
Divide and Conquer: 
Sorting and Recurrences



Divide & Conquer: The Pattern
• Divide the problem into several independent smaller instances 

of exactly the same problem 

• Delegate each smaller instance to the Recursive Leap of Faith 
(technically known as induction hypothesis) 

• Combine the solutions for the smaller instances



Review: Merge Sort
MergeSort( ):L

if  has one elementL
return L

Divide  into two halves  and L A B
  MergeSort( )A ← A
  MergeSort( )B ← B
  Merge( , )L ← A B

return L

Base case

Recursive leaps of faith

Combine solutions



• Scan sorted lists from left to right 

• Compare element by element; create new merged list

Merge Step: Θ(n)
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Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j
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Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j
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Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j
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Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j
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Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j

Merge Step: Θ(n)

merged list c
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Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j



Yada yada yada…
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Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j



Correctness: D&C Algorithms
• Proving Correctness (often follow proof by induction pattern) 

• Show base case holds 

• Assume your recursive calls return the correct solution 
(induction hypothesis)  

• Inductive step: crux of the proof 

• Must show that the solutions returned by the recursive 
calls are “combined” correctly 



Correctness Sketch:  Merge Sort
• Claim.  (Combine step.) Merge subroutine correctly merges two 

sorted subarrays  and  where . 

• Will prove that for the first  iterations of the loop, correctly 
merges  and  (from  to ). 

• Invariant:  Merged array is sorted after every iteration. 

• Base case:  

• Algorithm correctly merges two empty subarrays 

•  For inductive step, there are multiple cases, including ,  

• for each case, must show that newly added element maintains 
sorted-ness

A[1,…i] B[1,…, j] i + j = n

k
A B n = 0 n = k

k = 0

ai ≤ bj ai > bj



Analyzing Running Time
• For this topic, our main focus will be on analysis of running time 

• We analyze the running time of recursive functions by: 

• Considering the recursive calls:  both the number of calls 
made and the size of the inputs to each call  

• e.g., merge sort on an input of size  makes two recursive 
calls each on an input of size  

• The time spent “combining” solutions (“non-recursive 
work”) returned by recursive calls 

• e.g. merge step combines the sorted arrays in  time 

• Using the two, we typically write a running time recurrence

n
n/2

Θ(n)



Running Time Recurrence
• Let  represent the worst-case running time of merge sort on an 

input of size  

•  

• Base case: ; often ignored  

• We will ignore the floors and ceilings (turns out it doesn't matter for 
asymptotic bounds; we’ll show this later) 

• So the recurrence simplifies to: 

•   

• The answer to this ends up being  

• The next slides will discuss different ways to derive this

T(n)
n

T(n) = T(⌈n/2⌉) + T(⌊n/2⌋) + O(n)

T(1) = 1

T(n) = 2T(n/2) + O(n)

T(n) = O(n log n)



Recurrences: Unfolding
Method 1. Unfolding the recurrence  

• Assume  (that is, )   

• Because we don’t care about constant factors and are only upper-
bounding, we can always choose smallest power of 2 that is greater than 

. That is,  

• We can explicitly add in our constants 

   =   (change of variable, replace ) 

         =  =  

         =  

         =  

        

n = 2ℓ ℓ = log n

n n < n′ = 2ℓ < 2n

T(n) = 2T(n/2) + cn 2T(2ℓ−1) + c2ℓ n

2(2T(2ℓ−2) + c2ℓ−1) + c2ℓ 22T(2ℓ−2) + 2 ⋅ c2ℓ

23T(2ℓ−3) + 3 ⋅ c2ℓ

…

= 2ℓT(20) + cℓ2ℓ = O(n log n)



Recurrences: Recursion Tree
Method 2.  Recursion Trees 

• Number of levels: 

• Number of nodes in level :  

• Problem size at level : 

• Total work done at each level:

i
i

Recommended  
Method!log2 n

2i

2i ⋅ (n /2i) = n

n /2i



• This is really a method of visualization 

• Very similar to unrolling, but much easier to keep 
track of what’s going on 

• It’s not (quite) a proof, but generally it is sufficient for 
reasoning about running times in this class 

• “Solve the recurrence” can be done by drawing 
the recursion tree and explaining the solution

Recurrences: Recursion Tree



Recurrences: Guess & Verify
Method 3.  Guess and Verify 

• Eyeball recurrence and make a guess 

• Verify guess using induction 

• More on this later… 



General Recursion Trees
• Consider a divide and conquer algorithm that  

• spends  time on non-recursive work and makes  
recursive calls, each on a problem of size  

• Up to constant factors (which we hide in , the running time of 
the algorithm is given by what recurrence? 

