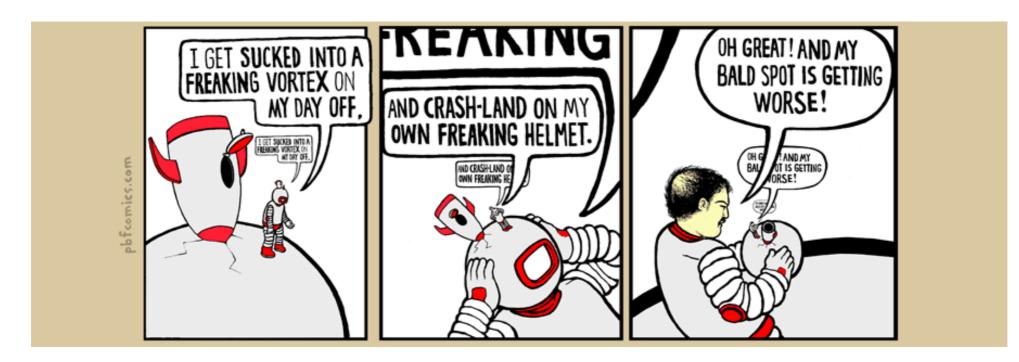
# Divide and Conquer: Sorting and Recurrences

## Divide & Conquer: The Pattern

- **Divide** the problem into several independent smaller instances of exactly the same problem
- **Delegate** each smaller instance to the **Recursive Leap of Faith** (technically known as induction hypothesis)
- **Combine** the solutions for the smaller instances



#### Review: Merge Sort

#### MergeSort(L):

if *L* has one element Base case return *L* 

Divide L into two halves A and B

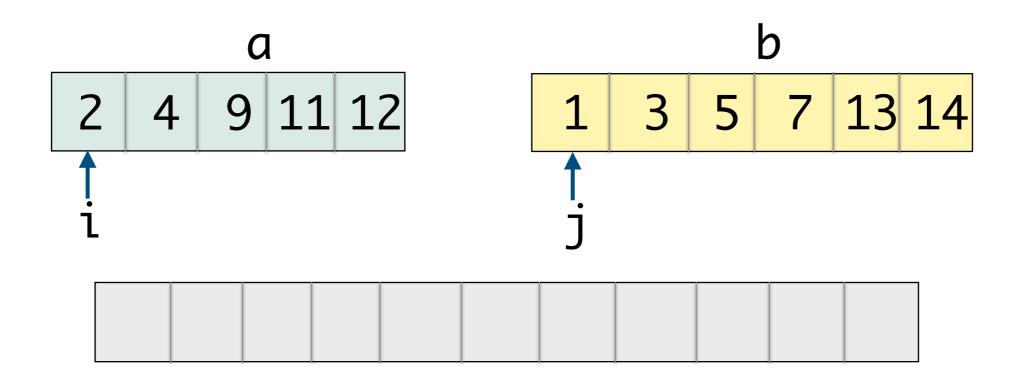
- $A \leftarrow \mathsf{MergeSort}(A)$
- $B \leftarrow \mathsf{MergeSort}(B)$
- $L \leftarrow \mathsf{Merge}(A, B)$

return L

Recursive leaps of faith

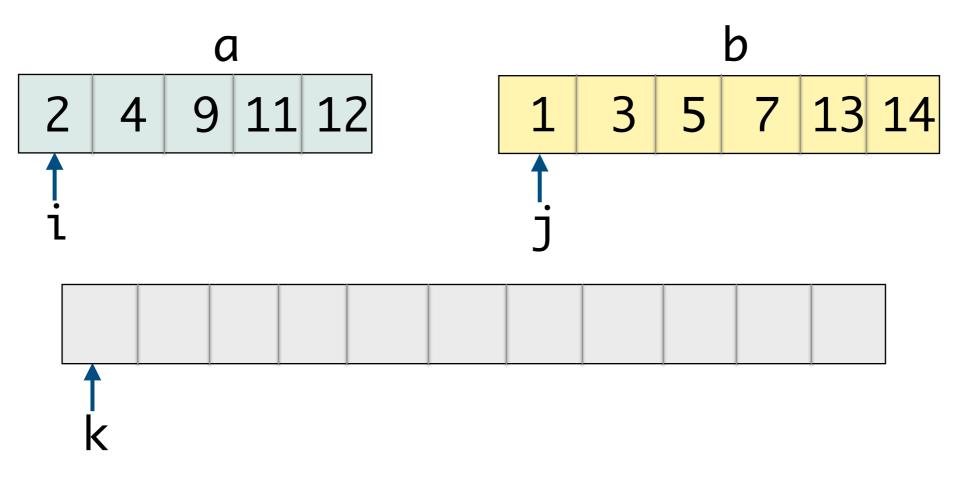
Combine solutions

- Scan sorted lists from left to right
- Compare element by element; create new merged list



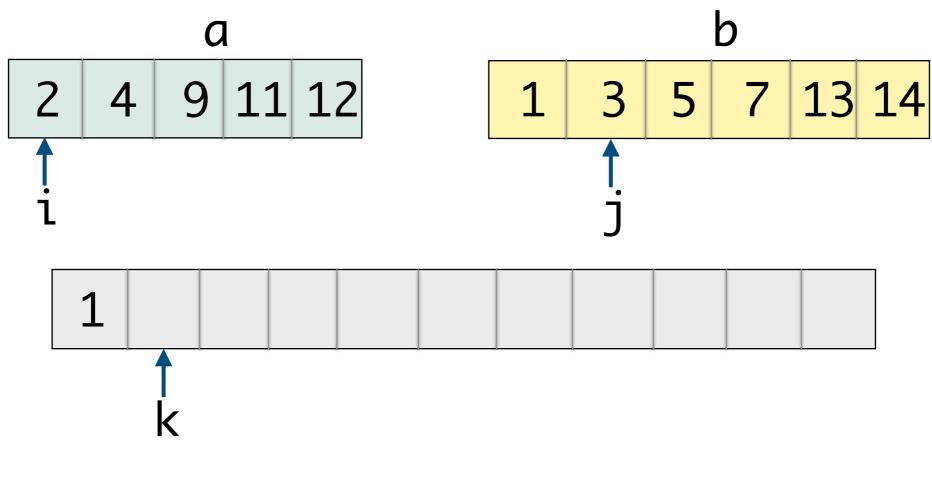
#### Is a[i] <= b[j] ?

