Fun Problems & Review

Announcements/Logistics

- We'll meet here tomorrow at the normal time
- Bring something to write (and erase) with
 - You'll be given a blank copy of the exact same* exam
 - I'll be around to answer questions
- Academic Accommodations?
 - It may be too late to make new arrangements, but we have several existing options that we can work with if you haven't yet reached out

Today's Goals

- Wrap up divide and conquer paradigm
- Feel good about tomorrow's exam (or at least the material on it)
- Practice solving interesting/fun problems on topics we've covered so far
- **Connect** material to the larger course context

Selection

Selection: Problem Statement

Given an array A[1,...,n] of size n, find the kth smallest element for any $1 \le k \le n$

- Special cases: $\min k = 1$, $\max k = n$:
 - Linear time, O(n)
- What about **median** $k = \lfloor n+1 \rfloor / 2?$
 - Sorting: $O(n \log n)$
 - Binary heap: $O(n \log k)$

Question. Can we do it in O(n)?

- Surprisingly yes.
- Selection is easier than sorting.

Selection: Problem Statement

Example. Take this array of size 10:

A = 12 | 2 | 4 | 5 | 3 | 1 | 10 | 7 | 9 | 8

Suppose we want to find 4th smallest element

- First, take any pivot p from A[1,...n]
- If p is the 4th smallest element, return it
- Else, we partition \boldsymbol{A} around \boldsymbol{p} and recurse

Selection Algorithm: Idea

Select (A, k):

If |A| = 1: return A[1]

Else:

- Choose a pivot $p \leftarrow A[1, ..., n]$; let r be the rank of p
- $r, A_{< p}, A_{> p} \leftarrow \text{Partition}((A, p)$
- If k = = r, return p
- Else:
 - If k < r: Select $(A_{< p}, k)$
 - Else: Select $(A_{>p}, k r)$

Selection: Problem Statement

Example. Take this array of size 10:

A = 12 |2|4|5|3|1|10|7|9|8

Suppose we want to find 4th smallest element

- Choose pivot 8
- What is its rank?
 - Rank 7
- So let's find all of the smaller elements of A:
 - A' = 2 |4|5|3|1|7
- Want to find the element of rank 4 in this new array

Selection: Problem Statement

Example. Take this array of size 10:

A = 12 |2|4|5|3|1|10|7|9|8

Suppose we want to find 4th smallest element

- Choose as pivot 3
- What is its rank?
 - Rank 3
- So let's find all of the **larger** elements of A:
 - A' = 12 | 4 | 5 | 10 | 7 | 9 | 8
- Want to find the element of rank 4 3 = 1 in this new array

When is this method good?

- If we guess the pivot right! (but we can't always do that)
- If we partition the array pretty evenly (the pivot is close to the middle)
 - Let's say our pivot is not in the first or last 3/10ths of the array
 - What is our recurrence?
 - $T(n) \le T(7n/10) + O(n)$
 - T(n) = O(n)

Our high-level goal

- Find a pivot that's close to the median—has a rank between 3n/10 and 7n/10, in time O(n)
- But the array is unsorted? How do we do that?
- Want to *always* be successful

Finding an Approximate Median

- Divide the array of size n into [n/5] groups of 5 elements (ignore leftovers)
- Find median of each group

n = 54

Finding an Approximate Median

- Divide the array of size n into [n/5] groups of 5 elements (ignore leftovers)
- Find median of each group

Finding an Approximate Median

- Divide the array of size n into [n/5] groups of 5 elements (ignore leftovers)
- Find median of each group
- Find $M \leftarrow$ median of $\lceil n/5 \rceil$ medians recursively

What did we gain?

- How can I show that the median of medians is "close to the center" of the array?
- What elements can I say, for sure, are ≤ the median of medians?
 - The smaller half of the medians
 - n/10 elements
- Any other elements?
 - Another 2 elements in each median's list

Visualizing MoM

- In the 5 x n/5 grid, each column represents five consecutive elements
- Imagine each column is sorted top down
- Imagine the columns as a whole are sorted left-right
 - We don't actually do this!

Visualizing MoM

• Red cells (at least 3n/10) are smaller than M

Visualizing MoM

- Red cells (at least 3n/10) in size are smaller than M
- If we are looking for an element larger than M, we can throw these out, before recursing
- Symmetrically, we can throw out 3n/10 elements larger than M if looking for a smaller element
- Thus, the recursive problem size is at most 7n/10

How Good is Median of Medians

Claim. Median of medians M is a good pivot, that is, at least 3/10th of the elements are $\geq M$ and at least 3/10th of the elements are $\leq M$.

Proof.

- Let $g = \lceil n/5 \rceil$ be the size of each group.
- M is the median of g medians
 - So $M \ge g/2$ of the group medians
 - Additionally, each median is greater than 2 elements in its group
 - Thus $M \ge g/2 + 2g/2 = 3g/2 = 3n/10$ elements
- Symmetrically, $M \leq 3n/10$ elements.

