
Fun Problems & Review



Announcements/Logistics
• We’ll meet here tomorrow at the normal time 

• Bring something to write (and erase) with 

• You’ll be given a blank copy of the exact same* exam 

• I’ll be around to answer questions 

• Academic Accommodations? 

• It may be too late to make new arrangements, but we have 
several existing options that we can work with if you 
haven’t yet reached out



Today’s Goals
• Wrap up divide and conquer paradigm 

• Feel good about tomorrow’s exam (or at least the material on it) 

• Practice solving interesting/fun problems on topics we’ve 
covered so far 

• Connect material to the larger course context



Selection



Selection: Problem Statement
Given an array  of size , find the th smallest element for 
any  

• Special cases: min , max :  

• Linear time,    

• What about median ? 

• Sorting:  

• Binary heap:  

Question.  Can we do it in ? 

• Surprisingly yes.  

• Selection is easier than sorting. 

A[1,…, n] n k
1 ≤ k ≤ n

k = 1 k = n
O(n)

k = ⌊n + 1⌋/2
O(n log n)

O(n log k)

O(n)



Selection: Problem Statement
Example. Take this array of size 10: 
 

 

Suppose we want to find 4th smallest element 

• First, take any pivot  from  

• If  is the 4th smallest element, return it 

• Else, we partition  around  and recurse

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

p A[1,…n]
p

A p



Selection Algorithm: Idea
Select : 

If : return  

Else: 

• Choose a pivot ; let  be the rank of  

• Partition(  

• If , return  

• Else: 

• If : Select  

• Else: Select 

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)



Selection: Problem Statement
Example. Take this array of size 10: 
 

 

Suppose we want to find 4th smallest element 

• Choose pivot  

• What is its rank? 

• Rank  

• So let’s find all of the smaller elements of : 

•  

• Want to find the element of rank  in this new array

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

8

7
A

A′ = 2 |4 |5 |3 |1 |7
4



Selection: Problem Statement
Example. Take this array of size 10: 
 

 

Suppose we want to find 4th smallest element 

• Choose as pivot  

• What is its rank? 

• Rank  

• So let’s find all of the larger elements of : 

•  

• Want to find the element of rank  in this new array

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

3

3
A

A′ = 12 |4 |5 |10 |7 |9 |8
4 − 3 = 1



When is this method good?
• If we guess the pivot right!  (but we can’t always do that) 

• If we partition the array pretty evenly (the pivot is close to 
the middle) 

• Let’s say our pivot is not in the first or last ths of the 
array 

• What is our recurrence? 

•  

•

3/10

T(n) ≤ T(7n/10) + O(n)

T(n) = O(n)



Our high-level goal

• Find a pivot that’s close to the median—has a rank 
between  and , in time  

• But the array is unsorted?  How do we do that? 

• Want to always be successful

3n/10 7n/10 O(n)



Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

n = 54

• Divide the array of size  into  groups of  elements (ignore 
leftovers) 

• Find median of each group 

n ⌈n/5⌉ 5



Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

38 18 35

43

2328 40 19 31

15

n = 54

medians

• Divide the array of size  into  groups of  elements (ignore 
leftovers) 

• Find median of each group 

n ⌈n/5⌉ 5



Finding an Approximate Median
• Divide the array of size  into  groups of  elements (ignore 

leftovers) 
• Find median of each group  
• Find median of  medians recursively  
• Use median of medians  as pivot

n ⌈n/5⌉ 5

M ← ⌈n/5⌉
M

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

median of
medians 38 18 35

43

2328 40 19 31

15

28

n = 54

medians



What did we gain?
• How can I show that the median of medians is “close to 

the center” of the array? 

• What elements can I say, for sure, are  the median of 
medians? 

• The smaller half of the medians 

•  elements 

• Any other elements? 

• Another  elements in each median’s list

≤

n/10

2



Visualizing MoM
• In the 5 x n/5 grid, each column represents five consecutive 

elements 

• Imagine each column is sorted top down 

• Imagine the columns as a whole are sorted left-right 

• We don’t actually do this! 

• MoM is the element closest to center of grid



Visualizing MoM
• Red cells (at least ) are smaller than 3n/10 M



Visualizing MoM
• Red cells (at least ) in size are smaller than  

• If we are looking for an element larger than , we can throw these 
out, before recursing  

• Symmetrically, we can throw out  elements larger than  if 
looking for a smaller element 

• Thus, the recursive problem size is at most 

3n/10 M
M

3n/10 M

7n/10



How Good is Median of Medians
Claim. Median of medians  is a good pivot, that is, at least th of 
the elements are  and at least th of the elements are . 

Proof. 

• Let  be the size of each group.  

•  is the median of  medians 

• So  of the group medians 

• Additionally, each median is greater than 2 elements in its group 

• Thus  elements 

• Symmetrically,  elements. 

