Shortest Path Problem

Shortest path in a network.

- Directed graph $G=(V, E)$.
- Source s, destination t.
- Length $\ell_{e}=$ length of edge e.
cost of path = sum of edge costs in path I
Shortest path problem: find shortest (directed) path from s to t. Single source shortest path problem: find shortest directed path from s to every node in V

Cost of path s-2-3-5-t
$=9+23+2+16$
$=48$.

Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set S of explored nodes for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S=\{s\}, d(s)=0$.
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v)=\min _{e=(u, v): u \in S} d(u)+I_{e},
$$

add v to S, and set $d(v)=\pi(v)$.
shortest path to some u in explored part, followed by a single edge (u, v)

Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set S of explored nodes for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S=\{s\}, d(s)=0$.
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v)=\min _{e=(u, v): u \in S} d(u)+I_{e},
$$

add v to S, and set $d(v)=\pi(v)$.
shortest path to some u in explored part, followed by a single edge (u, v)

Dijkstra's Algorithm

Dijkstra's algorithm.

- Dijkstra's algorithm is a greedy algorithm.
- What defines a "step" towards our goal?
- What is our optimization criteria at each step?
- The result is a globally optimal solution to the SSSP problem!
- How to implement?

Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain $\pi(V)=\min _{e=(u, v): u \in S} d(u)+I_{e}$.

- Next node to explore = node with minimum $\pi(v)$.
- When exploring v, for each outgoing edge $e=(v, w)$, update

$$
\pi(w)=\min \left\{\pi(w), \pi(v)+\left.\right|_{e}\right\} .
$$

Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by $\pi(v)$.

	Priority Queue	
PQ Operation	Array	Binary heap
Insert	n	$\log n$
ExtractMin	n	$\log n$
ChangeKey	1	$\log n$
IsEmpty	1	1
Total	n^{2}	$m \log n$

Dijkstra's Algorithm Pseudocode

Dijkstra(G, s):
let $T \leftarrow(\{s\}, \varnothing)$
let $P Q$ be an empty priority queue
for each neighbor v of s, add edge (s, v) to $P Q$ with priority I(e)
while T doesn't have all vertices of G and $P Q$ is non-empty:

```
repeat {
                                    e<PQ.removeMin() // skip edges with both ends in T
} until PQ is empty or e=(u,v) for }u\inT,v\not\in
if e=(u,v) for u\inT,v\not\inT
    add e (and v) to T
        for each neighbor w of v
            add edge (v,w) to PQ with weight/key d(s,v) + I(v,w)
```


Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node $u \in S, d(u)$ is the length of the shortest s-u path.
Pf. (by induction on $|S|$)
Base case: $|S|=1$ and $d(s)=0$, which is true.
Inductive hypothesis: Assume true for $|S|=k \leq n$. Consider $|S|=k+1$

- Let v be last node added to S, and let u-v be the chosen edge.
- By inductive hypothesis, all nodes in $\mathrm{S}-\{\mathrm{v}\}$ have correct shortest path dis.
- Claim: the s-u path plus (u, v) is an s-v path of shortest length $\pi(v)$.
- Consider any s-v path P. We'll see that it's no shorter than $\pi(\mathrm{v})$.
- Let $x-y$ be the first edge in P that leaves $S-\{v\}$, and let P^{\prime} be the subpath to x.