Median of Medians Subroutine

MoM(*A*, *n*):

If n = 1: return A[1]

Else:

Divide A into $\lceil n/5 \rceil$ groups

Compute median of each group

 $A' \leftarrow \text{group medians}$

 $Mom(A', \lceil n/5 \rceil)$

T(n/5) + O(n)

Linear time Selection

Select (A, k):

If |A| = 1: return A[1];

Else:

T(n/5) + O(n)

Call median of medians to find a good pivot

$$p \leftarrow MoM(A, n); n = |A|$$

$$r, A_{< p}, A_{> p} \leftarrow \text{Partition}((A, p))$$

If k = = r, return p

Larger subproblem has size $\leq 7n/10$

Else:

If k < r: Select $(A_{< p}, k)$

Else: Select $(A_{>p}, k - r)$

Overall: T(n) = T(n/5) + T(7n/10) + O(n)

Selection Recurrence

Okay, so we have a good pivot, but...

- We are still doing two recursive calls
 - $T(n) \le T(n/5) + T(7n/10) + O(n)$
- Key: total work at each level still goes down!
- Decaying series gives us : T(n) = O(n)

Why the Magic Number 5?

- What was so special about 5 in our algorithm?
- It is the smallest odd number that works!
 - (Even numbers are problematic for medians)
- Let us analyze the recurrence with groups of size 3
 - $T(n) \le T(n/3) + T(2n/3) + O(n)$
 - Work is equal at each level of the tree!
 - $T(n) = \Theta(n \log n)$

Theory vs Practice

- O(n)-time selection by [Blum–Floyd–Pratt–Rivest–Tarjan 1973]
 - Does $\leq 5.4305n$ compares
- Upper bound:
 - [Dor–Zwick 1995] $\leq 2.95n$ compares
- Lower bound:
 - [Dor-Zwick 1999] $\ge (2 + 2^{-80})n$ compares.
- Constants are still too large for practice
- Random pivot works well in most cases!
 - We may analyze this when we do randomized algorithms

Fun Problems!

Choose your own adventure

- Greedy coin changing
- Divide and conquer majority element

Majority Element

In an *n*-element array A, a majority element is an element $e \in A$, such that e appears more than n/2 times.

- Can there be more than one majority element?
- Does every array have a majority element?

Problem: Given an n-element array A, find the majority e if one exists, or report (correctly) that there is no majority element

Majority Element

Problem: Given an n-element array A, find the majority e if one exists, or report (correctly) that there is no majority element

Strategy: Divide and conquer!

- Not the only (or even the fastest) way, but it is the most fun :)
- Subproblems?
 - Size?
 - How to combine?
 - Suppose we have the solutions (majority elements from) our subproblems. What can we say about a majority element in A with respect to those solutions?

Making Change

Pretend you paid for something using **cash**. What is the algorithm to return change in US currency using the **minimum** number of coins?

- It is greedy!
- To make change for r, start with biggest denomination less than r, subtract and repeat

Making Change

The greedy change algorithm is **optimal** for US coins!

But it is not optimal in general. Ideas why not? (Counterexample?)

- Imagine 25c, 20c, 10c, 5c, 1c coins
- How do you make change for 40c?
 - Greedy?
 - 25c, 10c, 5c
 - Optimal?
 - 20c, 20c

An Optimal Greedy Example

- How to prove that a greedy solution is optimal?
 - Exchange argument!
- Normally, "schedule" each coin, but can use slightly different notation. Why?
 - Once we "give out a type of coin", greedy moves to the next denomination
 - Let $S = \{s_1, s_2, s_3, s_4\}$ be the number of Quarters, Dimes, Nickels, and Pennies returned by algorithm S for a dollar value r
 - We can write greedy's coin count of each type as follows:
 - $g_1 = \lfloor r/25 \rfloor$, and let $r_q = r \mod 25$ // g_1 : quarters
 - $g_2 = \lfloor r_q/10 \rfloor$, and let $r_d = r_q \mod 10 \ // g_2$: dimes
 - $g_3 = \lfloor r_d/5 \rfloor$, and let $r_n = r_d \mod 5$ // g_3 : nickels
 - $g_4 = r_n$ // g_4 : give any remaining change out as pennies

Exchange Argument Sketch

- Let $G = \{g_1, g_2, g_3, g_4\}$ be the number of Quarters, Dimes, Nickels, and Pennies returned by greedy for a dollar value r
- Let $O = \{o_1, o_2, o_3, o_4\}$ be the number of Quarters, Dimes, Nickels, and Pennies returned by optimal for a dollar value r

We'll do induction on denomination $i \in \{0,1,2,3,4\}$. We'll show how to exchange any o_i with g_i by exchanging coins in O's schedule at some denomination j > i for coins in denomination i and also reducing the total number of coins used. (Base case?)

- By definition, $o_1 \leq g_1$, since greedy gives the maximum number of quarters it can
 - If $g_1 = o_1$, we are done with this denomination
 - If $g_1 > o_1$, we can convert O to $O' = \{g_1, o'_2, o'_3, o'_4\}$ by exchanging other coins in $o_i \in O \mid j > i$ for quarters such that $g_1 = o_1$, and also reducing the total number of coins in O'.
 - If $o_2 \ge 3$, we can replace 3 dimes for a quarter and a nickel
 - If $o_2 < 3$, we can show how to replace some combination of dimes, nickels, and pennies with a quarter ...

Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (<u>https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf</u>)
 - Jeff Erickson's Algorithms Book (<u>http://jeffe.cs.illinois.edu/</u> <u>teaching/algorithms/book/Algorithms-JeffE.pdf</u>)