•  

• Because we care about asymptotic bounds, we can assume base 
case is a small constant, say  

O( f(n)) r
n/c

O())

T(n) = rT(n/c) + f(n)

T(n) = 1



General Recursion Trees

A recursion tree for the recurrence T(n) = rT(n /c) + f(n)

• For each , the th level of tree has exactly  nodes 

• Each node at level  has cost  

i i ri

i, f(n/ci)



General Recursion Trees
• Running time  of a recursive algorithm is the sum of all the 

values (sum of work at all nodes at each level) in the recursion tree 

• The th level of the tree has exactly  nodes 

• And each node at level  has cost   

 

Thus, the total recurrence costs:  

• Here  is the depth of the tree 

• Number of leaves in the tree:     

• Cost at leaves: 

T(n)

i ri

i, f(n/ci)

T(n) =
L

∑
i=0

ri ⋅ f(n/ci)

L = logc n

rL = nlogc r

O(nlogc rf(1))

rL = rlogc n = (2log2 r)logc n = (2logc n)log2 r = (2log2 n)
log2 r
log2 c = nlogc r



Common Cases

• Decreasing series.  If the series decays exponentially (every term 
is a constant factor smaller than previous), cost at root dominates:  
                 

• Equal. If all terms in the series are equal: 
                

• Increasing series. If the series grows exponentially (every term is 
constant factor larger), then the cost at leaves dominates: 
               

T(n) =
L

∑
i=0

ri ⋅ f(n/ci)

T(n) = O( f(n))

T(n) = O( f(n) ⋅ L) = O( f(n)log n)

T(n) = O(nlogc r)

Don’t forget: 
L

∑
i=0

ai =
aL+1 − 1

a − 1



Master Theorem (optional)
Set of rules to solve some common recurrences automatically 

(Master Theorem)  Let  and . Let  be defined by 
the recurrence  and . 
Then  can be bounded asymptotically as follows. 

• If  for some constant , then  

• If , then  

• If , for some constant , and if  
for some constant  and all sufficiently large , then 

a ≥ 1, b > 1 f(n) ≥ 0 T(n)
T(n) = aT(n/b) + f(n) T(1) = O(1)

T(n)

f(n) = nlogb a−ϵ ϵ > 0 T(n) = Θ(nlogb a)

f(n) = Θ(nlogb a) T(n) = Θ(nlogb a log n)

f(n) = Ω(nlogb a+ϵ) ϵ > 0 af(n/b) ≤ c0 f(n)
c0 < 1 n

T(n) = Θ( f(n))



Master Theorem
• It exists; it can make things easier.  You don’t need to 

know it 

• OK to use in this class, but I don’t encourage (nor 
discourage) it 

• Recursion trees promote a better understanding of 
the recurrence—and they can be simpler 

• Master Theorem only applies to some recurrences 
(generalizations do exist)



Divide and Conquer: 
Sorting and Recurrences



Divide & Conquer: Quicksort
Who remembers Quicksort? 
• Choose a pivot element from the array 
• Partition the array into two parts:  

• LEFT: all elements that are less than or equal to the pivot 
• RIGHT: all elements that are greater than the pivot 

• Recursively quicksort the LEFT and RIGHT subarrays



Divide & Conquer: Quicksort
• Description.  (Divide and conquer):  often the cleanest way to 

present is short and clean pseudocode with high level explanation
• Correctness proof.  Induction and showing that partition step 

correctly partitions the array.



Quick Sort Analysis
• How long does partition take? 

• Let’s write a recurrence relation for quick sort! 

• Challenge: the size of the subproblems depends pivot!?!?! 

• Idea: let  be the rank of the pivot, where rank is the (lowest) 
index of the item in the sorted list. 

• Base case: 
 

• General Case:

r

O(n)

T(1) = 1

T(n) = T(r − 1) + T(n − r) + O(n)

Partition that’s  pivot≤ Partition that’s  
pivot

>



Quick Sort Analysis
• Let us analyze some cases for  

• Best case:  

• r is the median:   

• (we can show how to compute the median in  time) 

• Worst case:

•   or  

• When everything falls on “one side” of the pivot 

• Something in between:

•  say 

r

r = ⌊n/2⌋
O(n)

r = 1 r = n

n/10 ≤ r ≤ 9n/10

Note in the worst-case analysis, we would only consider the worst case for .  
We will look at the different cases to get a sense and get some practice.

r



Quick Sort: Cases
• Suppose  (pivot is the median element), then recurrence is: 

• ,  

• We have already solved this recurrence! 

