Fun Problems & Review

Announcements/Logistics

* We'll meet here tomorrow at the normal time

* Bring something to write (and erase) with
* You'll be given a blank copy of the exact same* exam
* ['ll be around to answer gquestions

* Academic Accommodations?

* [t may be too late to make new arrangements, but we have
several existing options that we can work with if you
haven't yet reached out

Today’s Goals

Wrap up divide and conquer paradigm
Feel good about tomorrow’s exam (or at least the material on it)

Practice solving interesting/fun problems on topics we've
covered so far

Connect material to the larger course context

Selection

Selection: Problem Statement

Given an array Al 1,..., n] of size n, find the kth smallest element for
any 1 <k<n

« Special cases: mink =1, maxk = n:
e Lineartime, O(n)

« What about mediank = |n + 1|/27?
« Sorting: O(nlog n)
« Binary heap: O(nlog k)

Question. Can we do it in O(n)?
-+ Surprisingly yes.

e Selection is easier than sorting.

Selection: Problem Statement

Example. Take this array of size 10:

A=12|21415|3|1]10]7]9|8
Suppose we want to find 4th smallest element
« First, take any pivot p from A[1,...n]

f p is the 4th smallest element, return it

« Else, we partition A around p and recurse

Selection Algorithm: Idea

Select (A, k):

f |[A| = 1:return A[1]

Else:
« Choose apivotp < All,...,n]; let r be the rank of p
. 1AL AS, < Partition((A, p)

e Ifk==rretunp
e Else:
. Ifk <r:Select (A, k)

. Else: Select (A>p, k—r)

Selection: Problem Statement

Example. Take this array of size 10:

A=12]214]5|3|1]10]7]9]8

Suppose we want to find 4th smallest element

« Choose pivot 8

 What is its rank?
« Rank 7/

« So let’s find all of the smaller elements of A:
« A'=214|5|3|1]|7

« Want to find the element of rank 4 in this new array

Selection: Problem Statement

Example. Take this array of size 10:

A=12]214]5|3|1]10]7]9]8

Suppose we want to find 4th smallest element

« Choose as pivot 3

* What is its rank?
« Rank3

« So let's find all of the larger elements of A:
« A'=1214|5]|10|7|9]8

« Want to find the element of rank 4 — 3 = 1 in this new array

When is this method good?

* |f we guess the pivot right! (but we can’t always do that)

* |f we partition the array pretty evenly (the pivot is close to
the middle)

 Let’s say our pivot is not in the first or last 3/10ths of the
array

e \What is our recurrence?
e T(n) < T(7n/10) 4+ O(n)
e T(n) = O(n)

Our high-level goal

 Find a pivot that's close to the median—has a rank
between 3n/10 and 7n/10, in time O(n)

 But the array is unsorted”? How do we do that?

 Want to always be successtul

Finding an Approximate Median

. Divide the array of size n into [n/5] groups of 5 elements (ignore
eftovers)

* Find median of each group

ORORCONCONONORORORORONC)
CONORCONONCRORORORORONCS
ONCORONCNCONORORORORORO
ORORONORORORORORORONC)
ORORONONCOROROROROND

Finding an Approximate Median

. Divide the array of size n into [n/5] groups of 5 elements (ignore
eftovers)

* Find median of each group

n =54

Finding an Approximate Median

. Divide the array of size n into [n/5] groups of 5 elements (ignore
eftovers)

* Find median of each group

« Find M < median of [n/5] medians recursively .

« Use median of medians M as pivot 7
median of

\ o

What did we gain?

e How can | show that the median of medians is “close to
the center” of the array?

« What elements can | say, for sure, are < the median of
medians?

e The smaller half of the medians
o n/10 elements

* Any other elements?

« Another 2 elements in each median’s list

Visualizing MoM

In the 5 x n/5 grid, each column represents five consecutive
elements

Imagine each column is sorted top down
Imagine the columns as a whole are sorted left-right
* We don't actually do this!

