
Algorithms: Introduction to Divide & Conquer

Model 1: Merge sort

mergesort(A) =

if len(A) ≤ 1 then
return A

split A into halves (AL, AR)

A′L ← mergesort(AL)

A′R ← mergesort(AR)

A′ ← merge(A′L, A′R) // merge is a non-recursive function that takes two sorted lists as input and yields

// a new sorted list that includes the contents of the original lists

return A′

T(1) = Θ(1)

T(n) = 2T(n/2) + Θ(n)

n/8n/8

n/4

n/8n/8

n/4

n/2

n/8n/8

n/4

n/8n/8

n/4

n/2

n

Recall the merge sort algorithm, which works by splitting the input
list into halves, recursively sorting the two halves, and then merging
the two sorted halves back together. Merge sort pseudocode is shown
in Model 1. Learning objective: Students will use

recurrence relations and recursion trees
to describe and analyze divide and
conquer algorithms.1 How long does mergesort take on a list of length 1?

2 Just by looking at the code, how many recursive calls does merge-

sort make at each step? Hint: don’t overthink this one; yes, it’s
really that easy.



algorithms: introduction to divide & conquer 2

3 If A has size n, what are the sizes of the inputs to the recursive
calls to mergesort (you can assume n is even)?

4 (Review) If A has size n, how long does it take (in big-Θ terms) to
merge AL and AR after they are sorted? In other words, what is
the run-time of merge(AL,AR)?

5 Let T(n) denote the total amount of time taken by mergesort on an
input list of length n. Use your answers to the previous questions
to explain the equations for T(n) given in the model. This is called
a recurrence relation because it defines T(n) via recursion.

6 Suppose some algorithm X takes an input of size n, splits the in-
put into three equal-sized pieces, and makes a recursive call on
each piece. Deciding how to split up the input into pieces takes
Θ(n2) time; combining the results of the recursive calls takes ad-
ditional Θ(n) time. In the base case, algorithm X takes constant
time on an input of size 1. Write a recurrence relation X(n) de-
scribing the time taken by algorithm X, similar to the one given in
the model.

7 Now suppose algorithm X makes only two recursive calls instead
of three, but each recursive call is still on an input one-third the
size of the original input. How does your recurrence relation for X
change?

8 Write a recurrence relation for binary search.

Analyzing Mergesort’s Recursion Tree

Now let’s return to considering merge sort. The tree shown in the
model represents the call tree of merge sort on an input of size n, that

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


algorithms: introduction to divide & conquer 3

is, each node in the tree represents one recursive call to merge sort.
The expression at each node shows how much work happens at that
node (all of the non-recursive work, which for mergesort is the work
of the merge routine). Note that this work in expressed in terms of
the problem size in that particular recursive call.

9 Notice that the entire tree is not shown; the dots indicate that the
tree continues further with the same pattern. What is the depth
(number of levels) of the tree, in terms of n?

10 How much total work happens on each individual level of the
tree?

11 How much total work happens in the entire tree?

12 Draw a similar tree for the second version of algorithm X.

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


algorithms: introduction to divide & conquer 4

Note. The strategy of expressing a recurrence relation in tree form
and analyzing the recursion tree’s dimensions (e.g., nodes per level,
number of levels, work per node) is not the only way to justify the
total cost of a recursive algorithm. In fact, if we were to continue that
style of analysis for the algorithm above, we’d see that the algebra is
quite messy. Nonetheless, the recursion tree method is very effective.

We will consider additional techniques later in this class, and
you may always use any justifiable approach that produces a correct
result.

A Representative Problem

Please consider the following problem as representative of what you
may find on the exam. You may work on it as part of the activity
period, collaborate with peers without restriction, ask questions in
office hours, or talk to the TAs. This question is not graded, so you
may discuss it as openly as is helpful for your learning.

13 Consider an algorithm that solves problems of size n by divid-
ing them nine subproblems of size n/3, recursively solving each
subproblem, and combining the solutions in (n2) time.

Please provide a recurrence relationship for this algorithm, and
solve the recurrence giving as tight a Big Oh bound as possi-
ble. You must justify your answer using a method we have dis-
cussed in class— e.g., if using the recursion-tree method, draw
the first few levels of the tree and explain why that leads to the
time bound. You do not need to verify by induction (unless you are
using the guess and check method, in which case you do need a
proof).

© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

	Model 1: Merge sort

