
Dynamic Programming III:
Knapsack Problem

Admin
• Next Monday will be an activity day

• Practice dynamic programming w.r.t. graphs

• Use any extra time in activity period to work on problem
set & ask questions

Knapsack Problem
Further Reading: Chapter 6.4, KT

Knapsack Problem
Problem. Pack a knapsack to maximize the total item value

• There are items, each with weight and value :

• Knapsack has total capacity

• For any set of items they fit in the Knapsack iff

• Goal: Find subset of items that fit in the knapsack (satisfy the
capacity constraint) and maximize the total value:

• Assumption. All weights and values are non-negative integers

n wi vi
I = {(v1, w1), …, (vn, wn)}

C

T

∑
i∈T

wi ≤ C

S

∑
i∈S

vi

Let’s first explore greedy solutions to the problem.

Consider the following problem instance:

• Ideas for what to be greedy about?

Knapsack Problem

i vi wi

1 $1 1 kg
2 $6 2 kg
3 $18 5 kg
4 $22 6 kg
5 $28 7 kg

Knapsack instance

(weight limit C = 11 kg)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg

Creative Commons Attribution-Share Alike 2.5
by Dake

https://creativecommons.org/licenses/by-sa/2.5/

Idea 1: Pick the most expensive stuff we can!

• Algorithm: greedily pick the highest value item that fits.

Knapsack Problem

i vi wi

1 $1 1 kg
2 $6 2 kg
3 $18 5 kg
4 $22 6 kg
5 $28 7 kg

Knapsack instance

(weight limit C = 11 kg)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg

Creative Commons Attribution-Share Alike 2.5
by Dake

Total value: $35
Utilized capacity: 10 kg

https://creativecommons.org/licenses/by-sa/2.5/

Idea 2: Pick the lightest stuff we can!

• Algorithm: greedily pick the lowest weight item that fits.

Knapsack Problem

i vi wi

1 $1 1 kg
2 $6 2 kg
3 $18 5 kg
4 $22 6 kg
5 $28 7 kg

Knapsack instance

(weight limit C = 11 kg)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg

Creative Commons Attribution-Share Alike 2.5
by Dake

Total value: $25
Utilized capacity: 9 kg

https://creativecommons.org/licenses/by-sa/2.5/

Idea 3: Pick the heaviest stuff we can!

• Algorithm: greedily pick the highest weight item that fits.

Knapsack Problem

i vi wi

1 $1 1 kg
2 $6 2 kg
3 $18 5 kg
4 $22 6 kg
5 $28 7 kg

Knapsack instance

(weight limit C = 11 kg)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg

Creative Commons Attribution-Share Alike 2.5
by Dake

Total value: $35
Utilized capacity: 10 kg

https://creativecommons.org/licenses/by-sa/2.5/

Other ideas?

Spoiler: Greedy doesn’t work! What is optimal in this instance?

• Optimal packing is : value $40 (and weight 11)

How many packings muse we consider in an exhaustive search?

{i3, i4}

Knapsack Problem

i vi wi

1 $1 1 kg

2 $6 2 kg

3 $18 5 kg

4 $22 6 kg

5 $28 7 kg

knapsack instance
(weight limit W = 11)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg

Creative Commons Attribution-Share Alike 2.5
by Dake

https://creativecommons.org/licenses/by-sa/2.5/

Given items, how many subsets of items are there in total?

• : there are an exponential number of possibilities

• Dynamic programming trades of space for time, and through
memoization, we get an (interestingly) efficient solution!

S

2S

Exponential Possibilities

i vi wi

1 $1 1 kg

2 $6 2 kg

3 $18 5 kg

4 $22 6 kg

5 $28 7 kg

knapsack instance
(weight limit W = 11)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg

Creative Commons Attribution-Share Alike 2.5
by Dake

https://creativecommons.org/licenses/by-sa/2.5/

Recipe for a Dynamic Program
• Formulate the right subproblem. The subproblem must have an

optimal substructure

• Formulate the recurrence. Identify how the result of the smaller
subproblems can lead to that of a larger subproblem

• State the base case(s). The subproblem thats so small we know
the answer to it immediately!

• State the final answer. (In terms of the subproblem)

• Choose a memoization data structure. Where are you going to
store already computed results? (Usually a table)

• Identify evaluation order. Identify the dependencies: which
subproblems depend on which ones? Using these dependencies,
identify an evaluation order

• Analyze space and running time. As always!

Towards a Subproblem
Previously, our DP has tracked a value instead of a set.

• Idea 1: Keep track of current capacity , where

• Subproblem. Let denote the value of the optimal
solution that uses capacity .

• Optimal solution:

• Recurrence:

• Why is this a challenge?

c 0 ≤ c ≤ C

T[c]
≤ c

T[C]
Not obvious with just capacities.

