
Dynamic Programming III:
Knapsack Problem



Admin
• Next Monday will be an activity day 

• Practice dynamic programming w.r.t. graphs 

• Use any extra time in activity period to work on problem 
set & ask questions



Knapsack Problem
Further Reading:  Chapter 6.4, KT



Knapsack Problem
Problem.  Pack a knapsack to maximize the total item value 

• There are  items, each with weight  and value : 
                                       

• Knapsack has total capacity  

• For any set of items  they fit in the Knapsack iff 
                                      

• Goal: Find subset  of items that fit in the knapsack (satisfy the 
capacity constraint) and maximize the total value: 
                                      

• Assumption.  All weights and values are non-negative integers

n wi vi
I = {(v1, w1), …, (vn, wn)}
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Let’s first explore greedy solutions to the problem. 

Consider the following problem instance: 

• Ideas for what to be greedy about?

Knapsack Problem

i vi wi

1 $1 1 kg
2 $6 2 kg
3 $18 5 kg
4 $22 6 kg
5 $28 7 kg

Knapsack instance

(weight limit C = 11 kg)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg

Creative Commons Attribution-Share Alike 2.5
by Dake

https://creativecommons.org/licenses/by-sa/2.5/


Idea 1: Pick the most expensive stuff we can! 

• Algorithm: greedily pick the highest value item that fits.

Knapsack Problem

i vi wi

1 $1 1 kg
2 $6 2 kg
3 $18 5 kg
4 $22 6 kg
5 $28 7 kg

Knapsack instance

(weight limit C = 11 kg)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg

Creative Commons Attribution-Share Alike 2.5
by Dake

Total value: $35 
Utilized capacity: 10 kg 
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Idea 2: Pick the lightest stuff we can! 

• Algorithm: greedily pick the lowest weight item that fits.

Knapsack Problem

i vi wi

1 $1 1 kg
2 $6 2 kg
3 $18 5 kg
4 $22 6 kg
5 $28 7 kg

Knapsack instance

(weight limit C = 11 kg)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg

Creative Commons Attribution-Share Alike 2.5
by Dake

Total value: $25 
Utilized capacity: 9 kg 
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Idea 3: Pick the heaviest stuff we can! 

• Algorithm: greedily pick the highest weight item that fits.

Knapsack Problem

i vi wi

1 $1 1 kg
2 $6 2 kg
3 $18 5 kg
4 $22 6 kg
5 $28 7 kg

Knapsack instance

(weight limit C = 11 kg)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg

Creative Commons Attribution-Share Alike 2.5
by Dake

Total value: $35 
Utilized capacity: 10 kg 
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Other ideas? 

Spoiler: Greedy doesn’t work! What is optimal in this instance? 

• Optimal packing is : value $40 (and weight 11) 

How many packings muse we consider in an exhaustive search?

{i3, i4}

Knapsack Problem

i vi wi

1 $1 1 kg

2 $6 2 kg

3 $18 5 kg

4 $22 6 kg

5 $28 7 kg

knapsack instance
(weight limit W = 11)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg
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Given  items, how many subsets of items are there in total? 

• :  there are an exponential number of possibilities  

• Dynamic programming trades of space for time, and through 
memoization, we get an (interestingly) efficient solution!

S

2S

Exponential Possibilities

i vi wi

1 $1 1 kg

2 $6 2 kg

3 $18 5 kg

4 $22 6 kg

5 $28 7 kg

knapsack instance
(weight limit W = 11)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg
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Recipe for a Dynamic Program
• Formulate the right subproblem.  The subproblem must have an 

optimal substructure 

• Formulate the recurrence.  Identify how the result of the smaller 
subproblems can lead to that of a larger subproblem  

• State the base case(s).  The subproblem thats so small we know 
the answer to it immediately! 

• State the final answer. (In terms of the subproblem) 

• Choose a memoization data structure.   Where are you going to 
store already computed results? (Usually a table) 

• Identify evaluation order. Identify the dependencies: which 
subproblems depend on which ones? Using these dependencies, 
identify an evaluation order 

• Analyze space and running time.  As always!



Towards a Subproblem
Previously, our DP has tracked a value instead of a set. 

• Idea 1: Keep track of current capacity , where  

• Subproblem.  Let  denote the value of the optimal 
solution that uses capacity . 

• Optimal solution:  

• Recurrence:  

• Why is this a challenge?

c 0 ≤ c ≤ C

T[c]
≤ c

T[C]
Not obvious with just capacities.



Subproblems and Optimality
When items are selected, we need to fill the remaining capacity 
optimally 
• Challenge: the subproblem associated with a given remaining 

capacity can be solved in different ways 
 
 
 
 
 
 
 
 

• In both cases, remaining capacity: 11 kg, but items left are different 
• Using just capacity might not be enough. Perhaps a 2D table can 

capture capacity AND items?

