Announcements/Logistics

• We’ll meet here tomorrow at the normal time

• Bring something to write (and erase) with
 • You’ll be given a blank copy of the exact same* exam
 • I’ll be around to answer questions

• Academic Accommodations?
 • It may be too late to make new arrangements, but we have several existing options that we can work with if you haven’t yet reached out
Today’s Goals

• **Wrap up** divide and conquer paradigm

• **Feel good** about tomorrow’s exam (or at least the material on it)

• **Practice** solving interesting/fun problems on topics we’ve covered so far

• **Connect** material to the larger course context
Selection
Selection: Problem Statement

Given an array $A[1, \ldots, n]$ of size n, find the kth smallest element for any $1 \leq k \leq n$

- Special cases: min $k = 1$, max $k = n$:
 - Linear time, $O(n)$
- What about median $k = \lceil n + 1 \rceil / 2$?
 - Sorting: $O(n \log n)$
 - Binary heap: $O(n \log k)$

Question. Can we do it in $O(n)$?

- Surprisingly yes.
- Selection is easier than sorting.
Example. Take this array of size 10:

\[A = 12 | 2 | 4 | 5 | 3 | 1 | 10 | 7 | 9 | 8 \]

Suppose we want to find 4th smallest element

- First, take any pivot \(p \) from \(A[1,\ldots n] \)
- If \(p \) is the 4th smallest element, return it
- Else, we partition \(A \) around \(p \) and recurse
Selection Algorithm: Idea

Select \((A, k)\):

If \(|A| = 1\): return \(A[1]\)

Else:

- Choose a pivot \(p \leftarrow A[1, \ldots, n]\); let \(r\) be the rank of \(p\)
- \(r, A_{<p}, A_{>p} \leftarrow \text{Partition}((A, p))\)
- If \(k = r\), return \(p\)
- Else:
 - If \(k < r\): Select \((A_{<p}, k)\)
 - Else: Select \((A_{>p}, k - r)\)
Example. Take this array of size 10:

\[A = 12|2|4|5|3|1|10|7|9|8 \]

Suppose we want to find 4th smallest element

- Choose pivot 8
- What is its rank?
 - Rank 7
- So let's find all of the smaller elements of \(A \):
 - \(A' = 2|4|5|3|1|7 \)
- Want to find the element of rank 4 in this new array
Example. Take this array of size 10:

\[A = 12 \mid 2 \mid 4 \mid 5 \mid 3 \mid 1 \mid 10 \mid 7 \mid 9 \mid 8 \]

Suppose we want to find 4th smallest element

- Choose as pivot 3
- What is its rank?
 - Rank 3
- So let’s find all of the **larger** elements of \(A \):
 - \(A’ = 12 \mid 4 \mid 5 \mid 10 \mid 7 \mid 9 \mid 8 \)
- Want to find the element of rank \(4 - 3 = 1 \) in this new array
When is this method good?

- If we guess the pivot right! (but we can’t always do that)
- If we partition the array pretty evenly (the pivot is close to the middle)
 - Let’s say our pivot is not in the first or last $3/10$ths of the array
 - What is our recurrence?
 - $T(n) \leq T(7n/10) + O(n)$
 - $T(n) = O(n)$
Our high-level goal

• Find a pivot that’s close to the median—has a rank between $\frac{3n}{10}$ and $\frac{7n}{10}$, in time $O(n)$

• But the array is unsorted? How do we do that?

• Want to always be successful
Finding an Approximate Median

- Divide the array of size \(n \) into \(\lceil n/5 \rceil \) groups of 5 elements (ignore leftovers)
- Find median of each group
Finding an Approximate Median

- Divide the array of size \(n \) into \(\lceil n/5 \rceil \) groups of 5 elements (ignore leftovers)
- Find median of each group

\(n = 54 \)
Finding an Approximate Median

- Divide the array of size n into $\lceil n/5 \rceil$ groups of 5 elements (ignore leftovers)
- Find median of each group
- Find $M \leftarrow$ median of $\lceil n/5 \rceil$ medians recursively
- Use median of medians M as pivot
What did we gain?

• How can I show that the median of medians is “close to the center” of the array?

• What elements can I say, for sure, are \(\leq \) the median of medians?

 • The smaller half of the medians

 • \(n/10 \) elements

• Any other elements?

 • Another 2 elements in each median’s list
Visualizing MoM

- In the 5 x $n/5$ grid, each column represents five consecutive elements.
- **Imagine** each column is sorted top down.
- **Imagine** the columns as a whole are sorted left-right.
 - We don’t actually do this!
- MoM is the element closest to center of grid.
Visulazing MoM

- Red cells (at least $3n/10$) are smaller than M
Visualizing MoM

- Red cells (at least $3n/10$) in size are smaller than M
- If we are looking for an element larger than M, we can throw these out, before recursing
- Symmetrically, we can throw out $3n/10$ elements larger than M if looking for a smaller element
- Thus, the recursive problem size is at most $7n/10$
How Good is Median of Medians

Claim. Median of medians \(M \) is a good pivot, that is, at least \(\frac{3}{10} \)th of the elements are \(\geq M \) and at least \(\frac{3}{10} \)th of the elements are \(\leq M \).

Proof.

