Shortest Path Problem

Shortest path in a network.

- Directed graph \(G = (V, E) \).
- Source \(s \), destination \(t \).
- Length \(l_e \) = length of edge \(e \).

Shortest path problem: find shortest (directed) path from \(s \) to \(t \).

Single source shortest path problem: find shortest directed path from \(s \) to every node in \(V \).

Cost of path = sum of edge costs in path

Cost of path \(s\)-2-3-5-t
\[
= 9 + 23 + 2 + 16
= 48.
\]
Dijkstra's algorithm.

- Maintain a set S of explored nodes for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S = \{s\}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v) = \min_{e = (u,v) : u \in S} d(u) + l_e,
$$

add v to S, and set $d(v) = \pi(v)$.

shortest path to some u in explored part, followed by a single edge (u, v)
Dijkstra's algorithm.

- Maintain a set S of explored nodes for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S = \{s\}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes $\pi(v)$ and add v to S, and set $d(v) = \pi(v)$.

\[
\pi(v) = \min_{e = (u,v): u \in S} d(u) + l_e,
\]

shortest path to some u in explored part, followed by a single edge (u, v).
Dijkstra's Algorithm

Dijkstra's algorithm.

- Dijkstra’s algorithm is a **greedy algorithm**.
 - What defines a “step” towards our goal?
 - What is our optimization criteria at each step?

- The result is a globally optimal solution to the SSSP problem!

- How to implement?
Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain \(\pi(v) = \min_{e=(u,v): u \in S} d(u) + \|e\).

- Next node to explore = node with minimum \(\pi(v) \).
- When exploring \(v \), for each outgoing edge \(e = (v, w) \), update
 \[\pi(w) = \min \{ \pi(w), \pi(v) + \|e\} \].

Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by \(\pi(v) \).

<table>
<thead>
<tr>
<th>Priority Queue Operation</th>
<th>Array</th>
<th>Binary heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td>(n)</td>
<td>(\log n)</td>
</tr>
<tr>
<td>ExtractMin</td>
<td>(n)</td>
<td>(\log n)</td>
</tr>
<tr>
<td>ChangeKey</td>
<td>(1)</td>
<td>(\log n)</td>
</tr>
<tr>
<td>Empty</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>Total</td>
<td>(n^2)</td>
<td>(m \log n)</td>
</tr>
</tbody>
</table>
Dijkstra's Algorithm Pseudocode

\textbf{Dijkstra}(G, s):

1. let \(T \leftarrow (\{s\}, \emptyset) \)
2. let \(PQ \) be an empty priority queue
3. for each neighbor \(v \) of \(s \), add edge \((s,v)\) to \(PQ \) with priority \(l(e) \)

while \(T \) doesn’t have all vertices of \(G \) and \(PQ \) is non-empty:

\begin{itemize}
 \item repeat {
 \begin{itemize}
 \item \(e \leftarrow PQ.\text{removeMin}() \) \(// \) skip edges with both ends in \(T \)
 \end{itemize}
 \} until \(PQ \) is empty or \(e=(u,v) \) for \(u \in T, v \notin T \)
\end{itemize}

\textbf{if} \(e=(u,v) \) for \(u \in T, v \notin T \)
\textbf{add} \(e \) (and \(v \)) to \(T \)
\textbf{for each neighbor} \(w \) of \(v \)
\begin{itemize}
 \item add edge \((v,w)\) to \(PQ \) with weight/key \(d(s,v) + l(v,w) \)
\end{itemize}
Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node \(u \in S \), \(d(u) \) is the length of the shortest \(s-u \) path.

Pf. (by induction on \(|S|\))

Base case: \(|S| = 1\) and \(d(s) = 0 \), which is true.

Inductive hypothesis: Assume true for \(|S| = k \leq n\). Consider \(|S| = k + 1\)

- Let \(v \) be last node added to \(S \), and let \(u-v \) be the chosen edge.
- By inductive hypothesis, all nodes in \(S-\{v\} \) have correct shortest path \(d \).
- **Claim:** the \(s-u \) path plus \((u, v) \) is an \(s-v \) path of shortest length \(\pi(v) \).
 - Consider any \(s-v \) path \(P \). We'll see that it's no shorter than \(\pi(v) \).
 - Let \(x-y \) be the first edge in \(P \) that leaves \(S-\{v\} \), and let \(P' \) be the subpath to \(x \).

\[
\ell(P) \geq \ell(P') + \ell(x, y) \geq d(x) + \ell(x, y) \geq \pi(y) \geq \pi(v)
\]

- nonnegative weights
- inductive hypothesis
- defn of \(\pi(y) \)
- Dijkstra chose \(v \) instead of \(y \)