- Yes, a[i] appended to c, advance i
- No, b[j] appended to c, advance j

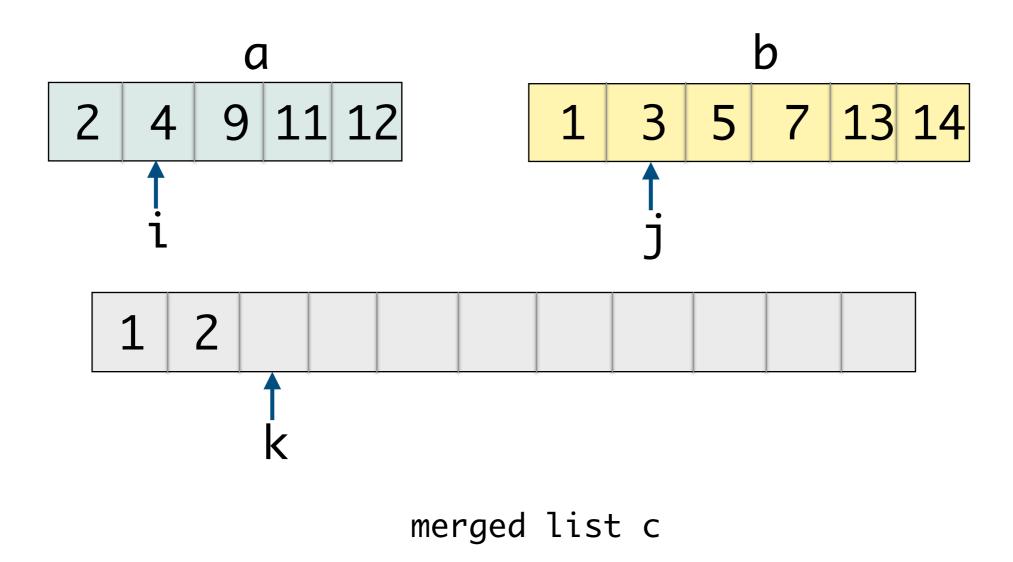


merged list c

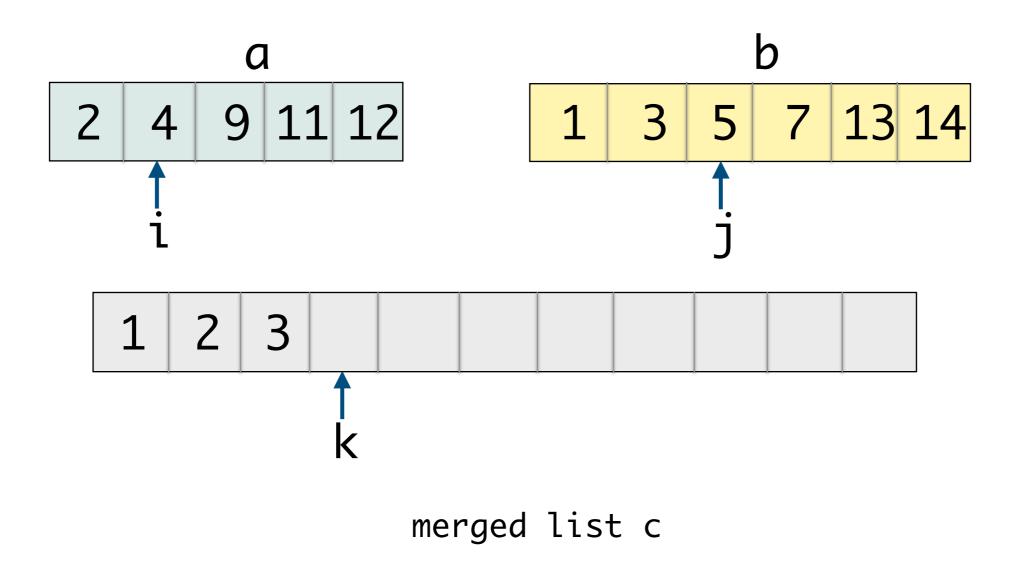
- Yes, a[i] appended to c, advance i
- No, b[j] appended to c, advance j



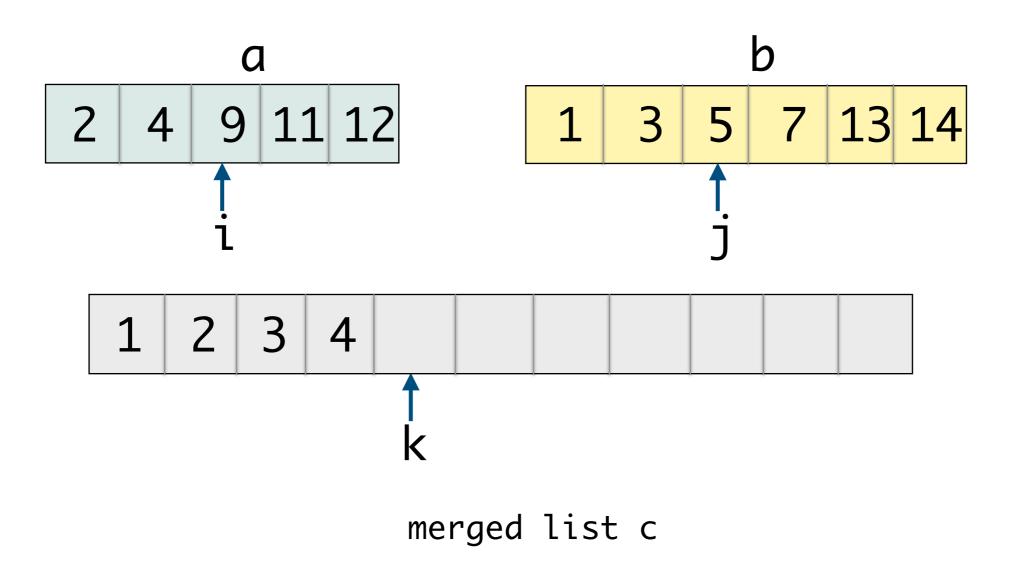
- Yes, a[i] appended to c, advance i
- No, b[j] appended to c, advance j



