
Divide and Conquer:
Sorting and Recurrences

Divide & Conquer: The Pattern
• Divide the problem into several independent smaller instances

of exactly the same problem

• Delegate each smaller instance to the Recursive Leap of Faith
(technically known as induction hypothesis)

• Combine the solutions for the smaller instances

Review: Merge Sort
MergeSort():L

if has one elementL
return L

Divide into two halves and L A B
 MergeSort()A ← A
 MergeSort()B ← B
 Merge(,)L ← A B

return L

Base case

Recursive leaps of faith

Combine solutions

• Scan sorted lists from left to right

• Compare element by element; create new merged list

Merge Step: Θ(n)

a
122 94 11

i

31 7 145 13
b

j

k

a
122 94 11

i

31 7 145 13
b

j

Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j

k

a
122 94 11

i

31 7 145 13
b

j

1

Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j

k

a
122 94 11

i

31 7 145 13
b

j

1 2

Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j

k

a
122 94 11

i

31 7 145 13
b

j

1 2 3

Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j

k

a
122 94 11

i

31 7 145 13
b

j

1 2 3 4

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j

Merge Step: Θ(n)

merged list c

k

a
122 94 11

i

31 7 145 13
b

j

1 2 3 4 5

Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j

Yada yada yada…

k

a
122 94 11

i

31 7 145 13
b

j

1 2 3 4 5 7 9 11 12 1413

Merge Step: Θ(n)

merged list c

Is a[i] <= b[j] ?
• Yes, a[i] appended to c, advance i
• No, b[j] appended to c, advance j

Correctness: D&C Algorithms
• Proving Correctness (often follow proof by induction pattern)

• Show base case holds

• Assume your recursive calls return the correct solution
(induction hypothesis)

• Inductive step: crux of the proof

• Must show that the solutions returned by the recursive
calls are “combined” correctly

Correctness Sketch: Merge Sort
• Claim. (Combine step.) Merge subroutine correctly merges two

sorted subarrays and where .

• Will prove that for the first iterations of the loop, correctly
merges and (from to).

• Invariant: Merged array is sorted after every iteration.

• Base case:

• Algorithm correctly merges two empty subarrays

• For inductive step, there are multiple cases, including ,

• for each case, must show that newly added element maintains
sorted-ness

A[1,…i] B[1,…, j] i + j = n

k
A B n = 0 n = k

k = 0

ai ≤ bj ai > bj

Analyzing Running Time
• For this topic, our main focus will be on analysis of running time

• We analyze the running time of recursive functions by:

• Considering the recursive calls: both the number of calls
made and the size of the inputs to each call

• e.g., merge sort on an input of size makes two recursive
calls each on an input of size

• The time spent “combining” solutions (“non-recursive
work”) returned by recursive calls

• e.g. merge step combines the sorted arrays in time

• Using the two, we typically write a running time recurrence

n
n/2

Θ(n)

Running Time Recurrence
• Let represent the worst-case running time of merge sort on an

input of size

•

• Base case: ; often ignored

• We will ignore the floors and ceilings (turns out it doesn't matter for
asymptotic bounds; we’ll show this later)

• So the recurrence simplifies to:

•

• The answer to this ends up being

• The next slides will discuss different ways to derive this

T(n)
n

T(n) = T(⌈n/2⌉) + T(⌊n/2⌋) + O(n)

T(1) = 1

T(n) = 2T(n/2) + O(n)

T(n) = O(n log n)

Recurrences: Unfolding
Method 1. Unfolding the recurrence

• Assume (that is,)

• Because we don’t care about constant factors and are only upper-
bounding, we can always choose smallest power of 2 that is greater than

. That is,

• We can explicitly add in our constants

 = (change of variable, replace)

 = =

 =

 =

n = 2ℓ ℓ = log n

n n < n′ = 2ℓ < 2n

T(n) = 2T(n/2) + cn 2T(2ℓ−1) + c2ℓ n

2(2T(2ℓ−2) + c2ℓ−1) + c2ℓ 22T(2ℓ−2) + 2 ⋅ c2ℓ

23T(2ℓ−3) + 3 ⋅ c2ℓ

…

= 2ℓT(20) + cℓ2ℓ = O(n log n)

Recurrences: Recursion Tree
Method 2. Recursion Trees

• Number of levels:

• Number of nodes in level :

• Problem size at level :

