Dynamic Programming II: Edit Distance & LIS

Admin

- DP **HW** goes out today
 - Four problems, but one is solved for you
 - Use it as a template
- Faculty lecture series talk this afternoon in Wege
 - Charlie Doret, Physics
- Winter Study Question

Today's Outline

We'll explore dynamic programming problems that use different memoization structures, getting as far as we can.

Edit distance

- Classic problem with many applications
- Requires a 2D memoization structure
- Longest Increasing Subsequence
 - More DP practice (slightly easier, OK if we don't get to it)

The problems themselves aren't what is important, it's getting practice with the techniques!

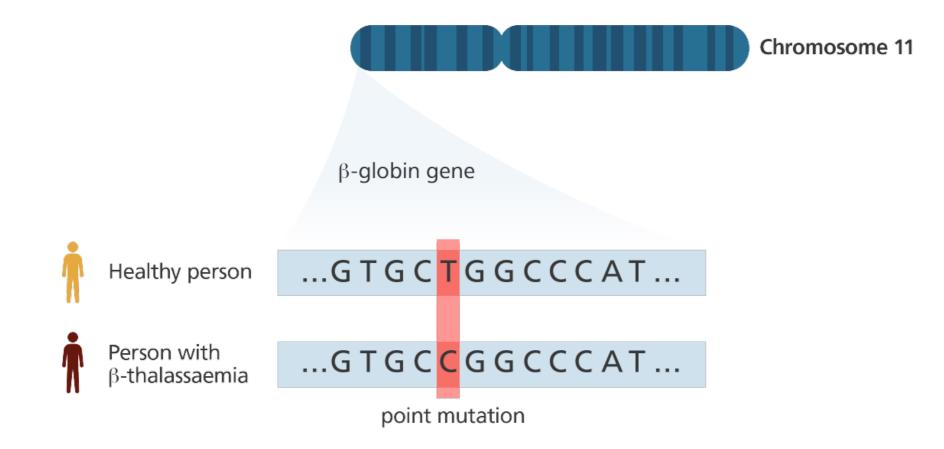
Edit Distance

Further Reading: Chapter 3.7, Erickson

Motivation

Edit distance is a **metric** that captures the similarity between two strings.

• Edit distance has several important applications!



DNA sequencing: finding similarities between two genome sequences

Motivation

Edit distance is a **metric** that captures the similarity between two strings.

• Edit distance has several important applications!

Google	edite ditstance	x 🕴 Q						
	🔍 All 🕞 Videos 🖾 Images 🗉 News 🟈 Shopping : More	Settings Tools						
	About 949,000,000 results (0.69 seconds)							
	Showing results for <i>edit distance</i> Search instead for edite ditstance							
	Text processing: finding similar strings and NI	LP						

Problem Defintion

Problem. Given two strings $A = a_1 \cdot a_2 \cdot \cdot \cdot a_n$ and $B = b_1 \cdot b_2 \cdot \cdot \cdot b_m$, find the **edit distance** between them.

- Edit distance between *A* and *B* is the smallest number of the following operations that are needed to transform *A* into *B*
 - Replace a character (substitution)
 - Delete a character
 - Insert a character

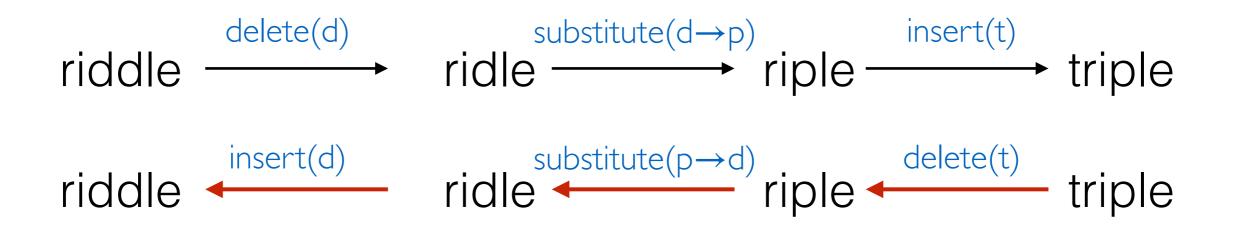
$$\begin{array}{ccc} \text{delete(d)} & \text{substitute(d \rightarrow p)} & \text{insert(t)} \\ \hline & \text{ridle} & \hline & \text{riple} & \hline & \text{triple} \end{array}$$

Edit distance(riddle, triple): 3

Structure of the Problem

Problem. Given two strings $A = a_1 \cdot a_2 \cdot \cdot \cdot a_n$ and $B = b_1 \cdot b_2 \cdot \cdot \cdot b_m$, find the **edit distance** between them.