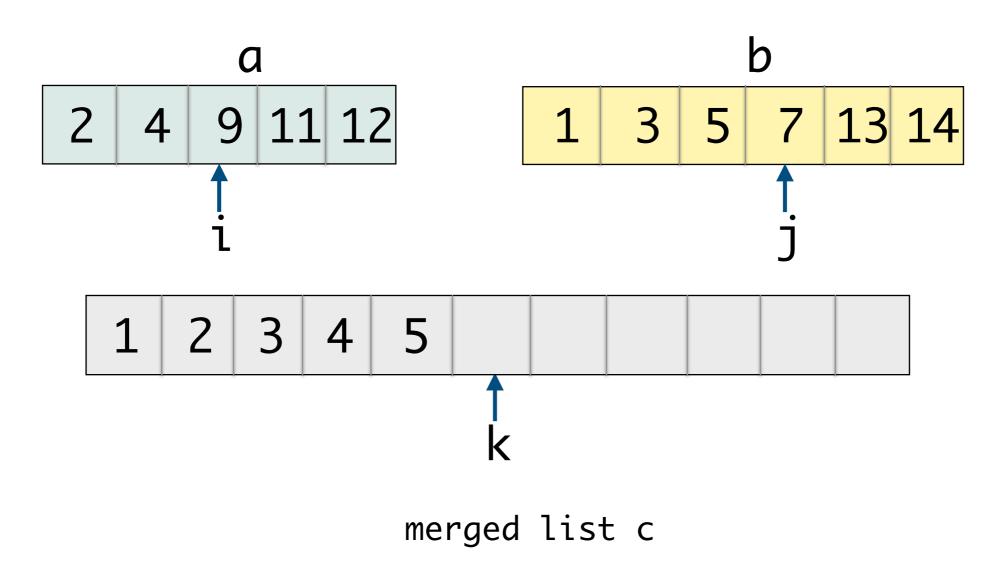
- Yes, a[i] appended to c, advance i
- No, b[j] appended to c, advance j



- Yes, a[i] appended to c, advance i
- No, b[j] appended to c, advance j



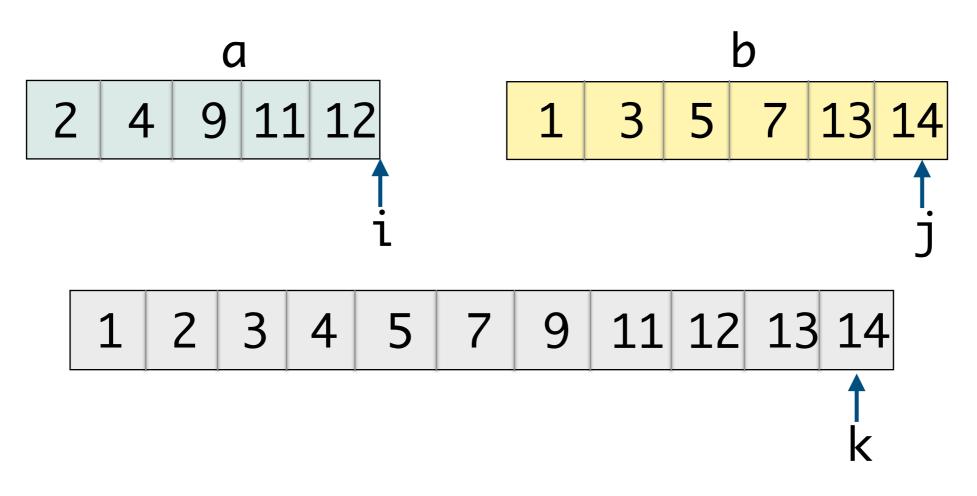
- Yes, a[i] appended to c, advance i
- No, b[j] appended to c, advance j



#### Yada yada yada...

#### Is a[i] <= b[j] ?

- Yes, a[i] appended to c, advance i
- No, b[j] appended to c, advance j



merged list c

## Correctness: D&C Algorithms

- **Proving Correctness** (often follow proof by induction pattern)
  - Show base case holds
  - Assume your recursive calls return the correct solution (induction hypothesis)
  - Inductive step: crux of the proof
    - Must show that the solutions returned by the recursive calls are "combined" correctly

#### Correctness Sketch: Merge Sort

- Claim. (Combine step.) Merge subroutine correctly merges two sorted subarrays A[1,...,i] and B[1,...,j] where i + j = n.
  - Will prove that for the first k iterations of the loop, correctly merges A and B (from n = 0 to n = k).
- Invariant: Merged array is sorted after every iteration.
- Base case: k = 0
  - Algorithm correctly merges two empty subarrays
- For inductive step, there are multiple cases, including  $a_i \leq b_i$ ,  $a_i > b_i$ 
  - for each case, must show that newly added element maintains sorted-ness

# Analyzing Running Time

- For this topic, our main focus will be on analysis of running time
- We analyze the running time of recursive functions by:
  - **Considering the recursive calls**: both the number of calls made and the size of the inputs to each call
    - e.g., merge sort on an input of size n makes two recursive calls each on an input of size n/2
  - The time spent "combining" solutions ("non-recursive work") returned by recursive calls
    - e.g. merge step combines the sorted arrays in  $\Theta(n)$  time
- Using the two, we typically write a **running time recurrence**

## Running Time Recurrence

- Let T(n) represent the worst-case running time of merge sort on an input of size n
- $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(n)$
- **Base case:** T(1) = 1; often ignored
- We will ignore the floors and ceilings (turns out it doesn't matter for asymptotic bounds; we'll show this later)
- So the recurrence simplifies to:
  - T(n) = 2T(n/2) + O(n)
  - The answer to this ends up being  $T(n) = O(n \log n)$
  - The next slides will discuss different ways to derive this

### Recurrences: Unfolding

Method 1. Unfolding the recurrence

• Assume 
$$n = 2^{\ell}$$
 (that is,  $\ell = \log n$ )

- Because we don't care about constant factors and are only upperbounding, we can always choose smallest power of 2 that is greater than n. That is,  $n < n' = 2^{\ell} < 2n$
- We can explicitly add in our constants

$$T(n) = 2T(n/2) + cn = 2T(2^{\ell-1}) + c2^{\ell} \text{ (change of variable, replace } n\text{)}$$
  
=  $2(2T(2^{\ell-2}) + c2^{\ell-1}) + c2^{\ell} = 2^2T(2^{\ell-2}) + 2 \cdot c2^{\ell}$   
=  $2^3T(2^{\ell-3}) + 3 \cdot c2^{\ell}$ 

= ...