• Total work done at each level:

i
i

Recommended
Method!log2 n

2i

2i ⋅ (n /2i) = n

n /2i

• This is really a method of visualization

• Very similar to unrolling, but much easier to keep
track of what’s going on

• It’s not (quite) a proof, but generally it is sufficient for
reasoning about running times in this class

• “Solve the recurrence” can be done by drawing
the recursion tree and explaining the solution

Recurrences: Recursion Tree

Recurrences: Guess & Verify
Method 3. Guess and Verify

• Eyeball recurrence and make a guess

• Verify guess using induction

• More on this later…

General Recursion Trees
• Consider a divide and conquer algorithm that

• spends time on non-recursive work and makes
recursive calls, each on a problem of size

• Up to constant factors (which we hide in , the running time of
the algorithm is given by what recurrence?

•

• Because we care about asymptotic bounds, we can assume base
case is a small constant, say

O(f(n)) r
n/c

O())

T(n) = rT(n/c) + f(n)

T(n) = 1

General Recursion Trees

A recursion tree for the recurrence T(n) = rT(n /c) + f(n)

• For each , the th level of tree has exactly nodes

• Each node at level has cost

i i ri

i, f(n/ci)

General Recursion Trees
• Running time of a recursive algorithm is the sum of all the

values (sum of work at all nodes at each level) in the recursion tree

• The th level of the tree has exactly nodes

• And each node at level has cost

Thus, the total recurrence costs:

• Here is the depth of the tree

• Number of leaves in the tree:

• Cost at leaves:

T(n)

i ri

i, f(n/ci)

T(n) =
L

∑
i=0

ri ⋅ f(n/ci)

L = logc n

rL = nlogc r

O(nlogc rf(1))

rL = rlogc n = (2log2 r)logc n = (2logc n)log2 r = (2log2 n)
log2 r
log2 c = nlogc r

Common Cases

• Decreasing series. If the series decays exponentially (every term
is a constant factor smaller than previous), cost at root dominates:

• Equal. If all terms in the series are equal:

• Increasing series. If the series grows exponentially (every term is
constant factor larger), then the cost at leaves dominates:

T(n) =
L

∑
i=0

ri ⋅ f(n/ci)

T(n) = O(f(n))

T(n) = O(f(n) ⋅ L) = O(f(n)log n)

T(n) = O(nlogc r)

Don’t forget:
L

∑
i=0

ai =
aL+1 − 1

a − 1

Master Theorem (optional)
Set of rules to solve some common recurrences automatically

(Master Theorem) Let and . Let be defined by
the recurrence and .
Then can be bounded asymptotically as follows.

• If for some constant , then

• If , then

• If , for some constant , and if
for some constant and all sufficiently large , then

a ≥ 1, b > 1 f(n) ≥ 0 T(n)
T(n) = aT(n/b) + f(n) T(1) = O(1)

T(n)

f(n) = nlogb a−ϵ ϵ > 0 T(n) = Θ(nlogb a)

f(n) = Θ(nlogb a) T(n) = Θ(nlogb a log n)

f(n) = Ω(nlogb a+ϵ) ϵ > 0 af(n/b) ≤ c0 f(n)
c0 < 1 n

T(n) = Θ(f(n))

Master Theorem
• It exists; it can make things easier. You don’t need to

know it

• OK to use in this class, but I don’t encourage (nor
discourage) it

• Recursion trees promote a better understanding of
the recurrence—and they can be simpler

• Master Theorem only applies to some recurrences
(generalizations do exist)

Divide and Conquer:
Sorting and Recurrences

Divide & Conquer: Quicksort
Who remembers Quicksort?
• Choose a pivot element from the array
• Partition the array into two parts:

• LEFT: all elements that are less than or equal to the pivot
• RIGHT: all elements that are greater than the pivot

• Recursively quicksort the LEFT and RIGHT subarrays

Divide & Conquer: Quicksort
• Description. (Divide and conquer): often the cleanest way to

present is short and clean pseudocode with high level explanation
• Correctness proof. Induction and showing that partition step

correctly partitions the array.

Quick Sort Analysis
• How long does partition take?

• Let’s write a recurrence relation for quick sort!

• Challenge: the size of the subproblems depends pivot!?!?!

• Idea: let be the rank of the pivot, where rank is the (lowest)
index of the item in the sorted list.