- Notice that the process of getting from string A to string B by doing substitutions, inserts and deletes is **reversible**
- Inserts in one string correspond to deletes in another



Edit distance(riddle, triple): 3

We can visualize the problem of finding the edit distance as an the problem of finding the best **alignment** between two strings

- Gaps in alignment represent inserts to top/deletes to bottom
- **Mismatches** in alignment represent substitutes
 - Cost of an alignment = number of gaps + mismatches
- Edit distance: minimum cost alignment

We can visualize the problem of finding the edit distance as an the problem of finding the best **alignment** between two strings

- Gaps in alignment represent inserts to top/deletes to bottom
- **Mismatches** in alignment represent substitutes
 - Cost of an alignment = number of gaps + mismatches
- Edit distance: minimum cost alignment

principle misspell prehistoric
prinncipal mispell historic
 aabbccaabb algorithm
 ababbbcab alkhwarizmi

prin-ciple
|||| |||XX
prinncipal
(1 gap, 2 mm)

misspell ||| |||| mis-pell (1 gap)

aa-bb-ccaabb
|X || | | |
ababbbc-a-b(5 gaps, 1 mm)

prin-cip-le
|||| ||| |
prinncipal(3 gaps, 0 mm)

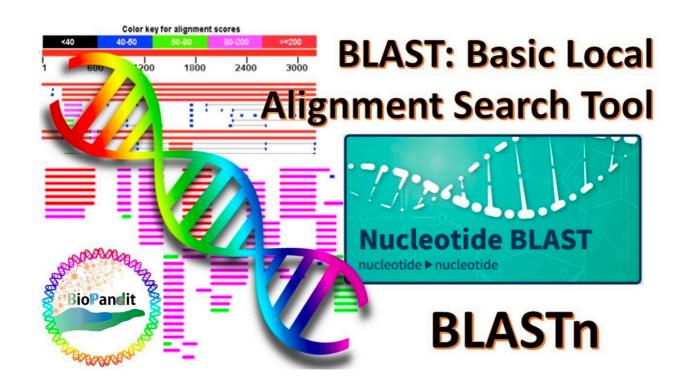
al-go-rithm-|| XX ||X | alKhwariz-mi (4 gaps, 3 mm)

DDOO 200D2

_ 7 _

N.1 10445700 71 W

>gb AC115706.	7 Mus musculus chromosome 8, clone RP23-382B3, complete seque	nce
Query 1650	gtgtgtgtgggtgcacatttgtgtgtgtgcgcctgtgtgtg	1709
Sbjct 56838	GTGTGTGTGGAAGTGAGTTCATCTGTGTGTGCACATGTGTGTG	56895
Query 1710	gtg-gggcacatttgtgtgtgtgtgtgtgcctgtgtggggtgcacatttgtgtgtg	1768
Sbjct 56896	GTCCGGGCATGCATGTCTGTGTGTGCATGTGTGTGTGTGCATGTGTGAGTAC	56947
Query 1769	ctgtgtgtgtgtgcctgtgtggggggggggcacatttgtgtgtg	1828
Sbjct 56948	CTGTGTGTGTGTATGCTTGTATGTGTGTGTGTGCATGTGTGTG	57007



Sequence Alignment Problem

Problem: Find an alignment of the two strings A, B where

- each character a_i in A is matched to a string b_j in B or unmatched
- each character b_j in B is matched to a string a_i in A or unmatched
- Matches are free if successful: $cost(a_i, b_j) = 0$ if $a_i = b_j$, but penalized if unsuccessful: $cost(a_i, b_j) = 1$ if $a_i \neq b_j$
- cost of an unmatched letter (gap) = 1

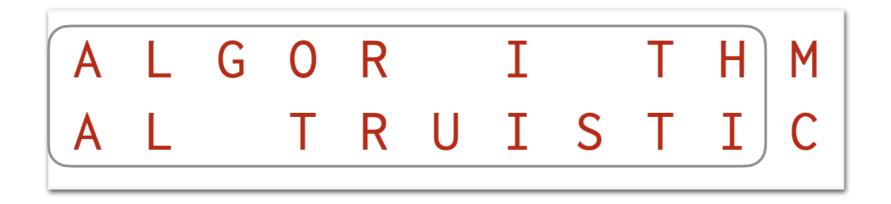
Total alignment cost = # unmatched (gaps) + $\sum_{a_i,b_j} \text{cost}(a_i,b_j)$

Goal. Compute edit distance by finding an alignment of the minimum total cost

Recursive Structure

Before we develop a dynamic program, we need to figure out the recursive structure of the problem

- Our alignment representation has an optimal substructure:
 - Suppose we have the mismatch/gap representation of the shortest edit sequence of two strings
 - If we remove the last column, the remaining columns must represent the shortest edit sequence of the remaining prefixes!



Subproblem

• Subproblem

Edit(i, j): edit distance between the strings $a_1 \cdot a_2 \cdots a_i$ and $b_1 \cdot b_2 \cdots b_j$, where $0 \le i \le n$ and $0 \le j \le m$

• Final answer

Base Cases

We have to fill out a **two-dimensional array** to memoize our recursive dynamic program.