- Let \(g = \lceil n/5 \rceil \) be the size of each group.
- \(M \) is the median of \(g \) medians
 - So \(M \geq g/2 \) of the group medians
 - Additionally, each median is greater than 2 elements in its group
 - Thus \(M \geq g/2 + 2g/2 = 3g/2 = 3n/10 \) elements
- Symmetrically, \(M \leq 3n/10 \) elements. \(\blacksquare \)
Median of Medians Subroutine

MoM(\(A, n\)):

If \(n = 1\): return \(A[1]\)

Else:

Divide \(A\) into \(\lceil n/5 \rceil\) groups

Compute median of each group

\(A' \leftarrow \) group medians

Mom(\(A', \lceil n/5 \rceil\))

\(T(n/5) + O(n)\)
Linear time Selection

Select \((A, k)\):

\[
\text{If } |A| = 1: \text{ return } A[1];
\]

\[
\text{Else:}
\]

Call median of medians to find a good pivot
\[
p \leftarrow \text{MoM}(A, n); \ n = |A|
\]

\[
\text{r, } A_{<p}, A_{>p} \leftarrow \text{ Partition}((A, p))
\]

\[
\text{If } k = r, \text{ return } p
\]

\[
\text{Else:}
\]

\[
\text{If } k < r: \text{ Select } (A_{<p}, k)
\]

\[
\text{Else: Select } (A_{>p}, k - r)
\]

Overall: \(T(n) = T(n/5) + T(7n/10) + O(n)\)
Selection Recurrence

Okay, so we have a good pivot, but…

- We are still doing two recursive calls
 - \(T(n) \leq T(n/5) + T(7n/10) + O(n) \)
- Key: total work at each level still goes down!
- Decaying series gives us: \(T(n) = O(n) \)
Why the Magic Number 5?

- What was so special about 5 in our algorithm?
- It is the smallest odd number that works!
 - (Even numbers are problematic for medians)
- Let us analyze the recurrence with groups of size 3
 - \(T(n) \leq T(n/3) + T(2n/3) + O(n) \)
 - Work is equal at each level of the tree!
 - \(T(n) = \Theta(n \log n) \)
Theory vs Practice

• $O(n)$-time selection by [Blum–Floyd–Pratt–Rivest–Tarjan 1973]
 • Does $\leq 5.4305n$ compares
• Upper bound:
 • [Dor–Zwick 1995] $\leq 2.95n$ compares
• Lower bound:
 • [Dor–Zwick 1999] $\geq (2 + 2^{-80})n$ compares.
• Constants are still too large for practice
• Random pivot works well in most cases!
 • We may analyze this when we do randomized algorithms
Fun Problems!

Choose your own adventure

• Greedy coin changing
• Divide and conquer majority element
Majority Element

In an n-element array A, a majority element is an element $e \in A$, such that e appears more than $n/2$ times.

- Can there be more than one majority element?
- Does every array have a majority element?

Problem: Given an n-element array A, find the majority e if one exists, or report (correctly) that there is no majority element
Majority Element

Problem: Given an n-element array A, find the majority e if one exists, or report (correctly) that there is no majority element

Strategy: Divide and conquer!

- Not the only (or even the fastest) way, but it is the most fun :)
- Subproblems?
 - Size?
- How to combine?
 - Suppose we have the solutions (majority elements from) our subproblems. What can we say about a majority element in A with respect to those solutions?
Making Change

Pretend you paid for something using **cash**. What is the algorithm to return change in US currency using the **minimum** number of coins?

- It is greedy!
- To make change for r, start with biggest denomination less than r, subtract and repeat
Making Change

The greedy change algorithm is **optimal** for US coins!

But it is **not optimal** in general. Ideas why not? *(Counterexample?)*

- Imagine 25c, 20c, 10c, 5c, 1c coins
- How do you make change for 40c?
 - Greedy?
 - 25c, 10c, 5c
 - Optimal?
 - 20c, 20c
An Optimal Greedy Example

• How to prove that a greedy solution is optimal?
 • Exchange argument!
• Normally, “schedule” each coin, but can use slightly different notation. Why?
 • Once we “give out a type of coin”, greedy moves to the next denomination
• Let $S = \{s_1, s_2, s_3, s_4\}$ be the number of Quarters, Dimes, Nickels, and Pennies returned by algorithm S for a dollar value r
 • We can write greedy’s coin count of each type as follows:
 • $g_1 = \lfloor r/25 \rfloor$, and let $r_q = r \mod 25$ // g_1: quarters
 • $g_2 = \lfloor r_q/10 \rfloor$, and let $r_d = r_q \mod 10$ // g_2: dimes
 • $g_3 = \lfloor r_d/5 \rfloor$, and let $r_n = r_d \mod 5$ // g_3: nickels
 • $g_4 = r_n$ // g_4: give any remaining change out as pennies
Exchange Argument Sketch

- Let $G = \{g_1, g_2, g_3, g_4\}$ be the number of Quarters, Dimes, Nickels, and Pennies returned by greedy for a dollar value r
- Let $O = \{o_1, o_2, o_3, o_4\}$ be the number of Quarters, Dimes, Nickels, and Pennies returned by optimal for a dollar value r

We’ll do induction on denomination $i \in \{0,1,2,3,4\}$. We’ll show how to exchange any o_i with g_i by exchanging coins in O’s schedule at some denomination $j > i$ for coins in denomination i and also reducing the total number of coins used. (Base case?)

- By definition, $o_1 \leq g_1$, since greedy gives the maximum number of quarters it can
 - If $g_1 = o_1$, we are done with this denomination
 - If $g_1 > o_1$, we can convert O to $O' = \{g_1, o'_2, o'_3, o'_4\}$ by exchanging other coins in $o_i \in O \, | \, j > i$ for quarters such that $g_1 = o_1$, and also reducing the total number of coins in O'.
 - If $o_2 \geq 3$, we can replace 3 dimes for a quarter and a nickel
 - If $o_2 < 3$, we can show how to replace some combination of dimes, nickels, and pennies with a quarter …
Acknowledgments

• Some of the material in these slides are taken from

 • Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf)