ is simple so never visits } s \text{ again})\
 * \(e \text{ must be a forward edge } (P \text{ is a path from } s \text{ to } t)\
 * Thus \(f(e) \text{ increases by } b \), increasing \(v(f) \text{ by } b \)

• **Note.** Means the algorithm makes forward progress each time!
Optimality
Ford-Fulkerson Optimality

- **Recall**: If \(f \) is any feasible \(s-t \) flow and \((S, T)\) is any \(s-t \) cut then \(\nu(f) \leq c(S, T) \).

- We will show that the Ford-Fulkerson algorithm terminates in a flow that achieves optimality, that is,

- Ford-Fulkerson finds a flow \(f^* \) and there exists a cut \((S^*, T^*)\) such that, \(\nu(f^*) = c(S^*, T^*) \)

- Proving this shows that it finds the maximum flow (and the min cut)

- This also **proves the max-flow min-cut theorem**
Ford-Fulkerson Optimality

- **Lemma.** Let f be an s-t flow in G such that there is no augmenting path in the residual graph G_f, then there exists a cut (S^*, T^*) such that $\nu(f) = c(S^*, T^*)$.

- **Proof.**
 - Let $S^* = \{v \mid v$ is reachable from s in $G_f\}$, $T^* = V - S^*$
 - Is this an s-t cut?
 - $s \in S$, $t \in T$, $S \cup T = V$ and $S \cap T = \emptyset$
 - Consider an edge $e = u \rightarrow v$ with $u \in S^*$, $v \in T^*$, then what can we say about $f(e)$?
Recall: Ford-Fulkerson Example

network G and flow f

residual network G_f

Capacity of cut?

nodes reachable from s

No s-t path left!
Ford-Fulkerson Optimality

- **Lemma.** Let \(f \) be a \(s-t \) flow in \(G \) such that there is no augmenting path in the residual graph \(G_f \), then there exists a cut \((S^*, T^*)\) such that \(\nu(f) = c(S^*, T^*) \).

- **Proof.**
 - Let \(S^* = \{ v \mid v \text{ is reachable from } s \text{ in } G_f \} \), \(T^* = V - S^* \)
 - Is this an \(s-t \) cut?
 - \(s \in S, t \in T, S \cup T = V \) and \(S \cap T = \emptyset \)
 - Consider an edge \(e = u \rightarrow v \) with \(u \in S^*, v \in T^* \), then what can we say about \(f(e) \)?
 - \(f(e) = c(e) \)
Ford-Fulkerson Optimality

- **Lemma.** Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_f, then there exists a cut (S^*, T^*) such that $\nu(f) = c(S^*, T^*)$.

- **Proof. (Cont.)**
 - Let $S^* = \{v \mid v$ is reachable from s in $G_f\}$, $T^* = V - S^*$
 - Is this an s-t cut?
 - $s \in S, t \in T, S \cup T = V$ and $S \cap T = \emptyset$
 - Consider an edge $e = w \rightarrow v$ with $v \in S^*, w \in T^*$, then what can we say about $f(e)$?
Recall: Ford-Fulkerson Example

network G and flow f

residual network G_f

Capacity of cut?

value of flow

No s-t path left!
Ford-Fulkerson Optimality

- **Lemma.** Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_f, then there exists a cut (S^*, T^*) such that $\nu(f) = c(S^*, T^*)$.

- **Proof.** (Cont.)

- Let $S^* = \{v \mid v$ is reachable from s in $G_f\}$, $T^* = V - S^*$

- Is this an s-t cut?

 - $s \in S$, $t \in T$, $S \cup T = V$ and $S \cap T = \emptyset$

- Consider an edge $e = w \rightarrow v$ with $v \in S^*$, $w \in T^*$, then what can we say about $f(e)$?

 - $f(e) = 0$

 Otherwise, there would have been a backwards edge in the residual graph
Ford-Fulkerson Optimality

- **Lemma.** Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_f, then there exists a cut (S^*, T^*) such that $v(f) = c(S^*, T^*)$.

- **Proof. (Cont.)**
 - Let $S^* = \{v \mid v$ is reachable from s in $G_f\}$, $T^* = V - S^*$
 - Thus, all edges leaving S^* are completely saturated and all edges entering S^* have zero flow

- $v(f) = f_{out}(S^*) - f_{in}(S^*) = f_{out}(S^*) = c(S^*, T^*)$ \blacksquare

- **Corollary.** Ford-Fulkerson returns the maximum flow.
Ford-Fulkerson Algorithm

Running Time
Ford-Fulkerson Performance

\[\text{FORD–FULKERSON}(G)\]

\text{FOREACH edge } e \in E: f(e) \leftarrow 0.

\(G_f \leftarrow \text{residual network of } G \text{ with respect to flow } f.\)

\textbf{WHILE} (there exists an } s \rightarrow t \text{ path } P \text{ in } G_f)\textbf{ }

\(f \leftarrow \text{AUGMENT}(f, P).\)

\text{Update } G_f.

\textbf{RETURN } f.

• Does the algorithm terminate?

• Can we bound the number of iterations it does?

• Running time?
Ford-Fulkerson Running Time

- Recall we proved that with each call to AUGMENT, we increase the **value of flow** by $b = \text{bottleneck}(G_f, P)$

- **Assumption.** Suppose all capacities $c(e)$ are integers.

- **Integrality invariant.** Throughout Ford–Fulkerson, every edge flow $f(e)$ and corresponding residual capacity is an integer. Thus $b \geq 1$.

- Let $C = \max_u c(s \rightarrow u)$ be the maximum capacity among edges leaving the source s.

- It must be that $v(f) \leq (n - 1)C$

- Since, $v(f)$ increases by $b \geq 1$ in each iteration, it follows that FF algorithm terminates in at most $v(f) = O(nC)$ iterations.
Ford-Fulkerson Performance

\begin{itemize}
 \item Operations in each iteration?
 \begin{itemize}
 \item Find an augmenting path in G_f
 \item Augment flow on path
 \item Update G_f
 \end{itemize}
\end{itemize}
Ford-Fulkerson Running Time

- **Claim.** Ford-Fulkerson can be implemented to run in time $O(nmC)$, where $m = |E| \geq n - 1$ and $C = \max_{u} c(s \to u)$.

- **Proof.** Time taken by each iteration:
 - Finding an augmenting path in G_f
 - G_f has at most $2m$ edges, using BFS/DFS takes $O(m + n) = O(m)$ time
 - Augmenting flow in P takes $O(n)$ time
 - Given new flow, we can build new residual graph in $O(m)$ time
 - Overall, $O(m)$ time per iteration \blacksquare
Acknowledgments

- Some of the material in these slides are taken from
 - Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf)
 - Shikha Singh