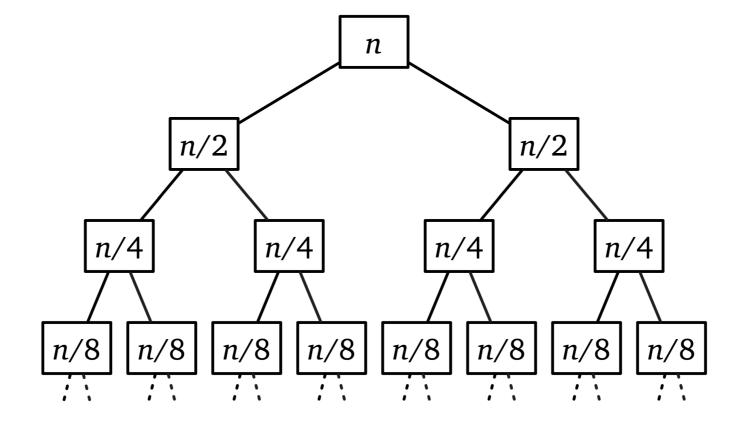
$$= 2^{\ell} T(2^0) + c\ell 2^{\ell} = O(n \log n)$$

### **Recurrences: Recursion Tree**

#### Method 2. Recursion Trees

- Number of levels:  $\log_2 n$
- Number of nodes in level  $i: 2^i$
- Problem size at level  $i: n/2^i$
- Total work done at each level:  $2^i \cdot (n/2^i) = n$





### **Recurrences: Recursion Tree**

- This is really a method of visualization
- Very similar to unrolling, but much easier to keep track of what's going on
- It's not (quite) a proof, but generally it is sufficient for reasoning about running times in this class
  - "Solve the recurrence" can be done by drawing the recursion tree and explaining the solution

### Recurrences: Guess & Verify

Method 3. Guess and Verify

- Eyeball recurrence and make a guess
- Verify guess using induction
- More on this later...

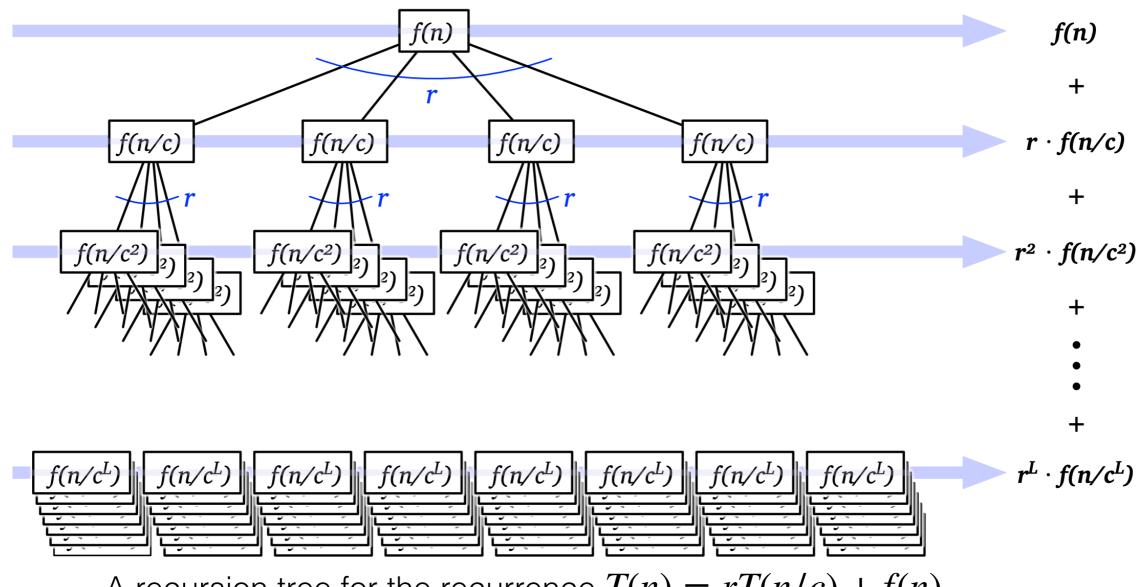
### **General Recursion Trees**

- Consider a divide and conquer algorithm that
  - spends O(f(n)) time on non-recursive work and makes r recursive calls, each on a problem of size n/c
- Up to constant factors (which we hide in O()), the running time of the algorithm is given by what recurrence?

• 
$$T(n) = rT(n/c) + f(n)$$

• Because we care about asymptotic bounds, we can assume base case is a small constant, say T(n) = 1

#### **General Recursion Trees**



A recursion tree for the recurrence T(n) = rT(n/c) + f(n)

- For each i, the ith level of tree has exactly  $r^i$  nodes
- Each node at level i, has cost  $f(n/c^i)$

### **General Recursion Trees**

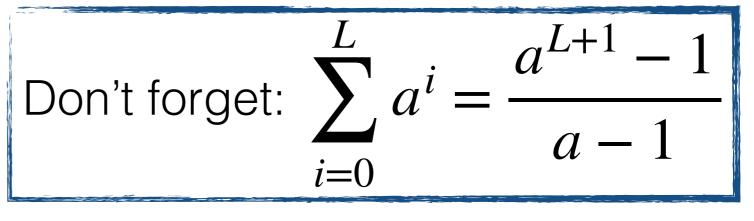
- Running time T(n) of a recursive algorithm is the sum of all the values (sum of work at all nodes at each level) in the recursion tree
- The *i*th level of the tree has exactly  $r^i$  nodes
- And each node at level i, has cost  $f(n/c^i)$

Thus, the total recurrence costs: 
$$T(n) = \sum_{i=0}^{L} r^{i} \cdot f(n/c^{i})$$

- Here  $L = \log_c n$  is the depth of the tree
- Number of leaves in the tree:  $r^L = n^{\log_c r}$
- Cost at leaves:  $O(n^{\log_c} f(1))$

$$r^{L} = r^{\log_{c} n} = (2^{\log_{2} r})^{\log_{c} n} = (2^{\log_{c} n})^{\log_{2} r} = (2^{\log_{2} n})^{\frac{\log_{2} r}{\log_{2} c}} = n^{\log_{c} r}$$

#### Common Cases



$$T(n) = \sum_{i=0}^{L} r^{i} \cdot f(n/c^{i})$$

- **Decreasing series.** If the series decays exponentially (every term is a constant factor smaller than previous), cost at root dominates: T(n) = O(f(n))
- **Equal.** If all terms in the series are equal:  $T(n) = O(f(n) \cdot L) = O(f(n)\log n)$
- Increasing series. If the series grows exponentially (every term is constant factor larger), then the cost at leaves dominates:  $T(n) = O(n^{\log_c r})$