- Which rows/columns can we fill immediately?
- Edit(*i*,0): Min number of edits to transform a string of length *i* to an empty string

Edit
$$(i, 0) = i$$
 for $0 \le i \le n$
Edit $(0, j) = j$ for $0 \le j \le m$

Recurrence

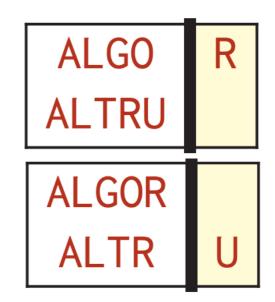
Imagine the optimal alignment between the two strings

- What are the possibilities for the last column?
 - It could be that both letters match: $\cos 0$
 - It could be that both letters do not match: cost $1 \$
 - It could be that there an unmatched character (gap):
 either from A or from B: cost 1

Recurrence

Break the possibilities down for the last column in the optimal alignment of $a_1 \cdot a_2 \cdot \cdot \cdot a_i$ and $b_1 \cdot b_2 \cdot \cdot \cdot b_i$:

- **Case 1.** Only one row has a character:
 - Case 1a. Letter a_i is unmatched Edit(i, j) = Edit(i - 1, j) + 1
 - Case 1b. Letter b_j is unmatched Edit(i, j) = Edit(i, j - 1) + 1
- Case 2: Both rows have characters:
 - Case 2a. Same characters: Edit(i, j) = Edit(i - 1, j - 1)
 - Case 2b. Different characters: Edit(i, j) = Edit(i - 1, j - 1) + 1



Final Recurrence

For $1 \le i \le n$ and $1 \le j \le m$, we have:

$$\operatorname{Edit}(i,j) = \min \begin{cases} \operatorname{Edit}(i,j-1) + 1 \\ \operatorname{Edit}(i-1,j) + 1 \\ \operatorname{Edit}(i-1,j-1) + (a_i \neq b_j) \end{cases}$$

Uses the shorthand: $(a_i \neq b_j)$ which is 1 if it is true (i.e., they mismatch), and zero otherwise.

This just lets us write cases 2a and 2b in one line...

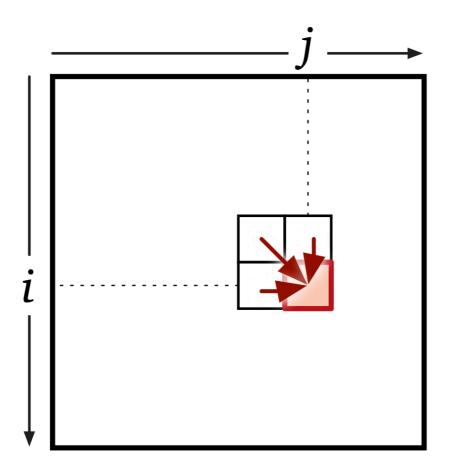
From Recurrence to DP

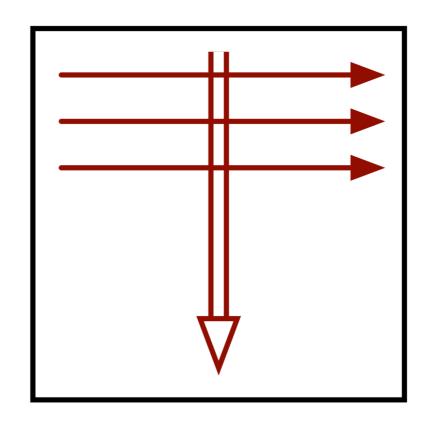
- We can now transform our recurrence into a dynamic program
- Memoization Structure: We can memoize all possible values of Edit(i, j) in a table/ two-dimensional array of size O(nm):
 - Store $\operatorname{Edit}[i, j]$ in a 2D array; $0 \le i \le n$ and $0 \le j \le m$
- Evaluation order:
 - Is interesting for a 2D problem
 - Based on dependencies between subproblems
 - We want all referenced values from our recurrence to be computed *before* we need them

From Recurrence to DP

Evaluation order

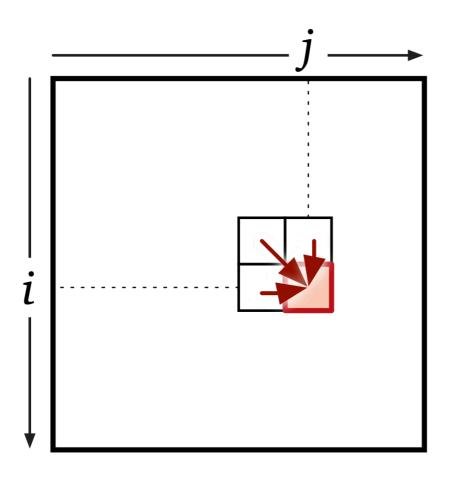
- We can fill in **row major order**, which is row by row, from top down, each row from left to right
 - With this order, when we reach an entry in the table, our recurrence references only filled-in entries

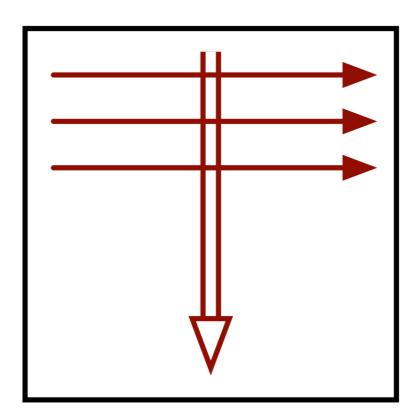




Space and Time

- The memoization uses O(nm) space
- We can compute each $\operatorname{Edit}[i, j]$ in O(1) time
- Overall running time: O(nm)





