
“Those who cannot remember the past are
condemned to repeat it.”  
 
— Jorge Agustín Nicolás Ruiz de Santayana y Borrás

Dynamic programming

https://en.wikipedia.org/wiki/George_Santayana

Admin
• Welcome back!!!

• Midterm graded but not (yet) returned

• Grades were generally good!

• And course grades will be curved

• But… I didn’t want to release the grades until discussing
what grades would correspond to particular “letters” if the
semester grades were the same as the midterm grades

• I will send that all in a GLOW post and then release the
exams with feedback/scores on Gradescope

Slow Recursion: Fibonnacci
Definition. Fibonacci numbers are defined by the following
recurrence: 
 
 
 
 

Recall three different implementations of Fibonacci from our
previous activity:

• Naively recursive

• Local array to “memoize” the first numbers

• Global array, worked backwards from

n
n

The naive recursive implementation was horribly sloooooow 
 
 
 
 
 
 
 
 

• Practice: can we lower bound the cost?

• Step 1: Write the recurrence

Slow Recursion: Fibonnacci

T(n) = T(n − 1) + T(n − 2) + O(1)

Can we lower bound the running time using techniques we already
know? 

• If we want to show that , we can show and

 
 
Let’s visualize this tree!

• There are levels, each level has nodes

• Level has cost

a ≥ c a ≥ b b ≥ c

n/2 2i

i Ω(2i)

Slow Recursion: Fibonnacci

T(n) = T(n − 1) + T(n − 2) + Θ(1)

T(n) ≥ 2T(n − 2) + Ω(1) We know T(n − 1) ≥ T(n − 2)

T(n) = Ω(2n/2)

Memo(r)ization
• Recursive Fibonacci algorithm is slow because it recomputes the

same functions over and over

• We saw that we can speed it up considerably by writing down the
results of our recursive calls, and looking them up when we need
them later

Dynamic Programming: Smart Recursion
• Dynamic programming is all about smart recursion by using

memoization

• Here (fib3 from activity) we cut down on all useless recursive calls

 F[n] = F[n − 1] + F[n − 2]

Green arrows store
the results.

Orange arrows read
stored results.

Dynamic Programing:
Recursion + Memoization

Memoization: technique of storing expensive function call
results so that they can be looked up later

• To be useful, we must carefully structure our algorithm to
traverse problem space in appropriate order

• Memoization is a core concept of dynamic programming,
but also used elsewhere

Recipe for a Dynamic Program
• Formulate the right subproblem. The subproblem must have an

optimal substructure

• Formulate the recurrence. Identify how the results of the smaller
subproblems can contribute to results of larger subproblems

• State the base case(s). The subproblem(s) so small we know the
answer immediately!

• State the final answer. (In terms of the subproblem(s))

• Choose a memoization data structure. Where are you going to
store already computed results? (This is often a “table”)

• Identify evaluation order. Identify the dependencies: which
subproblems depend on which? Using these dependencies, identify
an evaluation order

• Analyze space and running time. As always!

Weighted Scheduling

Further Reading: Chapter 6, KT

time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

Overlapping jobs
e.g., d and g

are incompatible
Each job has a weight

Weighted Scheduling
Job scheduling. Suppose you have a machine that can run one
job at a time; job requests, where each job has a start time
finish time and weight .

n i si,
fi vi ≥ 0

10
5

7
2

4
8

1
3

Weighted Scheduling
Input. Given intervals labeled with starting and finishing
times and non-negative weights .  

Goal. We must select compatible (non-overlapping) intervals with the
maximum weight.

• That is, our goal is to find a set of intervals that are
pairwise non-overlapping and that maximize

n 1,…, n
{(s1, f1), …, (sn, fn)} {v1, …, vn}

I ⊆ {1,…, n}

∑
i∈I

vi

Remember Greedy?
• In Unweighted, earliest-finish-time first was optimal greedy algorithm

• Consider jobs in order of finish times

• Greedily pick jobs that are non-overlapping

• We proved greedy is optimal when all weights are 1

• How about the weighted interval scheduling problem?

weight = 999

weight = 1

time
0 1 2 3 4 5 6 7 8 9 10 11

b

a
h

weight = 1

Greedy fails spectacularly!