## Master Theorem (optional)

Set of rules to solve some common recurrences automatically

(Master Theorem) Let  $a \ge 1$ , b > 1 and  $f(n) \ge 0$ . Let T(n) be defined by the recurrence T(n) = aT(n/b) + f(n) and T(1) = O(1). Then T(n) can be bounded asymptotically as follows. If  $f(n) = n^{\log_b a - \epsilon}$  for some constant  $\epsilon > 0$ , then  $T(n) = \Theta(n^{\log_b a})$ If  $f(n) = \Theta(n^{\log_b a})$ , then  $T(n) = \Theta(n^{\log_b a} \log n)$ If  $f(n) = \Omega(n^{\log_b a + \epsilon})$ , for some constant  $\epsilon > 0$ , and if  $af(n/b) \le c_0 f(n)$ for some constant  $c_0 < 1$  and all sufficiently large n, then  $T(n) = \Theta(f(n))$ 

### Master Theorem

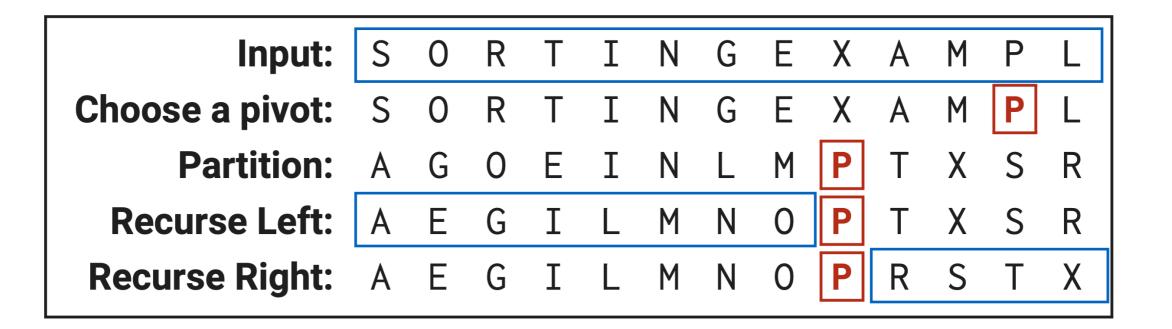
- It exists; it can make things easier. You don't need to know it
- OK to use in this class, but I don't encourage (nor discourage) it
  - Recursion trees promote a better understanding of the recurrence—and they can be simpler
- Master Theorem only applies to some recurrences (generalizations do exist)

# Divide and Conquer: Sorting and Recurrences

## Divide & Conquer: Quicksort

Who remembers Quicksort?

- Choose a pivot element from the array
- Partition the array into two parts:
  - LEFT: all elements that are less than or equal to the pivot
  - RIGHT: all elements that are greater than the pivot
- Recursively quicksort the LEFT and RIGHT subarrays



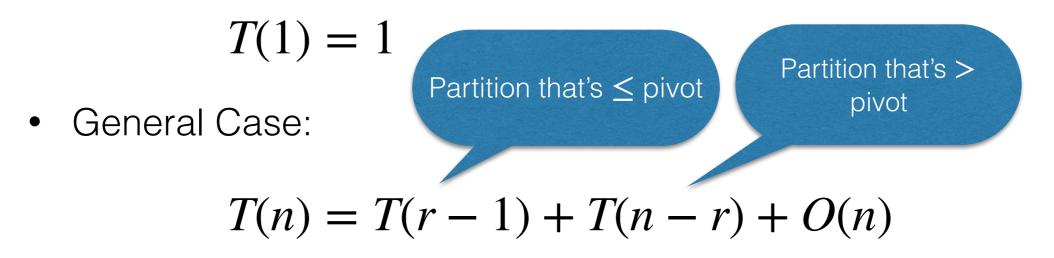
## Divide & Conquer: Quicksort

- **Description.** (Divide and conquer): often the cleanest way to present is **short and clean pseudocode** with high level explanation
- **Correctness proof.** Induction and showing that partition step correctly partitions the array.

 $\begin{array}{l} \hline QUICKSORT(A[1..n]):\\ \text{ if } (n > 1)\\ Choose \ a \ pivot \ element \ A[p]\\ r \leftarrow Partition(A, p)\\ QUICKSORT(A[1..r-1]) \quad \langle\langle Recurse! \rangle\rangle\\ QUICKSORT(A[r+1..n]) \quad \langle\langle Recurse! \rangle\rangle \end{array}$ 

## Quick Sort Analysis

- How long does partition take? O(n)
- Let's write a recurrence relation for quick sort!
- Challenge: the size of the subproblems depends pivot!?!?!
  - Idea: let *r* be the rank of the pivot, where rank is the (lowest) index of the item in the sorted list.
  - Base case:



### Quick Sort Analysis

- Let us analyze some cases for r
  - Best case:
    - r is the median:  $r = \lfloor n/2 \rfloor$ 
      - (we can show how to compute the median in O(n) time)
  - Worst case:
    - r = 1 or r = n
      - When everything falls on "one side" of the pivot
  - Something in between:
    - say  $n/10 \le r \le 9n/10$

Note in the worst-case analysis, we would only consider the worst case for r. We will look at the different cases to get a sense and get some practice.

#### Quick Sort: Cases

- Suppose r = n/2 (pivot is the median element), then recurrence is:
  - T(n) = 2T(n/2) + O(n), T(1) = 1
    - We have already solved this recurrence!
    - $T(n) = O(n \log n)$
- Suppose r = 1 or r = n 1, then the recurrence is:
  - T(n) = T(n-1) + T(1) + O(n), T(1) = 1
  - What running time would this recurrence lead to?
    - Let's draw the recurrence tree...
    - $T(n) = \Theta(n^2)$  (notice: this is tight!)

#### Quick Sort: Cases

- Suppose r = n/10 (that is, you get a one-tenth, nine-tenths split)
  - What is the recurrence?
    - T(n) = T(n/10) + T(9n/10) + O(n)
  - Let's look at the recursion tree for this recurrence...
- We get  $T(n) = O(n \log n)$ , in fact, we get  $\Theta(n \log n)$
- In general, the following holds (we'll show it later):
  - $T(n) = T(\alpha n) + T(\beta n) + O(n)$ 
    - If  $\alpha + \beta < 1 : T(n) = O(n)$
    - If  $\alpha + \beta = 1$ :  $T(n) = O(n \log n)$

### Quick Sort: Theory and Practice

- We can find the **median element in**  $\Theta(n)$  time
  - Using divide and conquer!
  - But in practice, the constants hidden in the Oh notation for median finding are too large to use for sorting
- Common heuristic
  - Median of three (pick elements from the start, middle and end and take their median)
- If the pivot is chosen **uniformly at random** 
  - quick sort runs in time  $O(n \log n)$  in expectation and with high probability
  - We will prove this in the second half of the class

#### Recurrences

So far we've focused on divide and conquer algorithms, where we split the problem in more than one subproblem.