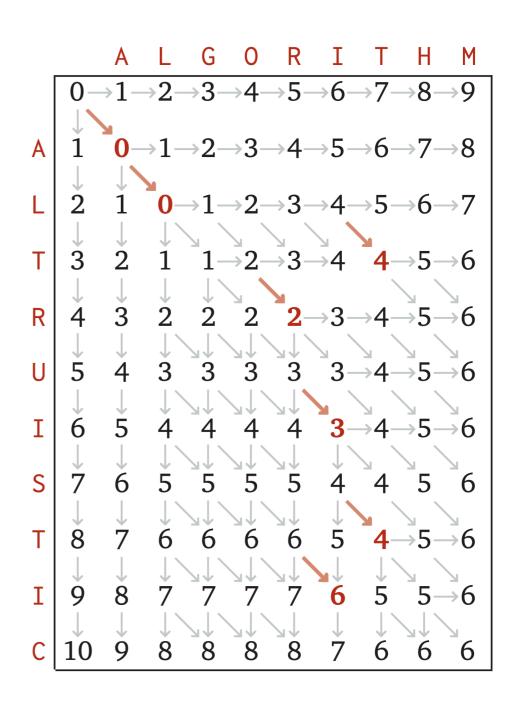
Memoization Table: Example

- Memoization table for **ALGORITHM** and **ALTRUISTIC**
- Bold numbers indicate where characters are same
- Horizontal arrow: deletion in A
- Vertical arrow (\downarrow): insertion in A
- Diagonal (>): (mis)match
- Bold red (↘): free match
- Only draw an arrow if used in DP
- Any directed path of arrows from top left to bottom right represents an optimal edit distance sequence

		Α	L	G	0	R	Ι	Т	Н	М
	0-	→1-	→2-	→3-	→4-	→5-	→6-	→7-	→8-	→9
A		0-	→1-	→2-	→3-	→4-	→5-	→6-	→7-	→8
L	2	1	0-	→1	→2-	→3_	→4_	→5-	→6-	→7
Т	→ 3	↓ 2	1	1-	→2-	→3-	4	4-	→5_	→6
R	↓ 4	↓ 3	2	2	2	2-	→3_	→4_	→5-	` →6
U	↓ 5	↓ 4	3	3	3	3	3-	⊸4_	→5-	` →6
I	6	↓ 5	4	4	_↓ 4	↓ 4	3-	⊸4_	→5_	⊸6
S	↓ 7	6	5	5	5	↓ 5	4	4	5	6
Т	8	↓ 7	6	6	6	6 €	↓ 5	4-	→5-	` →6
I	9	↓ 8	7	√ 7	√ 7	√ 7	6	5	5-	` →6
С	10	↓ 9	8	8	8	8	↓ 7	6	6	6

Reconstructing the Edits

- We don't need to store the arrow!
- An arrow can be reconstructed on the fly in O(1) time using the numerical values
- Once the table is built, we can construct the shortest edit distance sequence in O(n + m) time
- Does this remind you of any other dynamic programs we've seen?

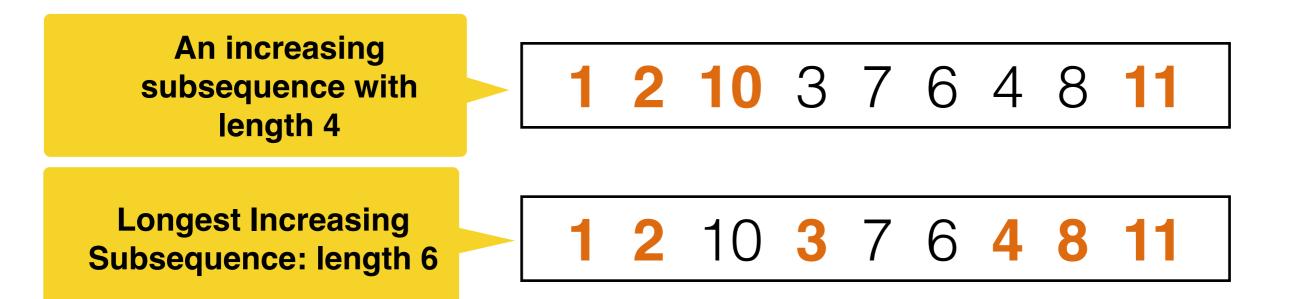


Longest Increasing Subsequence

Further Reading: Chapter 3.7, Erickson

Longest Increasing Subsequence

Problem: Given a sequence of integers as an array A[1,...n], find the longest **subsequence** whose elements are in increasing order



(Stated more formally...) Find the longest possible sequence of indices $1 \le i_1 < i_2 < \ldots < i_{\ell} \le n$ such that $A[i_k] < A[i_{k+1}]$

To simplify, we will only compute length of the LIS

Formalize the Subproblem

Identify the Base Case

L[i]: length of the longest increasing subsequence in A that ends at (and includes) A[i]

Base Case. L[1] = ?

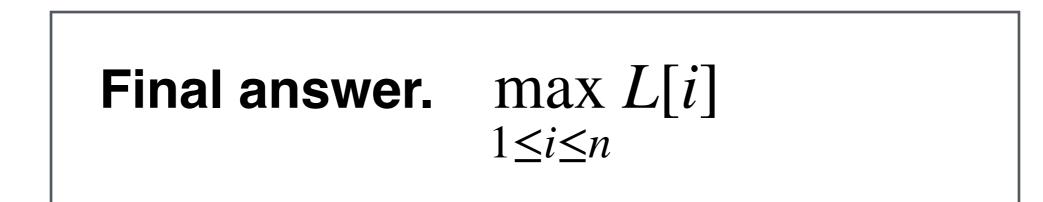
Identify the Final Answer

L[i]: length of the longest increasing subsequence in A that ends at (and includes) A[i]

Base Case. L[1] = 1

Final answer. ?