• Base case:

• General Case:

r

O(n)

T(1) = 1

T(n) = T(r − 1) + T(n − r) + O(n)

Partition that’s pivot≤ Partition that’s
pivot

>

Quick Sort Analysis
• Let us analyze some cases for

• Best case:

• r is the median:

• (we can show how to compute the median in time)

• Worst case:

• or

• When everything falls on “one side” of the pivot

• Something in between:

• say

r

r = ⌊n/2⌋
O(n)

r = 1 r = n

n/10 ≤ r ≤ 9n/10

Note in the worst-case analysis, we would only consider the worst case for .
We will look at the different cases to get a sense and get some practice.

r

Quick Sort: Cases
• Suppose (pivot is the median element), then recurrence is:

• ,

• We have already solved this recurrence!

•

• Suppose or , then the recurrence is:

•

• What running time would this recurrence lead to?

• Let’s draw the recurrence tree…

• (notice: this is tight!)

r = n/2
T(n) = 2T(n/2) + O(n) T(1) = 1

T(n) = O(n log n)

r = 1 r = n − 1
T(n) = T(n − 1) + T(1) + O(n), T(1) = 1

T(n) = Θ(n2)

Quick Sort: Cases
• Suppose (that is, you get a one-tenth, nine-tenths split)

• What is the recurrence?

•

• Let’s look at the recursion tree for this recurrence…

• We get , in fact, we get

• In general, the following holds (we’ll show it later):

•

• If

• If

r = n/10

T(n) = T(n/10) + T(9n/10) + O(n)

T(n) = O(n log n) Θ(n log n)

T(n) = T(αn) + T(βn) + O(n)
α + β < 1 : T(n) = O(n)
α + β = 1 : T(n) = O(n log n)

Quick Sort: Theory and Practice
• We can find the median element in time

• Using divide and conquer!

• But in practice, the constants hidden in the Oh notation for
median finding are too large to use for sorting

• Common heuristic

• Median of three (pick elements from the start, middle and
end and take their median)

• If the pivot is chosen uniformly at random

• quick sort runs in time in expectation and with
high probability

• We will prove this in the second half of the class

Θ(n)

O(n log n)

Recurrences
So far we’ve focused on divide and conquer algorithms, where we
split the problem in more than one subproblem.

Question. Can you think of some examples (that you haven’t seen
so far) where we split the problem into one smaller subproblem?

D&C: One Smaller Subproblem
• Binary search in array

•
• Search in a binary search tree

•
• Fast exponentiation (you may not have seen this)

• Compute , how many multiplications?

• Naive way:

• Faster way: (suppose is even)

•
• What does this solve to?

T(n) = T(n/2) + 1

T(n) = T(n/2) + 1

an

a ⋅ a ⋅ … ⋅ a (n times)
an = (an/2)2 n

T(n) = T(n/2) + 1

Selection

Selection: Problem Statement
Given an array of size , find the th smallest element for
any

• Special cases: min , max :

• Linear time,

• What about median ?

• Sorting:

• Binary heap:

Question. Can we do it in ?

• Surprisingly yes.

• Selection is easier than sorting.

A[1,…, n] n k
1 ≤ k ≤ n

k = 1 k = n
O(n)

k = ⌊n + 1⌋/2
O(n log n)

O(n log k)

O(n)

Selection: Problem Statement
Example. Take this array of size 10:

Suppose we want to find 4th smallest element

• First, take any pivot from

• If is the 4th smallest element, return it

• Else, we partition around and recurse

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

p A[1,…n]
p

A p

Selection Algorithm: Idea
Select :

If : return

Else:

• Choose a pivot ; let be the rank of

• Partition(

• If , return

• Else:

• If : Select

• Else: Select

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)

Selection: Problem Statement
Example. Take this array of size 10:

Suppose we want to find 4th smallest element

• Choose pivot

• What is its rank?

• Rank

• So let’s find all of the smaller elements of :

•

• Want to find the element of rank in this new array

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

8

7
A

A′ = 2 |4 |5 |3 |1 |7
4

Selection: Problem Statement
Example. Take this array of size 10:

Suppose we want to find 4th smallest element

• Choose as pivot

• What is its rank?