•  

• Suppose  or , then the recurrence is: 

•  

• What running time would this recurrence lead to? 

• Let’s draw the recurrence tree… 

•  (notice: this is tight!)

r = n/2
T(n) = 2T(n/2) + O(n) T(1) = 1

T(n) = O(n log n)

r = 1 r = n − 1
T(n) = T(n − 1) + T(1) + O(n), T(1) = 1

T(n) = Θ(n2)



Quick Sort: Cases
• Suppose  (that is, you get a one-tenth, nine-tenths split) 

• What is the recurrence?  

•  

• Let’s look at the recursion tree for this recurrence… 

• We get , in fact, we get  

• In general, the following holds (we’ll show it later):  

•  

• If  

• If 

r = n/10

T(n) = T(n/10) + T(9n/10) + O(n)

T(n) = O(n log n) Θ(n log n)

T(n) = T(αn) + T(βn) + O(n)
α + β < 1 : T(n) = O(n)
α + β = 1 : T(n) = O(n log n)



Quick Sort: Theory and Practice
• We can find the median element in  time  

• Using divide and conquer! 

• But in practice, the constants hidden in the Oh notation for 
median finding are too large to use for sorting 

• Common heuristic 

• Median of three (pick elements from the start, middle and 
end and take their median) 

• If the pivot is chosen uniformly at random 

• quick sort runs in time  in expectation and with 
high probability 

• We will prove this in the second half of the class

Θ(n)

O(n log n)



Recurrences
So far we’ve focused on divide and conquer algorithms, where we 
split the problem in more than one subproblem. 

 
Question. Can you think of some examples (that you haven’t seen 
so far) where we split the problem into one smaller subproblem?



D&C: One Smaller Subproblem
• Binary search in array 

•  
• Search in a binary search tree 

•  
• Fast exponentiation (you may not have seen this) 

• Compute , how many multiplications? 

• Naive way:  

• Faster way:  (suppose  is even) 

•  
• What does this solve to?

T(n) = T(n/2) + 1

T(n) = T(n/2) + 1

an

a ⋅ a ⋅ … ⋅ a (n times)
an = (an/2)2 n

T(n) = T(n/2) + 1





Selection



Selection: Problem Statement
Given an array  of size , find the th smallest element for 
any  

• Special cases: min , max :  

• Linear time,    

• What about median ? 

• Sorting:  

• Binary heap:  

Question.  Can we do it in ? 

• Surprisingly yes.  

• Selection is easier than sorting. 

A[1,…, n] n k
1 ≤ k ≤ n

k = 1 k = n
O(n)

k = ⌊n + 1⌋/2
O(n log n)

O(n log k)

O(n)



Selection: Problem Statement
Example. Take this array of size 10: 
 

 

Suppose we want to find 4th smallest element 

• First, take any pivot  from  

• If  is the 4th smallest element, return it 

• Else, we partition  around  and recurse

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

p A[1,…n]
p

A p



Selection Algorithm: Idea
Select : 

If : return  

Else: 

• Choose a pivot ; let  be the rank of  

• Partition(  

• If , return  

• Else: 

• If : Select  

• Else: Select 

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)



Selection: Problem Statement
Example. Take this array of size 10: 
 

 

Suppose we want to find 4th smallest element 

• Choose pivot  

• What is its rank? 

• Rank  

• So let’s find all of the smaller elements of : 

•  

• Want to find the element of rank  in this new array

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

8

7
A

A′ = 2 |4 |5 |3 |1 |7
4



Selection: Problem Statement
Example. Take this array of size 10: 
 

 

Suppose we want to find 4th smallest element 

• Choose as pivot  

• What is its rank? 

• Rank  

• So let’s find all of the larger elements of : 

•  

• Want to find the element of rank  in this new array

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

3

3
A

A′ = 12 |4 |5 |10 |7 |9 |8
4 − 3 = 1



When is this method good?
• If we guess the pivot right!  (but we can’t always do that) 

• If we partition the array pretty evenly (the pivot is close to 
the middle) 

• Let’s say our pivot is not in the first or last ths of the 
array 

• What is our recurrence? 