Different Greedy?
We saw that not it is important to choose the right thing to “be greedy”
over. Should we just pick other optimization criteria?

• New idea: greedily select intervals with the maximum weights,
remove overlapping intervals

• Does this work?

weight = 10

weight = 9 each

time
0 1 2 3 4 5 6 7 8 9 10 11

b

a c d

Greedy fails spectacularly!

Let’s Think Recursively
The heart of dynamic programming is recursively thinking.

• Coming up with a smaller subproblem that has the same
optimal structure as the original problem

• First, let’s focus on the total value of the optimal solution, rather
than the actual set of intervals. That is,

• Optimal value:  
The largest where intervals in are compatible.

• Let’s also define to be the value of the optimal
schedule that considers the first intervals

∑
i∈I

vi I

Opt-Schedule(n)
n

Let’s Think Recursively
Consider the last interval: it’s either in the optimal solution or it’s not.

• Whatever the optimal solution is, we can find it by considering
both cases (in or out) and taking their maximum weight.

• Case 1. Last interval is not in the optimal solution

• Remove the last interval.  
We now have a smaller subproblem!

• Case 2. Last interval is in the optimal solution

• Anything that overlaps with this interval cannot be in the
solution. Remove them. 
We now have a smaller subproblem!

Formalize the Subproblem

: value of the optimal schedule that
only considers intervals , for
Opt-Schedule(i)

{1,…, i} 0 ≤ i ≤ n

Base Case & Final Answer

: value of the optimal schedule that
only considers intervals , for
Opt-Schedule(i)

{1,…, i} 0 ≤ i ≤ n

Base Case. Opt-Schedule(0) = 0

Goal (Final answer.) Opt-Schedule(n)

Recurrence
How do we go from one subproblem to the next?

• The recurrence describes how to compute
by using values of where

Case 1. Say interval is not in the optimal solution, can we
write the recurrence for this case?

•

Opt-Schedule(i)
Opt-Schedule(j) j < i

i

Opt-Schedule(i) = Opt-Schedule(i − 1)

Recurrence
How do we go from one subproblem to the next?

• The recurrence describes how to compute
by using values of where

Case 2. Say interval is in the optimal solution, what is the
smaller subproblem we should recurse on for this case?

• No interval that overlaps with can be in solution

• Need to remove all such intervals to get our smaller
subproblem

• How do we do that?

Opt-Schedule(i)
Opt-Schedule(j) j < i

i

j < i i

Helpful Information
Suppose the intervals are sorted by finish times.

• Let be the predecessor of . That is, largest index such
that intervals and are not overlapping

• Define if all intervals overlap with

p(j) j i < j
i j

p(j) = 0 i < j j

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Helpful Information
Let be the predecessor of . That is, largest index such that
intervals and are not overlapping.

• , ,

p(j) j i < j
i j

p(8) = ? p(7) = ? p(2) = ?

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Helpful Information
Let be the predecessor of . That is, largest index such that
intervals and are not overlapping.

• , ,

p(j) j i < j
i j

p(8) = 1 p(7) = 3 p(2) = 0

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Recurrence
How do we go from one subproblem to the next?

• The recurrence describes how to compute
by using values of where

Case 2. Say interval is in the optimal solution, what is the
smaller subproblem we should recurse on for this case?

• Suppose we know (the predecessor of), how can
we write the recurrence for this case?

• +

Opt-Schedule(i)
Opt-Schedule(j) j < i

i

p(i) i

Opt-Schedule(i) = Opt-Schedule(p(i)) vi

DP Recurrence

Opt-Schedule(i) =
max{Opt-Schedule(i − 1), vi + Opt-Schedule(p(i))}

Optimal schedule that
excludes interval i

Optimal schedule that
includes interval i

Filling Out the DP Table

time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

2

0 1 2 3 4

0

10

2

7

8

Filling Out the DP Table

time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

2

10

2

7

8

0 1 2 3 4

0 10

Filling Out the DP Table

time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

2

0 1 2 3 4

0 10 10

10

2

7

8

Filling Out the DP Table

time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

2

0 1 2 3 4

0 10 10 10

10

2

7

8

Filling Out the DP Table

time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

2

0 1 2 3 4

0 10 10 10 18

10

2

7

8

• Subproblem. Formulate the optimal substructure

• For let be the value of the optimal
schedule that only uses intervals

• Recurrence. How to go from one subproblem to the next

•

• Base case. The problem(s) we immediately know the answer to.