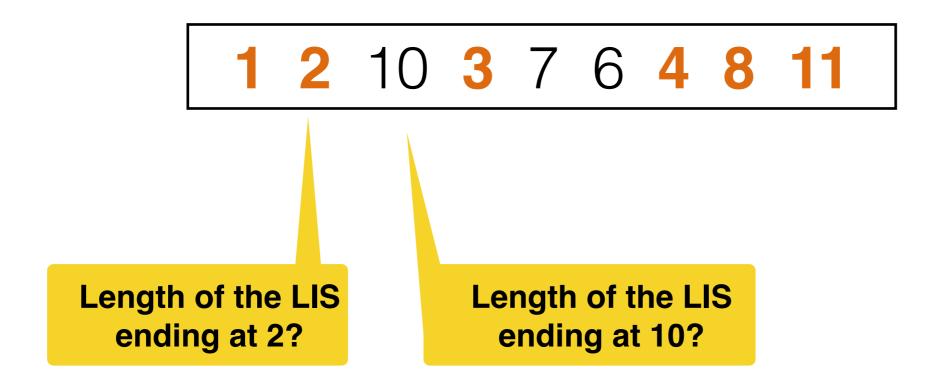
Base Case & Final Answer



Recurrence

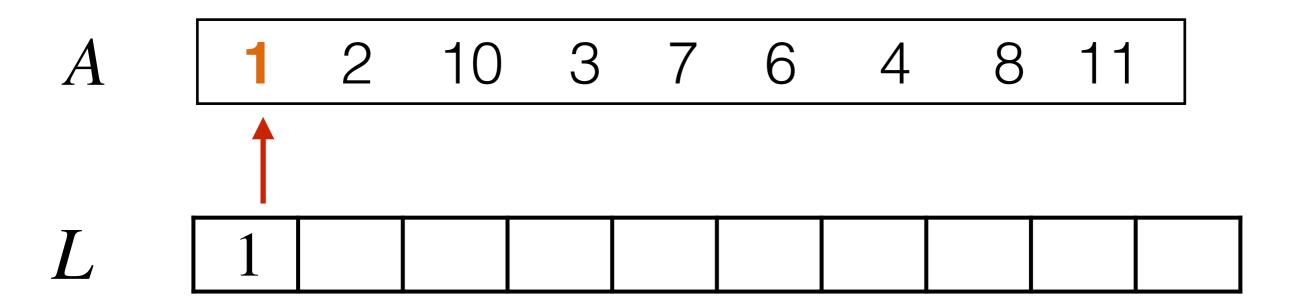
How do we go from one subproblem to the next?

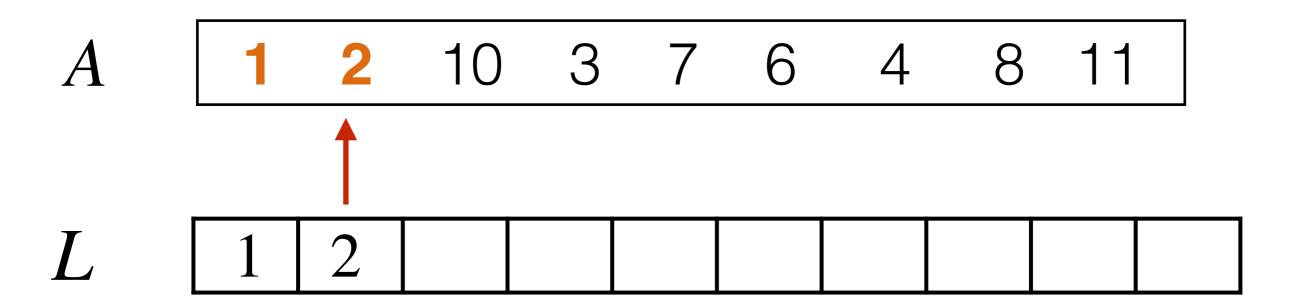
• That is, how do we compute L[i] assuming I know the values of $L[1], \ldots, L[i-1]$