Subproblems and Optimality
When items are selected, we need to fill the remaining capacity
optimally
• Challenge: the subproblem associated with a given remaining

capacity can be solved in different ways

• In both cases, remaining capacity: 11 kg, but items left are different
• Using just capacity might not be enough. Perhaps a 2D table can

capture capacity AND items?

Partial Selection #1 Partial Selection #2

Subproblem:  
Optimal Substructure

Subproblem
Subproblem  
 
 
 
 
 

Final answer

: value of optimal solution using
items with total capacity , for
OPT(i, c)

{1,2,…, i} ≤ c
1 ≤ i ≤ n, 0 ≤ c ≤ C

OPT(n, C) Consider all n items,
consider full capacity C

Base Cases
: Are there any rows/columns can we fill immediately?

• What about the first column corresponding to item

: Value of optimal solution that uses item and has
total capacity at most

• For we can fill out the first column
as:

n × C

1?

OPT(1, c) 1
c

i = 1; c ∈ {1,2,…, C}

 if

 if

OPT(1, c) = v1 c ≥ w1

OPT(1, c) = 0 c < w1

Item 1 fits, add its value v1

Item 1 does not fit, value
of empty knapsack is 0

Base Cases
Are there any rows/columns can we fill immediately?

• What about the first row corresponding to capacity ?

• : Value of optimal solution that uses first items
and has total capacity at most

• For we can fill out the first row as:

0

OPT(i, 0) i
0

i = 1,2,…, n

OPT(i, 0) = 0 Items do not fit, value
of empty knapsack is 0

1…i

Optimal Substructure
• : Let us try to construct the optimal solution that uses

items and capacity at most

• What are the possibilities for the last item:

• Either item is in the optimal solution or not

• We must consider both cases

• Case 1. Suppose item is not in the optimal solution, what is
the optimal way to solve the remaining problem?

•

OPT(i, c)
{1,2,…, i} c

ith

i

i

OPT(i, c) = OPT(i − 1,c) Item is left out, use best solution
that considers items

for the same capacity

i
1…(i − 1)

• : Let us try to construct the optimal solution that uses
items and capacity at most

• What are the possibilities for the last item:

• Either item is in the optimal solution or not

• We must consider both cases

• Case 2. Suppose item is in the optimal solution, what is the
recurrence of the optimal solution?

•

• This case only possible if

OPT(i, c)
{1,2,…, i} c

ith

i

i

OPT(i, c) = vi + OPT(i − 1, c − wi)

c ≥ wi

Optimal Substructure

Final Recurrence
For and , we have:

• Memoization structure: We store values in a 2-D
array or table using space

• Evaluation order: In what order should we fill in the table?
• Row-major order (row-by-row)

1 ≤ i ≤ n 1 ≤ c ≤ C

OPT[i, c]
O(nC)

OPT(i, c) =
max{OPT(i − 1, c), vi + OPT(i − 1, c − wi)}

Working Through An Example

i vi wi

1 $1 1 kg

2 $6 2 kg

3 $18 5 kg

4 $22 6 kg

5 $28 7 kg

knapsack instance
(weight limit W = 11)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg

Creative Commons Attribution-Share Alike 2.5
by Dake

OPT(i, c) =
max{OPT(i − 1, c), vi + OPT(i − 1, c − wi)}

OPT(i, 0) = 0
 if

 if

OPT(1, c) = v1 c ≥ w1

OPT(1, c) = 0 c < w1

https://creativecommons.org/licenses/by-sa/2.5/

0 1 1 1 1 1 1 1 1 1 1 1

0 1 6 7 7 7 7 7 7 7 7 7

0 1 6 7 7 18 19 24 25 25 25 25

0 1 6 6 6 18 22 24 28 28 28 40

0 1 6 6 6 18 22 28 29 34 34 40

c=0 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10 c=11

i=1

i=2

i=3

i=4

i=5

Running Time
• Time to fill out a single table cell?

• How many cells are there in our table?

• Total cost?

O(1)

O(nC)

O(nC)

Running Time
• Is polynomial? By which I mean polynomial in the

size of the input

• What is the input?

• We need size to store items

• How much space to store integer ?

• So, is polynomial in the input size?

• No! One table dimension depends on value of input, not
size needed to represent it:

• “Pseudopolynomial” - polynomial in the value of the input

O(nC)

O(n) n

C

O(nC)

C = 2log2 C

 bitslog2 C

 items, plus the integer n C

Recipe for a Dynamic Program
• Formulate the right subproblem. The subproblem must have an

optimal substructure

• Formulate the recurrence. Identify how the result of the smaller
subproblems can lead to that of a larger subproblem

• State the base case(s). The subproblem thats so small we know
the answer to it!

• State the final answer. (In terms of the subproblem)

• Choose a memoization data structure. Where are you going to
store already computed results? (Usually a table)

• Identify evaluation order. Identify the dependencies: which
subproblems depend on which ones? Using these dependencies,
identify an evaluation order

• Analyze space and running time. As always!

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

• Shikha Singh

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