• (no intervals to schedule)

• Correctness.

• Use induction based on the recurrence

0 ≤ i ≤ n, Opt-Schedule(i)
{1,…, i}

Opt-Schedule(i) =
max{Opt-Schedule(i − 1), vi + Opt-Schedule(p(i))}

Opt-Scheduler(0) = 0

Summary of DP

Remaining Pieces
• Final answer in terms of subproblem?

•

• Evaluation order (in what order can be fill the DP table)

• , start with base case and use that to fill the rest

• Memoization data structure: 1-D array

• Final piece:

• Running time and space

• Space:

• Time: preprocessing + time to fill array

Opt-Schedule[n]

i = 0 → n

O(n)

Computing (Preprocessing)p[i]
• How quickly can we compute

• We could do a linear scan for each : per interval

• This would be overall…

• What if we had intervals sorted by their finish time

• For each interval, we could binary search over to
find the first such that

• Binary searching would take per interval,
total

• Time to compute the array

• This covers sorting + binary searching

p[i]?

i O(i)

O(n2)

F[1,…, n]

F[1,…, n]
j < i fj ≤ si

O(log n) O(n log n)

O(n log n) p[]

Running Time
• How many subproblems do we need to solve?

•

• How long does it take to solve a subproblem?

• to take the max

• Preprocessing time:

• Need to sort;

• Need to find for all each :

• Overall:

O(n)

O(1)

O(n log n)

p(i) i O(n log n)

O(n log n) + O(n) = O(n log n)

Wait!!! We’ve only computed the value, not the actual interval set!!!

Recreating Chosen Intervals
Suppose we have of optimal weights.

• Big Question: How can we reconstruct the optimal set of intervals? 

Identifying which of the two cases was larger tells us whether or not
interval was included:

M[]

i

This value is bigger: 
 not in OPTi

This value is bigger:
 is in OPTi

Opt-Schedule(i) =

max{Opt-Schedule(i − 1), vi + Opt-Schedule(p(i))}

Recursive Solution?
Suppose for now that we do not memoize: just a divide and conquer
recursion approach to the problem. 

:

• If , return

• Else

• Return  

• How many recursive calls in the worst case?

• Depends on

• Can we create a really bad instance?

Opt-Schedule(j)
j = 0 0

max(Opt-Schedule(j − 1), vj + Opt-Schedule(p(j)))

p(i)

Recursive Solution: Exponential
• For this example, asymptotically how many recursive calls?

• Grows like the Fibonacci sequence (exponential):

• Lots of redundancy!

• How many distinct subproblems are there to solve?

• for

T(n) = T(n − 1) + T(n − 2) + O(1)

Opt-Schedule(i) 1 ≤ i ≤ n + 1

3

4

5

1

2

p(1) = 0, p(j) = j-2

4 3

3 2 2 1

2 1

1 0

1 0 1 0

recursion tree

5

Dynamic Programming Tips
• Recurrence/subproblem is the key!

• DP is a lot like divide and conquer, while writing extra
things down

• When coming to a new problem, ask yourself what
subproblems may be useful? How can you break that
subproblem into smaller subproblems?

• Be clear while writing the subproblem and recurrence!

• In DP we usually keep track of the cost of a solution, rather
than the solution itself

Recipe for a Dynamic Program
• Formulate the right subproblem. The subproblem must have an

optimal substructure

• Formulate the recurrence. Identify how the result of the smaller
subproblems can lead to that of a larger subproblem

• State the base case(s). The subproblem thats so small we know
the answer to it!

• State the final answer. (In terms of the subproblem)

• Choose a memoization data structure. Where are you going to
store already computed results? (Usually a table)

• Identify evaluation order. Identify the dependencies: which
subproblems depend on which ones? Using these dependencies,
identify an evaluation order

• Analyze space and running time. As always!

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