**Question.** Can you think of some examples (that you haven't seen so far) where we split the problem into **one** smaller subproblem?

#### D&C: One Smaller Subproblem

- Binary search in array
  - T(n) = T(n/2) + 1
- Search in a binary search tree
  - T(n) = T(n/2) + 1
- Fast exponentiation (you may not have seen this)
  - Compute *a<sup>n</sup>*, how many multiplications?
  - Naive way:  $a \cdot a \cdot \ldots \cdot a$  (*n* times)
  - Faster way:  $a^n = (a^{n/2})^2$  (suppose *n* is even)
  - T(n) = T(n/2) + 1
  - What does this solve to?

### Selection

## Selection: Problem Statement

Given an array A[1,...,n] of size n, find the kth smallest element for any  $1 \le k \le n$ 

- Special cases:  $\min k = 1$ ,  $\max k = n$ :
  - Linear time, O(n)
- What about **median**  $k = \lfloor n+1 \rfloor / 2?$ 
  - Sorting:  $O(n \log n)$
  - Binary heap:  $O(n \log k)$

**Question.** Can we do it in O(n)?

- Surprisingly yes.
- Selection is easier than sorting.

## Selection: Problem Statement

Example. Take this array of size 10:

#### A = 12 | 2 | 4 | 5 | 3 | 1 | 10 | 7 | 9 | 8

Suppose we want to find 4th smallest element

- First, take any pivot p from A[1,...n]
- If p is the 4th smallest element, return it
- Else, we partition  $\boldsymbol{A}$  around  $\boldsymbol{p}$  and recurse

# Selection Algorithm: Idea

Select (A, k):

If |A| = 1: return A[1]

Else:

- Choose a pivot  $p \leftarrow A[1, ..., n]$ ; let r be the rank of p
- $r, A_{< p}, A_{> p} \leftarrow \text{Partition}((A, p)$
- If k = = r, return p
- Else:
  - If k < r: Select  $(A_{< p}, k)$
  - Else: Select  $(A_{>p}, k r)$

## Selection: Problem Statement

Example. Take this array of size 10:

#### A = 12 |2|4|5|3|1|10|7|9|8

Suppose we want to find 4th smallest element

- Choose pivot 8
- What is its rank?
  - Rank 7
- So let's find all of the smaller elements of A:
  - A' = 2 |4|5|3|1|7
- Want to find the element of rank 4 in this new array

## Selection: Problem Statement

Example. Take this array of size 10:

#### A = 12 |2|4|5|3|1|10|7|9|8

Suppose we want to find 4th smallest element

- Choose as pivot 3
- What is its rank?
  - Rank 3
- So let's find all of the **larger** elements of A:
  - A' = 12 | 4 | 5 | 10 | 7 | 9 | 8
- Want to find the element of rank 4 3 = 1 in this new array

# When is this method good?

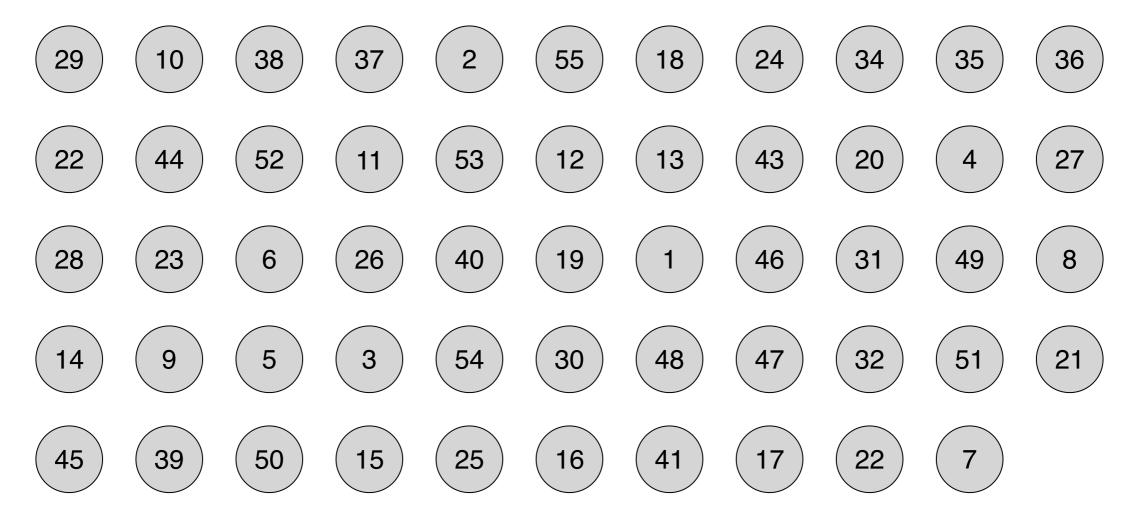
- If we guess the pivot right! (but we can't always do that)
- If we partition the array pretty evenly (the pivot is close to the middle)
  - Let's say our pivot is not in the first or last 3/10ths of the array
  - What is our recurrence?
  - $T(n) \le T(7n/10) + O(n)$
  - T(n) = O(n)

# Our high-level goal

- Find a pivot that's close to the median—has a rank between 3n/10 and 7n/10, in time O(n)
- But the array is unsorted? How do we do that?
- Want to *always* be successful

## Finding an Approximate Median

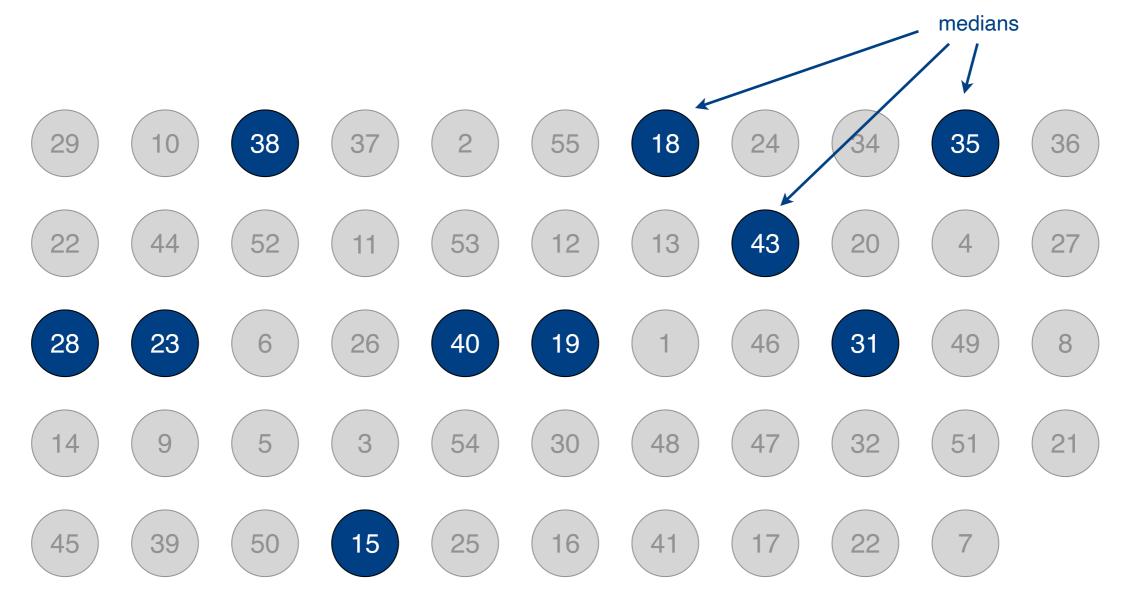
- Divide the array of size n into [n/5] groups of 5 elements (ignore leftovers)
- Find median of each group