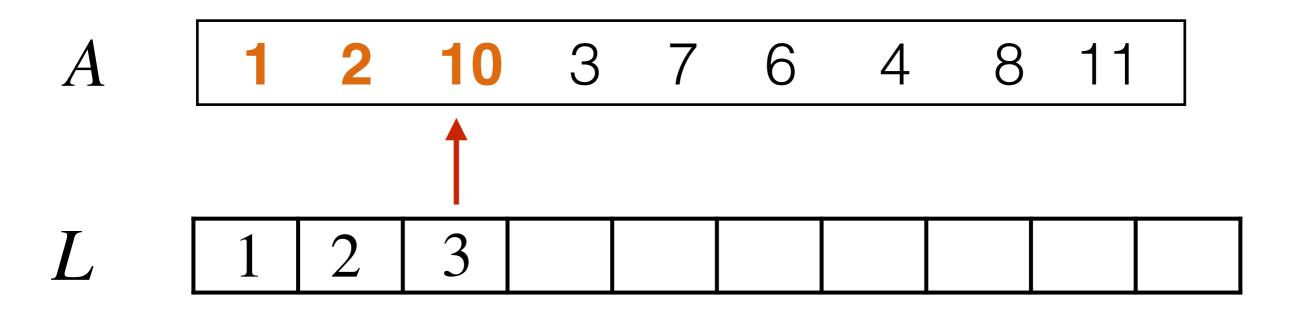


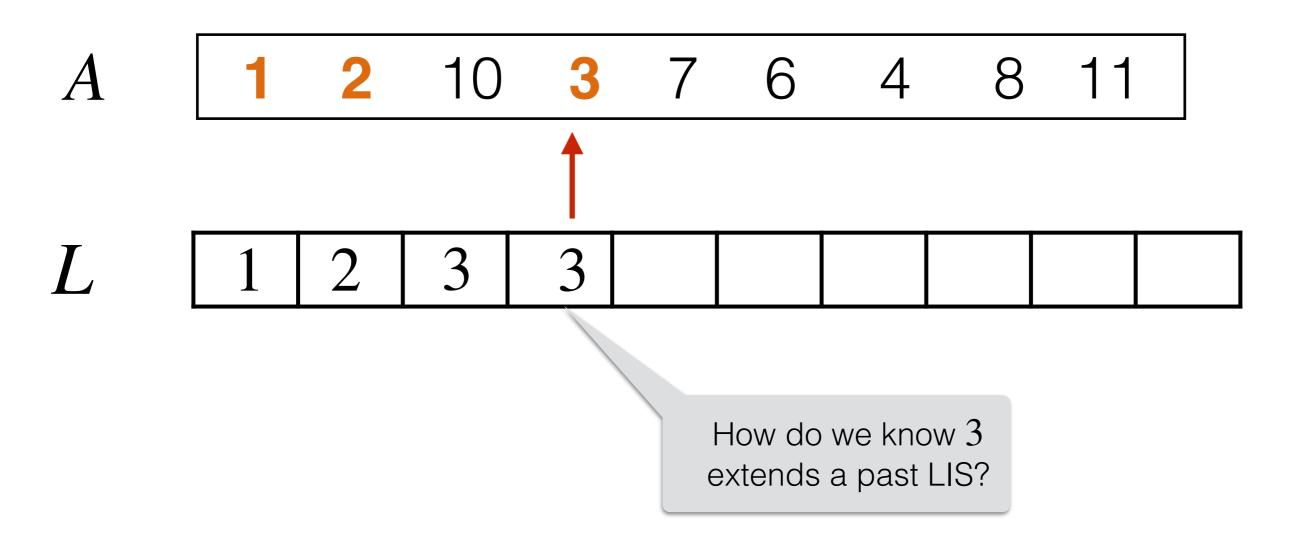
Recurrence

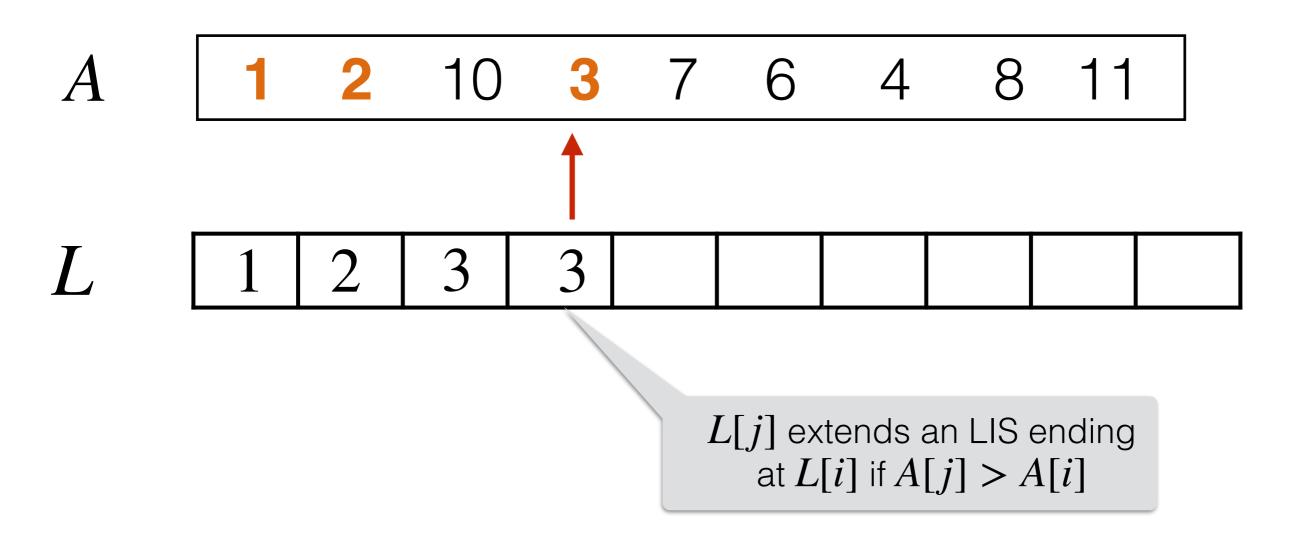
- Let's say we know the length of the longest subsequence ending at $A[1], A[2], \ldots A[i-1]$
- What is the longest subsequence ending at A[i]? Either:
- A[i] could potentially extend an earlier subsequence:
 - Can extend a longest subsequence ending at some A[k], with A[k] < A[i], but which k?
 - We could try all k to get the answer
- Or *A*[*i*] could start a new subsequence (i.e., it doesn't extend any earlier increasing subsequence)

