
Fun Problems & Review

Announcements/Logistics
• We’ll meet here tomorrow at the normal time

• Bring something to write (and erase) with

• You’ll be given a blank copy of the exact same* exam

• I’ll be around to answer questions

• Academic Accommodations?

• It may be too late to make new arrangements, but we have
several existing options that we can work with if you
haven’t yet reached out

Today’s Goals
• Wrap up divide and conquer paradigm

• Feel good about tomorrow’s exam (or at least the material on it)

• Practice solving interesting/fun problems on topics we’ve
covered so far

• Connect material to the larger course context

Selection

Selection: Problem Statement
Given an array of size , find the th smallest element for
any

• Special cases: min , max :

• Linear time,

• What about median ?

• Sorting:

• Binary heap:

Question. Can we do it in ?

• Surprisingly yes.

• Selection is easier than sorting.

A[1,…, n] n k
1 ≤ k ≤ n

k = 1 k = n
O(n)

k = ⌊n + 1⌋/2
O(n log n)

O(n log k)

O(n)

Selection: Problem Statement
Example. Take this array of size 10:

Suppose we want to find 4th smallest element

• First, take any pivot from

• If is the 4th smallest element, return it

• Else, we partition around and recurse

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

p A[1,…n]
p

A p

Selection Algorithm: Idea
Select :

If : return

Else:

• Choose a pivot ; let be the rank of

• Partition(

• If , return

• Else:

• If : Select

• Else: Select

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)

Selection: Problem Statement
Example. Take this array of size 10:

Suppose we want to find 4th smallest element

• Choose pivot

• What is its rank?

• Rank

• So let’s find all of the smaller elements of :

•

• Want to find the element of rank in this new array

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

8

7
A

A′ = 2 |4 |5 |3 |1 |7
4

Selection: Problem Statement
Example. Take this array of size 10:

Suppose we want to find 4th smallest element

• Choose as pivot

• What is its rank?

• Rank

• So let’s find all of the larger elements of :

•

• Want to find the element of rank in this new array

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

3

3
A

A′ = 12 |4 |5 |10 |7 |9 |8
4 − 3 = 1

When is this method good?
• If we guess the pivot right! (but we can’t always do that)

• If we partition the array pretty evenly (the pivot is close to
the middle)

• Let’s say our pivot is not in the first or last ths of the
array

• What is our recurrence?

•

•

3/10

T(n) ≤ T(7n/10) + O(n)

T(n) = O(n)

Our high-level goal

• Find a pivot that’s close to the median—has a rank
between and , in time

• But the array is unsorted? How do we do that?

• Want to always be successful

3n/10 7n/10 O(n)

Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

n = 54

• Divide the array of size into groups of elements (ignore
leftovers)

• Find median of each group

n ⌈n/5⌉ 5

Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

38 18 35

43

2328 40 19 31

15

n = 54

medians

• Divide the array of size into groups of elements (ignore
leftovers)

• Find median of each group

n ⌈n/5⌉ 5

Finding an Approximate Median
• Divide the array of size into groups of elements (ignore

leftovers)
• Find median of each group
• Find median of medians recursively
• Use median of medians as pivot

n ⌈n/5⌉ 5

M ← ⌈n/5⌉
M

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

median of
medians 38 18 35

43

2328 40 19 31

15

28

n = 54

medians

What did we gain?
• How can I show that the median of medians is “close to

the center” of the array?

• What elements can I say, for sure, are the median of
medians?

• The smaller half of the medians

• elements

• Any other elements?

• Another elements in each median’s list

≤

n/10

2

Visualizing MoM
• In the 5 x n/5 grid, each column represents five consecutive

elements

• Imagine each column is sorted top down

• Imagine the columns as a whole are sorted left-right

• We don’t actually do this!

• MoM is the element closest to center of grid

Visualizing MoM
• Red cells (at least) are smaller than 3n/10 M

Visualizing MoM
• Red cells (at least) in size are smaller than

• If we are looking for an element larger than , we can throw these
out, before recursing

• Symmetrically, we can throw out elements larger than if
looking for a smaller element

• Thus, the recursive problem size is at most

3n/10 M
M

3n/10 M

7n/10

How Good is Median of Medians
Claim. Median of medians is a good pivot, that is, at least th of
the elements are and at least th of the elements are .

Proof.

• Let be the size of each group.

• is the median of medians

• So of the group medians

• Additionally, each median is greater than 2 elements in its group

• Thus elements

• Symmetrically, elements.