n = 54

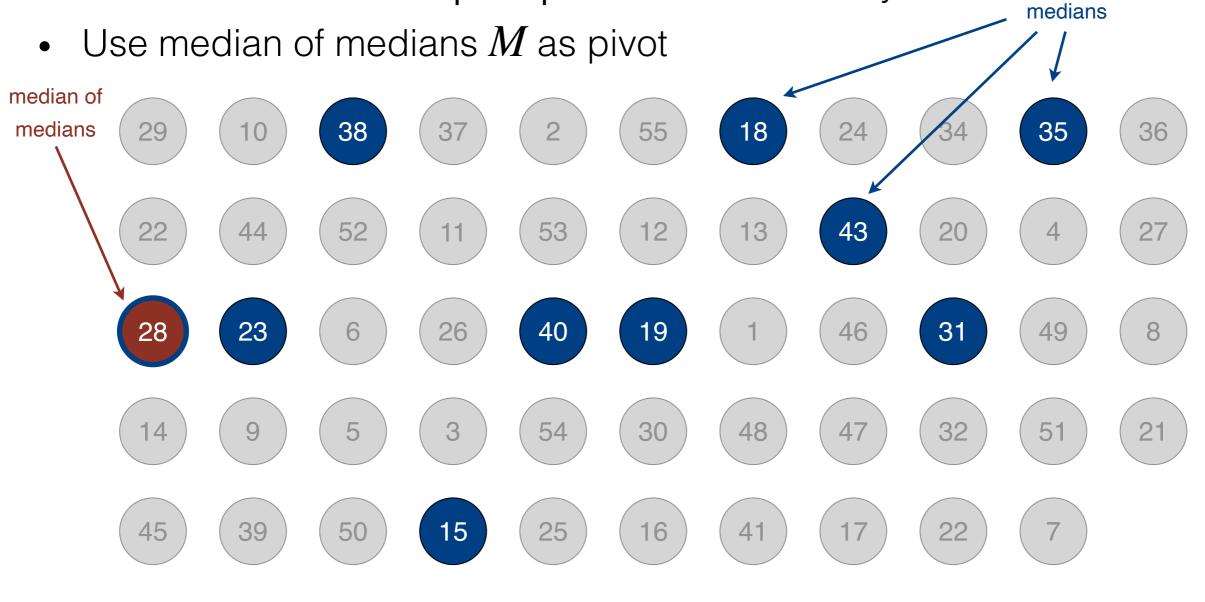
## Finding an Approximate Median

- Divide the array of size n into [n/5] groups of 5 elements (ignore leftovers)
- Find median of each group



## Finding an Approximate Median

- Divide the array of size n into [n/5] groups of 5 elements (ignore leftovers)
- Find median of each group
- Find  $M \leftarrow$  median of  $\lceil n/5 \rceil$  medians recursively

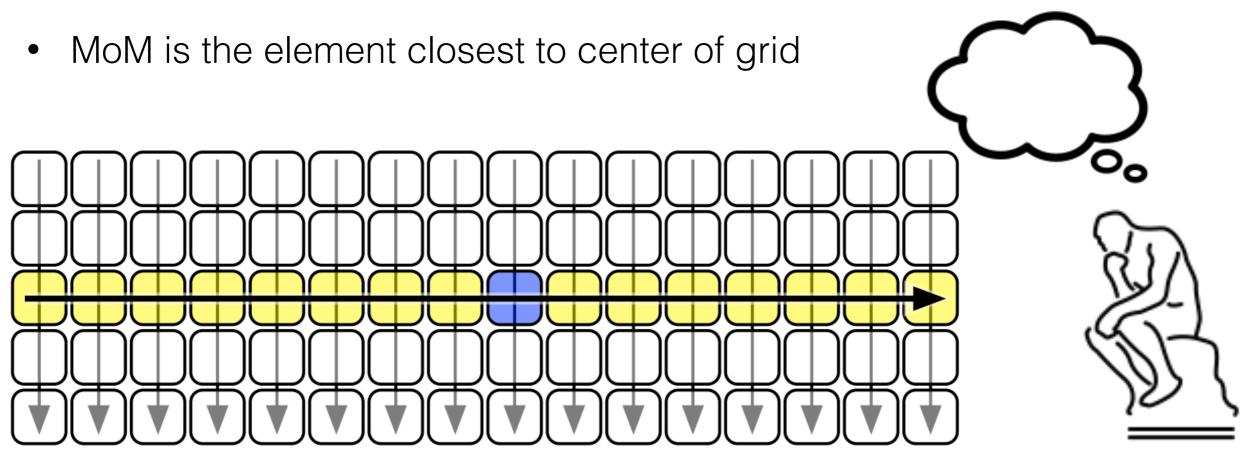


# What did we gain?

- How can I show that the median of medians is "close to the center" of the array?
- What elements can I say, for sure, are ≤ the median of medians?
  - The smaller half of the medians
  - n/10 elements
- Any other elements?
  - Another 2 elements in each median's list