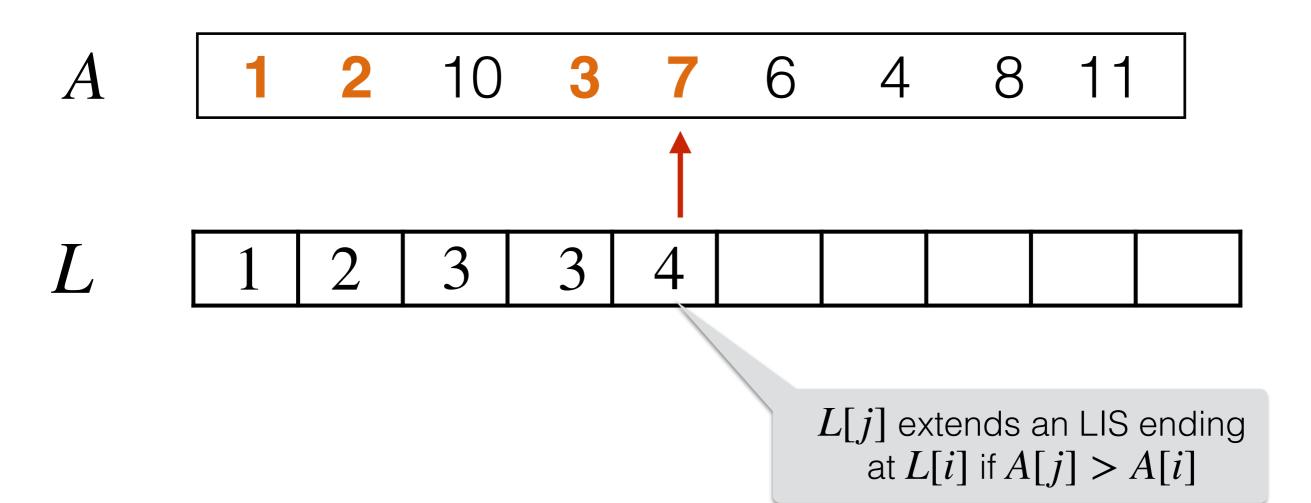


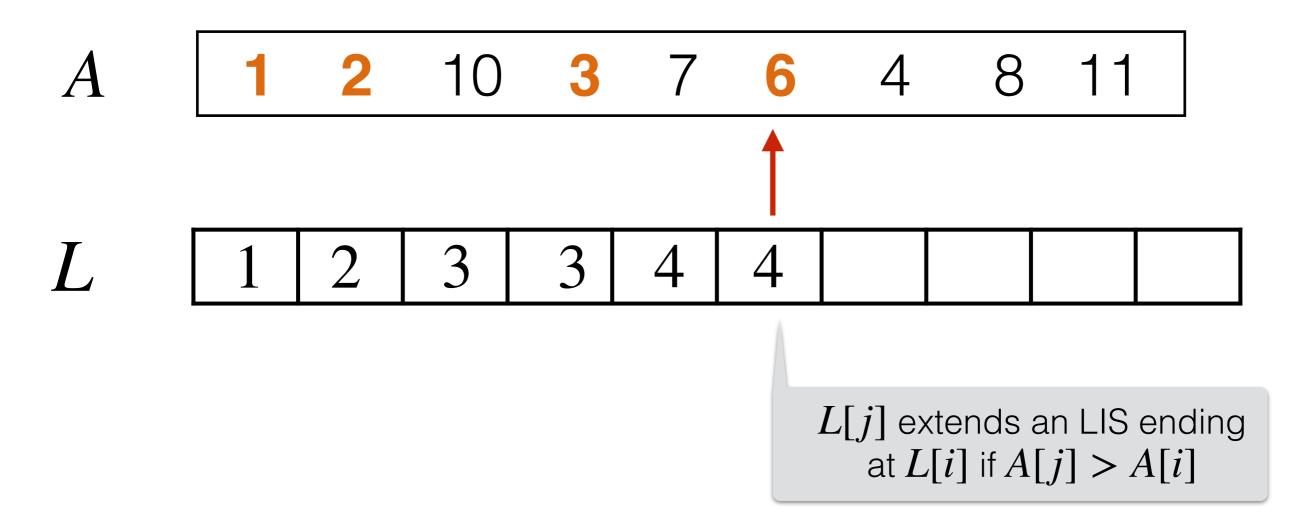




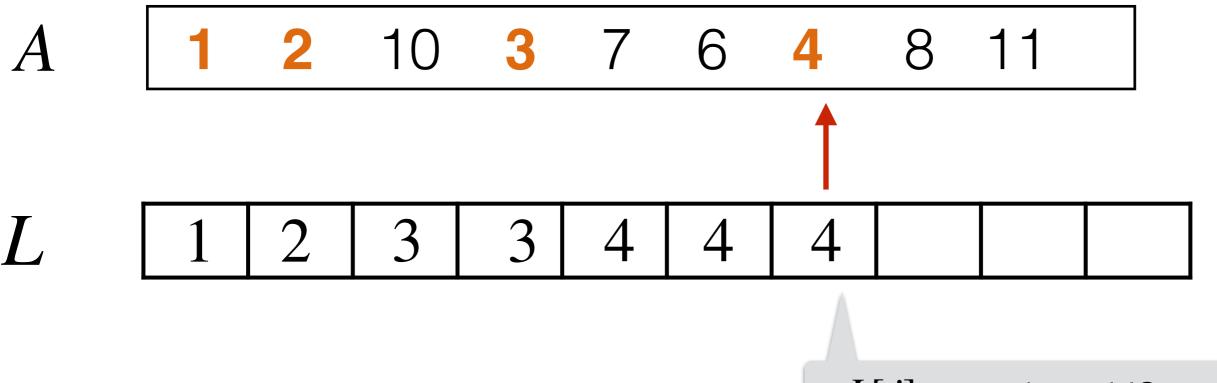






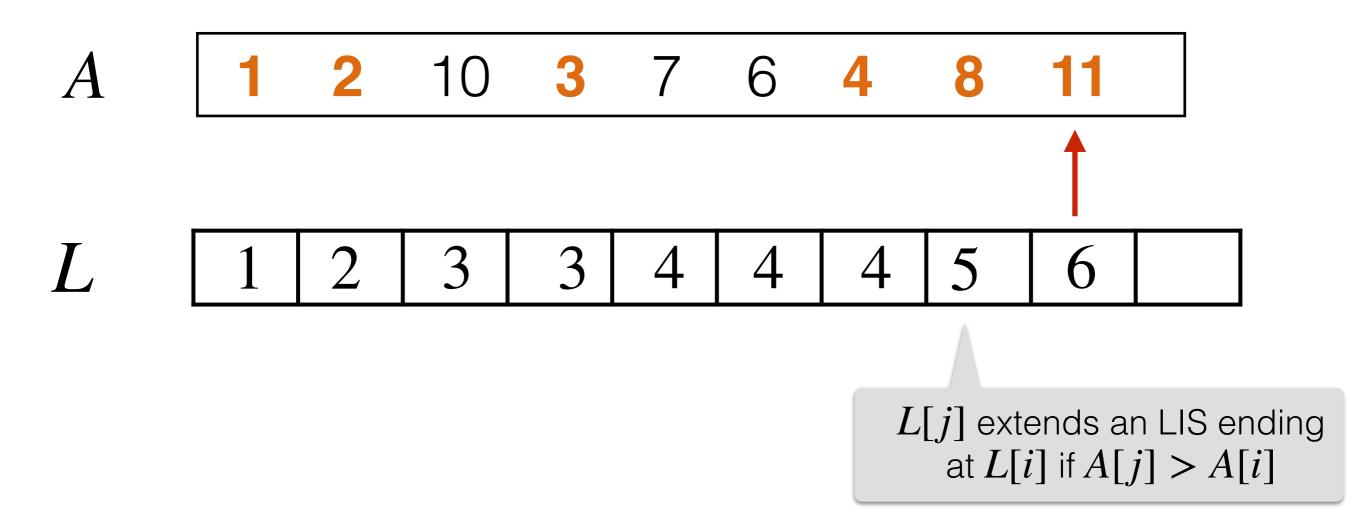


L[i]: length of the longest increasing subsequence in A that ends at (and includes) A[i]



L[j] extends an LIS ending at L[i] if A[j] > A[i]





LIS: Recurrence

$L[j] = 1 + \max\{L[i] \mid i < j \text{ and } A[i] < A[j]\}$ Assuming max $\emptyset = 0$

Recursion \rightarrow DP

- If we used recursion (without memoization) we'll be inefficient—we'll do a lot of repeated work
- Once you have your recurrence, the remaining pieces of the dynamic programming algorithm are
 - Evaluation order. In what order should I evaluate my subproblems so that everything I need is available to evaluate a new subproblem?
 - For LIS we just left-to-right on array indices
 - Memoization structure. Need a table (array or multi-dimensional array) to store computed values
 - For LIS, we just need a one dimensional array
 - For others, we may need a table (two-dimensional array)

LIS Analysis

- Correctness
 - Follows from the recurrence using induction
- Running time?
 - Solve O(n) subproblems
 - Each one requires O(n) time to take the min
 - $O(n^2)$
- Space?
 - O(n) to store array L[]

Recipe for a Dynamic Program

- Formulate the right subproblem. The subproblem must have an optimal substructure
- Formulate the recurrence. Identify how the result of the smaller subproblems can lead to that of a larger subproblem
- State the base case(s). The subproblem thats so small we know the answer to it!
- State the final answer. (In terms of the subproblem)
- Choose a memoization data structure. Where are you going to store already computed results? (Usually a table)
- Identify evaluation order. Identify the dependencies: which subproblems depend on which ones? Using these dependencies, identify an evaluation order
- Analyze space and running time. As always!

Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (<u>https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf</u>)
 - Jeff Erickson's Algorithms Book (<u>http://jeffe.cs.illinois.edu/</u> <u>teaching/algorithms/book/Algorithms-JeffE.pdf</u>)
 - Shikha Singh