• Rank

• So let’s find all of the larger elements of :

•

• Want to find the element of rank in this new array

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

3

3
A

A′ = 12 |4 |5 |10 |7 |9 |8
4 − 3 = 1

When is this method good?
• If we guess the pivot right! (but we can’t always do that)

• If we partition the array pretty evenly (the pivot is close to
the middle)

• Let’s say our pivot is not in the first or last ths of the
array

• What is our recurrence?

•

•

3/10

T(n) ≤ T(7n/10) + O(n)

T(n) = O(n)

Our high-level goal

• Find a pivot that’s close to the median—has a rank
between and , in time

• But the array is unsorted? How do we do that?

• Want to always be successful

3n/10 7n/10 O(n)

Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

n = 54

• Divide the array of size into groups of elements (ignore
leftovers)

• Find median of each group

n ⌈n/5⌉ 5

Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

38 18 35

43

2328 40 19 31

15

n = 54

medians

• Divide the array of size into groups of elements (ignore
leftovers)

• Find median of each group

n ⌈n/5⌉ 5

Finding an Approximate Median
• Divide the array of size into groups of elements (ignore

leftovers)
• Find median of each group
• Find median of medians recursively
• Use median of medians as pivot

n ⌈n/5⌉ 5

M ← ⌈n/5⌉
M

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

median of
medians 38 18 35

43

2328 40 19 31

15

28

n = 54

medians

What did we gain?
• How can I show that the median of medians is “close to

the center” of the array?

• What elements can I say, for sure, are the median of
medians?

• The smaller half of the medians

• elements

• Any other elements?

• Another elements in each median’s list

≤

n/10

2

Visualizing MoM
• In the 5 x n/5 grid, each column represents five consecutive

elements

• Imagine each column is sorted top down

• Imagine the columns as a whole are sorted left-right

• We don’t actually do this!

• MoM is the element closest to center of grid

Visualizing MoM
• Red cells (at least) are smaller than 3n/10 M

Visualizing MoM
• Red cells (at least) in size are smaller than

• If we are looking for an element larger than , we can throw these
out, before recursing

• Symmetrically, we can throw out elements larger than if
looking for a smaller element

• Thus, the recursive problem size is at most

3n/10 M
M

3n/10 M

7n/10

How Good is Median of Medians
Claim. Median of medians is a good pivot, that is, at least th of
the elements are and at least th of the elements are .

Proof.

• Let be the size of each group.

• is the median of medians

• So of the group medians

• Each median is greater than 2 elements in its group

• Thus elements

• Symmetrically, elements.

M 3/10
≥ M 3/10 ≤ M

g = ⌈n/5⌉
M g

M ≥ g/2

M ≥ 3g/2 = 3n/10
M ≤ 3n/10 ∎

Median of Medians Subroutine
• MoM():

• If : return

• Else:

• Divide into groups

• Compute median of each group

• group medians

• Mom()

A, n

n = = 1 A[1]

A ⌈n/5⌉

A′ ←

A′ , ⌈n/5⌉
T(n /5) + O(n)

Linear time Selection
Select :

If : return ; else:

• Call median of medians to find a good pivot
 ;

• Partition(

• If , return

• Else:

• If : Select

• Else: Select

(A, k)

|A | = 1 A[1]

p ← MoM(A, n) n = |A |

r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)

T(n /5) + O(n)

Larger subproblem
has size ≤ 7n /10

Overall: T(n) = T(n/5) + T(7n/10) + O(n)

Selection Recurrence
• Okay, so we have a good pivot

• We are still doing two recursive calls

•

• Key: total work at each level still goes down!

• Decaying series gives us :

T(n) ≤ T(n/5) + T(7n/10) + O(n)

T(n) = O(n)

Why the Magic Number 5?
• What was so special about 5 in our algorithm?

• It is the smallest odd number that works!

• (Even numbers are problematic for medians)

• Let us analyze the recurrence with groups of size 3

•

• Work is equal at each level of the tree!

•

T(n) ≤ T(n/3) + T(2n/3) + O(n)

T(n) = Θ(n log n)

Theory vs Practice
• -time selection by [Blum–Floyd–Pratt–Rivest–Tarjan 1973]

• Does compares

• Upper bound:

• [Dor–Zwick 1995] compares

• Lower bound:

• [Dor–Zwick 1999] compares.

• Constants are still too large for practice

• Random pivot works well in most cases!

• We may analyze this when we do randomized algorithms

O(n)
≤ 5.4305n

≤ 2.95n

≥ (2 + 2−80)n

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