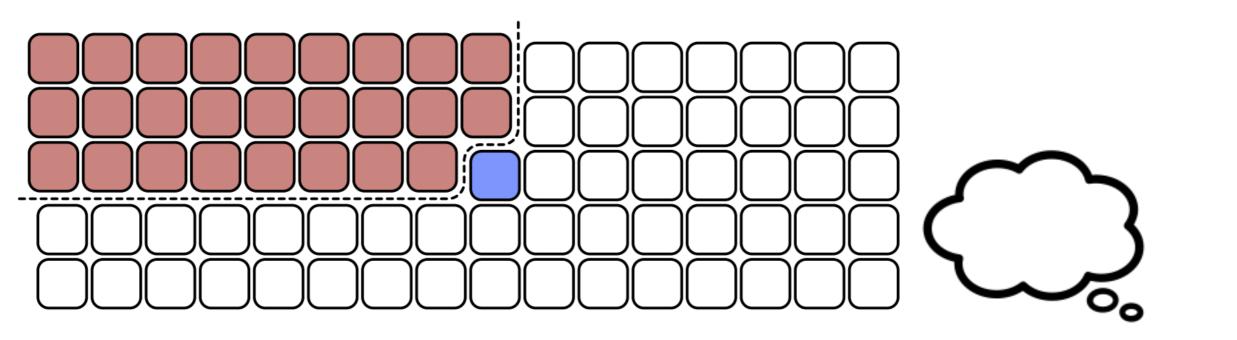
# Visualizing MoM

- In the 5 x n/5 grid, each column represents five consecutive elements
- Imagine each column is sorted top down
- Imagine the columns as a whole are sorted left-right
  - We don't actually do this!



# Visualizing MoM

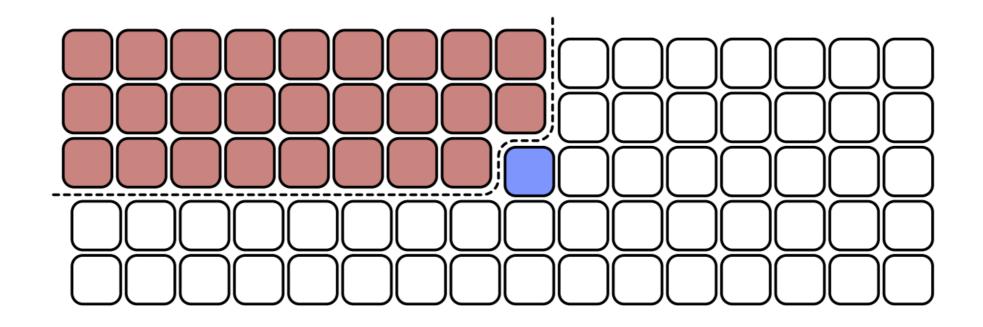
• Red cells (at least 3n/10) are smaller than M





# Visualizing MoM

- Red cells (at least 3n/10) in size are smaller than M
- If we are looking for an element larger than M, we can throw these out, before recursing
- Symmetrically, we can throw out 3n/10 elements larger than M if looking for a smaller element
- Thus, the recursive problem size is at most 7n/10



### How Good is Median of Medians

**Claim.** Median of medians M is a good pivot, that is, at least 3/10th of the elements are  $\geq M$  and at least 3/10th of the elements are  $\leq M$ .

#### Proof.

- Let  $g = \lceil n/5 \rceil$  be the size of each group.
- M is the median of g medians
  - So  $M \ge g/2$  of the group medians
  - Each median is greater than 2 elements in its group
  - Thus  $M \ge 3g/2 = 3n/10$  elements
- Symmetrically,  $M \leq 3n/10$  elements.

## Median of Medians Subroutine

- MoM(*A*, *n*):
  - If n = 1: return A[1]
  - Else:
    - Divide A into  $\lceil n/5 \rceil$  groups
    - Compute median of each group
    - $A' \leftarrow$  group medians
    - Mom(*A*′,  $\lceil n/5 \rceil$ )

T(n/5) + O(n)

## Linear time Selection

Select (A, k):

- If |A| = 1: return A[1]; else:
  - Call median of medians to find a good pivot  $n \leftarrow MoM(A, n); n = |A|$

$$p \leftarrow \text{IVIOIVI}(A, n); n = |A|$$

• 
$$r, A_{< p}, A_{> p} \leftarrow \text{Partition}((A, p)$$

• If 
$$k = = r$$
, return  $p$ 

- Else:
  - If k < r: Select  $(A_{< p}, k)$
  - Else: Select  $(A_{>p}, k r)$

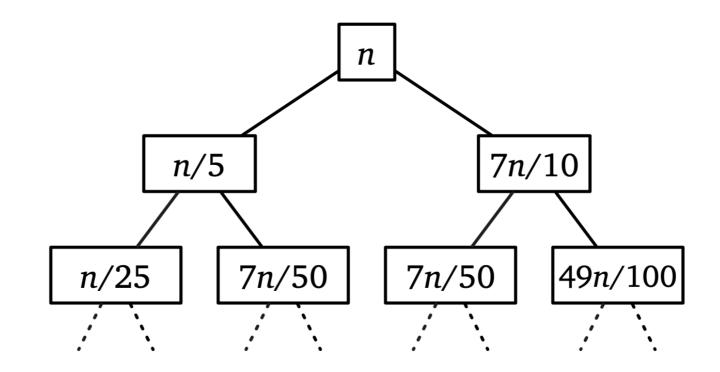
Overall: T(n) = T(n/5) + T(7n/10) + O(n)

Larger subproblem has size  $\leq 7n/10$ 

T(n/5) + O(n)

### Selection Recurrence

- Okay, so we have a good pivot
- We are still doing two recursive calls
  - $T(n) \le T(n/5) + T(7n/10) + O(n)$
- Key: total work at each level still goes down!
- Decaying series gives us : T(n) = O(n)



# Why the Magic Number 5?

- What was so special about 5 in our algorithm?
- It is the smallest odd number that works!
  - (Even numbers are problematic for medians)
- Let us analyze the recurrence with groups of size 3
  - $T(n) \le T(n/3) + T(2n/3) + O(n)$
  - Work is equal at each level of the tree!
  - $T(n) = \Theta(n \log n)$

# Theory vs Practice

- O(n)-time selection by [Blum–Floyd–Pratt–Rivest–Tarjan 1973]
  - Does  $\leq 5.4305n$  compares
- Upper bound:
  - [Dor–Zwick 1995]  $\leq 2.95n$  compares
- Lower bound:
  - [Dor-Zwick 1999]  $\ge (2 + 2^{-80})n$  compares.
- Constants are still too large for practice
- Random pivot works well in most cases!
  - We may analyze this when we do randomized algorithms

# Acknowledgments

- Some of the material in these slides are taken from
  - Kleinberg Tardos Slides by Kevin Wayne (<u>https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf</u>)
  - Jeff Erickson's Algorithms Book (<u>http://jeffe.cs.illinois.edu/</u> <u>teaching/algorithms/book/Algorithms-JeffE.pdf</u>)