M 3/10
≥ M 3/10 ≤ M

g = ⌈n/5⌉
M g

M ≥ g/2

M ≥ g/2 + 2g/2 = 3g/2 = 3n/10
M ≤ 3n/10 ∎



Median of Medians Subroutine
MoM( ): 

If : return  

Else: 

Divide  into  groups 

Compute median of each group 

group medians 

Mom( )

A, n

n = = 1 A[1]

A ⌈n/5⌉

A′ ←

A′ , ⌈n/5⌉

T(n /5) + O(n)



Linear time Selection
Select : 

If : return ;  

Else:  

Call median of medians to find a good pivot 
       ;   

Partition(  

If , return  

Else: 

If : Select  

Else: Select 

(A, k)

|A | = 1 A[1]

p ← MoM(A, n) n = |A |

r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)

T(n /5) + O(n)

Larger subproblem 
has size ≤ 7n /10

Overall:   T(n) = T(n/5) + T(7n/10) + O(n)



Selection Recurrence
Okay, so we have a good pivot, but… 

• We are still doing two recursive calls 

•  

• Key: total work at each level still goes down! 

• Decaying series gives us : 

T(n) ≤ T(n/5) + T(7n/10) + O(n)

T(n) = O(n)

n

9n
10
81n
100



Why the Magic Number 5?
• What was so special about 5 in our algorithm? 

• It is the smallest odd number that works! 

• (Even numbers are problematic for medians) 

• Let us analyze the recurrence with groups of size 3 

•  

• Work is equal at each level of the tree! 

•

T(n) ≤ T(n/3) + T(2n/3) + O(n)

T(n) = Θ(n log n)



Theory vs Practice
• -time selection by [Blum–Floyd–Pratt–Rivest–Tarjan 1973] 

• Does  compares 

• Upper bound:  

• [Dor–Zwick 1995]  compares 

• Lower bound:  

• [Dor–Zwick 1999]  compares. 

• Constants are still too large for practice 

• Random pivot works well in most cases! 

• We may analyze this when we do randomized algorithms

O(n)
≤ 5.4305n

≤ 2.95n

≥ (2 + 2−80)n



Fun Problems!
Choose your own adventure 
• Greedy coin changing 
• Divide and conquer majority element



Majority Element
In an -element array , a majority element is an element , 
such that  appears more than  times. 

• Can there be more than one majority element? 

• Does every array have a majority element? 

 
Problem: Given an -element array , find the majority  if one exists, 
or report (correctly) that there is no majority element

n A e ∈ A
e n/2

n A e



Majority Element
Problem: Given an -element array , find the majority  if one exists, 
or report (correctly) that there is no majority element 

Strategy: Divide and conquer! 

• Not the only (or even the fastest) way, but it is the most fun :) 

• Subproblems?  

• Size?  

• How to combine? 

• Suppose we have the solutions (majority elements from) our 
subproblems. What can we say about a majority element in 

 with respect to those solutions? 

n A e

A



Making Change
Pretend you paid for something using cash. What is the algorithm to 
return change in US currency using the minimum number of coins? 

• It is greedy!  

• To make change for $ , start with biggest denomination less 
than $ , subtract and repeat

r
r



Making Change
The greedy change algorithm is optimal for US coins! 

But it is not optimal in general. Ideas why not? (Counterexample?) 

• Imagine 25c, 20c, 10c, 5c, 1c coins 

• How do you make change for 40c? 

• Greedy? 

• 25c, 10c, 5c 

• Optimal? 

•  20c, 20c



An Optimal Greedy Example
• How to prove that a greedy solution is optimal? 

• Exchange argument! 

• Normally, “schedule” each coin, but can use slightly different notation. Why? 

• Once we “give out a type of coin”, greedy moves to the next denomination 

• Let  be the number of Quarters, Dimes, Nickels, and 
Pennies returned by algorithm  for a dollar value $  

• We can write greedy’s coin count of each type as follows: 

• , and let       // : quarters 

• , and let    // : dimes 

• , and let        // : nickels 

•                       // : give any remaining change out as pennies

S = {s1, s2, s3, s4}
S r

g1 = ⌊r/25⌋ rq = r mod 25 g1

g2 = ⌊rq /10⌋ rd = rq mod 10 g2

g3 = ⌊rd /5⌋ rn = rd mod 5 g3

g4 = rn g4



Exchange Argument Sketch
• Let  be the number of Quarters, Dimes, Nickels, and Pennies 

returned by greedy for a dollar value $  

• Let  be the number of Quarters, Dimes, Nickels, and Pennies 
returned by optimal for a dollar value $  

We’ll do induction on denomination . We’ll show how to exchange any  
with  by exchanging coins in ’s schedule at some denomination  for coins in 
denomination  and also reducing the total number of coins used. (Base case?) 

• By definition, , since greedy gives the maximum number of quarters it can 

• If , we are done with this denomination 

• If , we can convert  to  by exchanging other coins 
in  for quarters such that , and also reducing the total 
number of coins in . 

• If , we can replace 3 dimes for a quarter and a nickel 

• If , we can show how to replace some combination of dimes, nickels, 
and pennies with a quarter  …

G = {g1, g2, g3, g4}
r

O = {o1, o2, o3, o4}
r

i ∈ {0,1,2,3,4} oi
gi O j > i

i
o1 ≤ g1

g1 = o1

g1 > o1 O O′ = {g1, o′ 2, o′ 3, o′ 4}
oi ∈ O | j > i g1 = o1

O′ 

o2 ≥ 3
o2 < 3
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