MoM is the element closest to center of grid

4 Y4 AY4 Y4 Y4 \/ N/ \/ \/ \/ Y4 AY4 \/ N\ \/ N/ D
L\ N\ L\ L\ L\ N\ L\ L\ L\ L\ L\ N\ L\ N\ L\
1 N NN N TN N N N N N TINTINTIINTINTNTTY
fE_J A W) W) W B W B W)) W P) W B W B W) B\ ;=<
e -
4 Y4 \/ Y4 \/ \/ \/ \/ \ 7/ \/ \/ \/ \/ \ 7/ \/ \/ D
\ J\, J_ J\, J_ J\, J\, J_ J\, J_ J_ J\, J_ J\, J\. J_)
4 N\ aYd \/ N\ \/ NN/ \/ NN LN TN NI
LVJLVJLVJLVJLVJLVJLVJLVJLkavJLkavJLvJLvJ\vJLvJ

Visualizing MoM

« Red cells (at least 3n/10) are smaller than M

'
Yo Yo Yo Yo Yo Yo Yo Y Y
:f NXNC X X XN\ N\)
[
\ VAW VAW J o VAW VAW J\C J J o J JU L JL L L L)
o Yo Yo Yo Yo Yaum Y Yo Yo B <
:f AY4 \(\(\(AYd \()
'
\ J\\ J\\ J\\ J\\ J\\ J\\ J\\ J\\ J N N N L) L
e Yo Yo Yo Yo Yo Yo Yo - < ———g <
T \(AYd \(\(\(\(\()
'
\. VAN VAN VAN VAN VAN VAN VAN J,'
gy iy iy gy Py g ¢ VAN J\. J\ J\ J\ J\. J\. y,
NC N\ N\) NC XC XC N XN NN N N N Y
J\ J\ . J\ J J\\ J\ J\ J\\ J\ J\ J\\ J\ J\ J\ J
X N\) NC XC X XX NN\ N\
VAN J\. \ J\L J J\\ J\ J\ J\ J\ J\ J\ J\. J\ J\. J

Visualizing MoM

Red cells (at least 3n/10) in size are smaller than M

If we are looking for an element larger than M, we can throw these
out, before recursing

Symmetrically, we can throw out 3n/10 elements larger than M if
looking for a smaller element

Thus, the recursive problem size is at most 7n/10

!
r V4 2 Y4 Y4 Y4 Y4 Y4 N\ (aY4) !
:r \(\(\(\(\(\()
!
_ J J\ J J VAN J\ VAN VAN J'L L I I L)))
e Yo Yo Yo Yo Yamm Yo Y Yo ¥ Z < - -
:r \(\(\(\(\(\(D
!
. J o J . J o J o J o J o J . J . J

' 4 "\ 7 a V4 \/ N\~ a V4 N\ N/)

|

SR A G LG L G L G A G A G A 4
___ . J \\ J\\ J\\ J\\ J_ J_ J_ y
r aYd N[aYd N\)(w[\ 7]r "\ 7 aYd aYd aYd Y4 aYd aYd N
. J_ J J_ J_ J J\. . J\. J\. J_ J_ J_ J_ J_ J
4 \/ 1(N/ Y4 J[1[Y4 Jf Y4 Y4 Y4 N/ Y4 Y4 \/ N
_ J_ J J_ J_ J J_ . J\L J_ J_ J_ J_ J_ J_ J

How Good is Median of Medians

Claim. Median of medians M is a good pivot, that is, at least 3/10th of
the elements are > M and at least 3/10th of the elements are < M.

Proof.
« Let g = [n/5] be the size of each group.
« M is the median of g medians
« SoM > g/2 of the group medians
* Additionally, each median is greater than 2 elements in its group

e ThusM > g/2 +2g/2 =3g/2 = 3n/10 elements
o Symmetrically, M < 3n/10 elements. B

Median of Medians Subroutine

MoM(A, n):
fn=="1:return A[1]
Else:
Divide A into [n/5] groups
Compute median of each group
T(n/S) + O(n)

A’ « group medians

Mom(A’, [n/5])

Linear time Selection
Select (A, k):
If |[A| = 1:return A[1];
Else: T(n/5) + O(n)

Call median of medians to find a good pivot
p < MoM(A,n); n= |A]

r, Ay, A, < Partition((A, p) Larger subproblem
has size < 7n/10
If Kk = =r, return p
Else:
If kK < r: Select (A, k)
Else: Select (A, ,, k — 1)

Overall: T(n) = T(n/5) + T(7n/10) + O(n)

Selection Recurrence

Okay, so we have a good pivot, but...

* We are still doing two recursive calls

e« T(n) <Tn/5)+ T(7n/10) 4+ O(n)

* Key: total work at each level still goes down!