M 3/10
≥ M 3/10 ≤ M

g = ⌈n/5⌉
M g

M ≥ g/2

M ≥ g/2 + 2g/2 = 3g/2 = 3n/10
M ≤ 3n/10 ∎

Median of Medians Subroutine
MoM():

If : return

Else:

Divide into groups

Compute median of each group

group medians

Mom()

A, n

n = = 1 A[1]

A ⌈n/5⌉

A′ ←

A′ , ⌈n/5⌉

T(n /5) + O(n)

Linear time Selection
Select :

If : return ;

Else:

Call median of medians to find a good pivot
 ;

Partition(

If , return

Else:

If : Select

Else: Select

(A, k)

|A | = 1 A[1]

p ← MoM(A, n) n = |A |

r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)

T(n /5) + O(n)

Larger subproblem
has size ≤ 7n /10

Overall: T(n) = T(n/5) + T(7n/10) + O(n)

Selection Recurrence
Okay, so we have a good pivot, but…

• We are still doing two recursive calls

•

• Key: total work at each level still goes down!

• Decaying series gives us :

T(n) ≤ T(n/5) + T(7n/10) + O(n)

T(n) = O(n)

n

9n
10
81n
100

Why the Magic Number 5?
• What was so special about 5 in our algorithm?

• It is the smallest odd number that works!

• (Even numbers are problematic for medians)

• Let us analyze the recurrence with groups of size 3

•

• Work is equal at each level of the tree!

•

T(n) ≤ T(n/3) + T(2n/3) + O(n)

T(n) = Θ(n log n)

Theory vs Practice
• -time selection by [Blum–Floyd–Pratt–Rivest–Tarjan 1973]

• Does compares

• Upper bound:

• [Dor–Zwick 1995] compares

• Lower bound:

• [Dor–Zwick 1999] compares.

• Constants are still too large for practice

• Random pivot works well in most cases!

• We may analyze this when we do randomized algorithms

O(n)
≤ 5.4305n

≤ 2.95n

≥ (2 + 2−80)n

Fun Problems!
Choose your own adventure
• Greedy coin changing
• Divide and conquer majority element

Majority Element
In an -element array , a majority element is an element ,
such that appears more than times.

• Can there be more than one majority element?

• Does every array have a majority element?

Problem: Given an -element array , find the majority if one exists,
or report (correctly) that there is no majority element

n A e ∈ A
e n/2

n A e

Majority Element
Problem: Given an -element array , find the majority if one exists,
or report (correctly) that there is no majority element

Strategy: Divide and conquer!

• Not the only (or even the fastest) way, but it is the most fun :)

• Subproblems?

• Size?

• How to combine?

• Suppose we have the solutions (majority elements from) our
subproblems. What can we say about a majority element in

 with respect to those solutions?

n A e

A

Making Change
Pretend you paid for something using cash. What is the algorithm to
return change in US currency using the minimum number of coins?

• It is greedy!

• To make change for $, start with biggest denomination less
than $, subtract and repeat

r
r

Making Change
The greedy change algorithm is optimal for US coins!

But it is not optimal in general. Ideas why not? (Counterexample?)

• Imagine 25c, 20c, 10c, 5c, 1c coins

• How do you make change for 40c?

• Greedy?

• 25c, 10c, 5c

• Optimal?

• 20c, 20c

An Optimal Greedy Example
• How to prove that a greedy solution is optimal?

• Exchange argument!

• Normally, “schedule” each coin, but can use slightly different notation. Why?

• Once we “give out a type of coin”, greedy moves to the next denomination

• Let be the number of Quarters, Dimes, Nickels, and
Pennies returned by algorithm for a dollar value $

• We can write greedy’s coin count of each type as follows:

• , and let // : quarters

• , and let // : dimes

• , and let // : nickels

• // : give any remaining change out as pennies

S = {s1, s2, s3, s4}
S r

g1 = ⌊r/25⌋ rq = r mod 25 g1

g2 = ⌊rq /10⌋ rd = rq mod 10 g2

g3 = ⌊rd /5⌋ rn = rd mod 5 g3

g4 = rn g4

Exchange Argument Sketch
• Let be the number of Quarters, Dimes, Nickels, and Pennies

returned by greedy for a dollar value $

• Let be the number of Quarters, Dimes, Nickels, and Pennies
returned by optimal for a dollar value $

We’ll do induction on denomination . We’ll show how to exchange any
with by exchanging coins in ’s schedule at some denomination for coins in
denomination and also reducing the total number of coins used. (Base case?)

• By definition, , since greedy gives the maximum number of quarters it can

• If , we are done with this denomination

• If , we can convert to by exchanging other coins
in for quarters such that , and also reducing the total
number of coins in .

• If , we can replace 3 dimes for a quarter and a nickel

• If , we can show how to replace some combination of dimes, nickels,
and pennies with a quarter …

G = {g1, g2, g3, g4}
r

O = {o1, o2, o3, o4}
r

i ∈ {0,1,2,3,4} oi
gi O j > i

i
o1 ≤ g1

g1 = o1

g1 > o1 O O′ = {g1, o′ 2, o′ 3, o′ 4}
oi ∈ O | j > i g1 = o1

O′

o2 ≥ 3
o2 < 3

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