•  

•

3/10

T(n) ≤ T(7n/10) + O(n)

T(n) = O(n)



Our high-level goal

• Find a pivot that’s close to the median—has a rank 
between  and , in time  

• But the array is unsorted?  How do we do that? 

• Want to always be successful

3n/10 7n/10 O(n)



Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

n = 54

• Divide the array of size  into  groups of  elements (ignore 
leftovers) 

• Find median of each group 

n ⌈n/5⌉ 5



Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

38 18 35

43

2328 40 19 31

15

n = 54

medians

• Divide the array of size  into  groups of  elements (ignore 
leftovers) 

• Find median of each group 

n ⌈n/5⌉ 5



Finding an Approximate Median
• Divide the array of size  into  groups of  elements (ignore 

leftovers) 
• Find median of each group  
• Find median of  medians recursively  
• Use median of medians  as pivot

n ⌈n/5⌉ 5

M ← ⌈n/5⌉
M

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

median of
medians 38 18 35

43

2328 40 19 31

15

28

n = 54

medians



What did we gain?
• How can I show that the median of medians is “close to 

the center” of the array? 

• What elements can I say, for sure, are  the median of 
medians? 

• The smaller half of the medians 

•  elements 

• Any other elements? 

• Another  elements in each median’s list

≤

n/10

2



Visualizing MoM
• In the 5 x n/5 grid, each column represents five consecutive 

elements 

• Imagine each column is sorted top down 

• Imagine the columns as a whole are sorted left-right 

• We don’t actually do this! 

• MoM is the element closest to center of grid



Visualizing MoM
• Red cells (at least ) are smaller than 3n/10 M



Visualizing MoM
• Red cells (at least ) in size are smaller than  

• If we are looking for an element larger than , we can throw these 
out, before recursing  

• Symmetrically, we can throw out  elements larger than  if 
looking for a smaller element 

• Thus, the recursive problem size is at most 

3n/10 M
M

3n/10 M

7n/10



How Good is Median of Medians
Claim. Median of medians  is a good pivot, that is, at least th of 
the elements are  and at least th of the elements are . 

Proof. 

• Let  be the size of each group.  

•  is the median of  medians 

• So  of the group medians 

• Each median is greater than 2 elements in its group 

• Thus  elements 

• Symmetrically,  elements. 

M 3/10
≥ M 3/10 ≤ M

g = ⌈n/5⌉
M g

M ≥ g/2

M ≥ 3g/2 = 3n/10
M ≤ 3n/10 ∎



Median of Medians Subroutine
• MoM( ): 

• If : return  

• Else: 

• Divide  into  groups 

• Compute median of each group 

• group medians 

• Mom( )

A, n

n = = 1 A[1]

A ⌈n/5⌉

A′ ←

A′ , ⌈n/5⌉
T(n /5) + O(n)



Linear time Selection
Select : 

If : return ; else:  

• Call median of medians to find a good pivot 
       ;   

• Partition(  

• If , return  

• Else: 

• If : Select  

• Else: Select 

(A, k)

|A | = 1 A[1]

p ← MoM(A, n) n = |A |

r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)

T(n /5) + O(n)

Larger subproblem 
has size ≤ 7n /10

Overall:   T(n) = T(n/5) + T(7n/10) + O(n)



Selection Recurrence
• Okay, so we have a good pivot 

• We are still doing two recursive calls 

•  

• Key: total work at each level still goes down! 

• Decaying series gives us : 

T(n) ≤ T(n/5) + T(7n/10) + O(n)

T(n) = O(n)



Why the Magic Number 5?
• What was so special about 5 in our algorithm? 

• It is the smallest odd number that works! 

• (Even numbers are problematic for medians) 

• Let us analyze the recurrence with groups of size 3 

•  

• Work is equal at each level of the tree! 

•

T(n) ≤ T(n/3) + T(2n/3) + O(n)

T(n) = Θ(n log n)



Theory vs Practice
• -time selection by [Blum–Floyd–Pratt–Rivest–Tarjan 1973] 

• Does  compares 

• Upper bound:  

• [Dor–Zwick 1995]  compares 

• Lower bound:  

• [Dor–Zwick 1999]  compares. 

• Constants are still too large for practice 

• Random pivot works well in most cases! 

• We may analyze this when we do randomized algorithms

O(n)
≤ 5.4305n

≤ 2.95n

≥ (2 + 2−80)n



Acknowledgments
• Some of the material in these slides are taken from 

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf) 

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