« Decaying series gives us : T(n) = O(n)

n/5S T/////

N\

\\\\T§n/10

/ N\

n/25

7n/50

7/n/50

49n/100

On
10
S1n
100

Why the Magic Number 57

 What was so special about 5 in our algorithm?
* |tis the smallest odd number that works!
 (Even numbers are problematic for medians)
* |et us analyze the recurrence with groups of size 3
e« T(n) <T/3)+T(2n/3)+ O(n)
 Work is equal at each level of the tree!

« T(n) = BOmlogn)

Theory vs Practice

O(n)-time selection by [Blum-Floyd-Pratt-Rivest-Tarjan 1973]

e Does < 5.4305n compares

Upper bound:

e [Dor—Zwick 1995] < 2.95n compares

Lower bound:

. [Dor-Zwick 1999] > (2 + 27" compares.

Constants are still
Random pivot wor

 We may ana

too large for practice

ks well In most cases!

yze this when we do randomized algorithms

Fun Problems!

Choose your own adventure

e (GGreedy coin changing
* Divide and conguer majority element

Majority Element

In an n-element array A, a majority element is an element e € A,
such that e appears more than n/2 times.

* (Can there be more than one majority element?

 Does every array have a majority element?

Problem: Given an n-element array A, find the majority e if one exists,
or report (correctly) that there is no majority element

Majority Element

Problem: Given an n-element array A, find the majority e if one exists,
or report (correctly) that there is no majority element

Strategy: Divide and conquer!
* Not the only (or even the fastest) way, but it is the most fun :)
e Subproblems?
¢ Size”?
* How to combine”

e Suppose we have the solutions (majority elements from) our
subproblems. What can we say about a majority element in
A with respect to those solutions?

Making Change

Pretend you paid for something using cash. What is the algorithm to
return change in US currency using the minimum number of coins”

* |tis greeay!

« To make change for $r, start with biggest denomination less
than $r, subtract and repeat

Making Change
The greedy change algorithm is optimal for US coins!

But it is not optimal in general. I[deas why not? (Counterexample?)
* |Imagine 25c, 20c, 10c, 5c, 1c coins
* How do you make change for 40c?
e (Greedy?
 25¢, 10c, 5¢C

 Optimal?
e 20c, 20c

An Optimal Greedy Example

* How to prove that a greedy solution is optimal?

Exchange argument!

 Normally, “schedule” each coin, but can use slightly different notation. Why?

Once we “give out a type of coin”, greedy moves to the next denomination

Let S = {5, 5y, 83, 84} be the number of Quarters, Dimes, Nickels, and
Pennies returned by algorithm \$ for a dollar value $r

We can write greedy’s coin count of each type as follows:

. g = [r/25],andletr, =r mod 25 // g: quarters

. g =|r,/10],andletr;=r, mod 10 // g,: dimes

r,/5],andletr, =r; mod S // gy nickels

° g3

« 4=, /I &4: give any remaining change out as pennies

Exchange Argument Sketch

. LetG = {g, &>, 83> 84} be the number of Quarters, Dimes, Nickels, and Pennies
returned by greedy for a dollar value $r

e Let O = {0y, 0,,05,04} be the number of Quarters, Dimes, Nickels, and Pennies
returned by optimal for a dollar value $r

We’'ll do induction on denomination i € {0,1,2,3,4}. We'll show how to exchange any o,
with g; by exchanging coins in O’s schedule at some denomination j > i for coins in
denomination 7 and also reducing the total number of coins used. (Base case?)

» By definition, 0; < gy, since greedy gives the maximum number of quarters it can
« If g1 = 0y, we are done with this denomination

. If gy > 0y, we can convert O to O’ = {g,, 05, 03, 0, } by exchanging other coins
ino; € O|j > ifor quarters such that g, = 0,, and also reducing the total
number of coins in O".

« Ifo, > 3, we can replace 3 dimes for a quarter and a nickel

« If 0o, < 3, we can show how to replace some combination of dimes, nickels,
and pennies with a quarter ...

Acknowledgments

e Some of the material in these slides are taken from

* Kleinberg Tardos Slides by Kevin Wayne (https://
WWW.CS.princeton.edu/~wayne/kleinberg-tardos/pdf/

04GreedyAlgorithmsl.pdf)

» Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE. pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