Partial Selection #1 Partial Selection #2



Subproblem:   
Optimal Substructure



Subproblem
Subproblem  
 
 
 
 
 

Final answer

:  value of optimal solution using 
items  with total capacity , for 
OPT(i, c)

{1,2,…, i} ≤ c
1 ≤ i ≤ n, 0 ≤ c ≤ C

OPT(n, C) Consider all n items, 
consider full capacity C



Base Cases
: Are there any rows/columns can we fill immediately? 

• What about the first column corresponding to item   

:   Value of optimal solution that uses item  and has 
total capacity at most   

• For  we can fill out the first column 
as: 

n × C

1?

OPT(1, c) 1
c

i = 1; c ∈ {1,2,…, C}

 if  

  if 

OPT(1, c) = v1 c ≥ w1

OPT(1, c) = 0 c < w1

Item 1 fits, add its value v1

Item 1 does not fit, value 
of empty knapsack is 0



Base Cases
Are there any rows/columns can we fill immediately? 

• What about the first row corresponding to capacity ?  

• :   Value of optimal solution that uses first  items 
and has total capacity at most   

• For  we can fill out the first row as: 

0

OPT(i, 0) i
0

i = 1,2,…, n

OPT(i, 0) = 0 Items   do not fit, value 
of empty knapsack is 0

1…i



Optimal Substructure
• : Let us try to construct the optimal solution that uses 

items  and capacity at most  

• What are the possibilities for the last  item: 

• Either item  is in the optimal solution or not 

• We must consider both cases 

• Case 1.  Suppose item  is not in the optimal solution, what is 
the optimal way to solve the remaining problem? 

•  

OPT(i, c)
{1,2,…, i} c

ith

i

i

OPT(i, c) = OPT(i − 1,c) Item  is left out, use best solution 
that considers items  

for the same capacity

i
1…(i − 1)



• : Let us try to construct the optimal solution that uses 
items  and capacity at most  

• What are the possibilities for the last  item: 

• Either item  is in the optimal solution or not 

• We must consider both cases 

• Case 2.  Suppose item  is in the optimal solution, what is the 
recurrence of the optimal solution? 

•      

• This case only possible if 

OPT(i, c)
{1,2,…, i} c

ith

i

i

OPT(i, c) = vi + OPT(i − 1, c − wi)

c ≥ wi

Optimal Substructure



Final Recurrence
For  and , we have: 
 
 
 
 
 
 

• Memoization structure:  We store  values in a 2-D 
array or table using space  

• Evaluation order:  In what order should we fill in the table? 
• Row-major order (row-by-row)

1 ≤ i ≤ n 1 ≤ c ≤ C

OPT[i, c]
O(nC)

OPT(i, c) =
max{OPT(i − 1, c), vi + OPT(i − 1, c − wi)}



Working Through An Example

i vi wi

1 $1 1 kg

2 $6 2 kg

3 $18 5 kg

4 $22 6 kg

5 $28 7 kg

knapsack instance
(weight limit W = 11)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg
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OPT(i, c) =
max{OPT(i − 1, c), vi + OPT(i − 1, c − wi)}

OPT(i, 0) = 0
 if  

  if 

OPT(1, c) = v1 c ≥ w1

OPT(1, c) = 0 c < w1
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0 1 1 1 1 1 1 1 1 1 1 1

0 1 6 7 7 7 7 7 7 7 7 7

0 1 6 7 7 18 19 24 25 25 25 25

0 1 6 6 6 18 22 24 28 28 28 40

0 1 6 6 6 18 22 28 29 34 34 40

c=0 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10 c=11

i=1

i=2

i=3

i=4

i=5



Running Time
• Time to fill out a single table cell? 

• How many cells are there in our table? 

• Total cost?

O(1)

O(nC)

O(nC)



Running Time
• Is  polynomial?  By which I mean polynomial in the 

size of the input 

• What is the input?    

• We need  size to store  items 

• How much space to store integer   ? 

• So, is  polynomial in the input size? 

• No! One table dimension depends on value of input, not 
size needed to represent it:  

• “Pseudopolynomial” - polynomial in the value of the input

O(nC)

O(n) n

C

O(nC)

C = 2log2 C

 bitslog2 C

 items, plus the integer n C



Recipe for a Dynamic Program
• Formulate the right subproblem.  The subproblem must have an 

optimal substructure 

• Formulate the recurrence.  Identify how the result of the smaller 
subproblems can lead to that of a larger subproblem  

• State the base case(s).  The subproblem thats so small we know 
the answer to it! 

• State the final answer. (In terms of the subproblem) 

• Choose a memoization data structure.   Where are you going to 
store already computed results? (Usually a table) 

• Identify evaluation order. Identify the dependencies: which 
subproblems depend on which ones? Using these dependencies, 
identify an evaluation order 

• Analyze space and running time.  As always!
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