
Greedy Algorithms

Set of Algorithm Design Paradigms

• Greedy Algorithms

• Divide and Conquer

• Dynamic Programming

• Network flow

Greedy: Make Locally Optimal Choices
Greedy algorithms build solutions by making locally optimal choices at each
step of the algorithm. Our hope is that we eventually reach a global optimum.

• Intuitive example: How do you navigate the Manhattan street grid on foot?

• Suppose you are trying to get to a location that is South and East of your
starting location 
 
 
 
 
 

• Bill’s Navigation Algorithm: Choose a direction (South or East) and walk
until you hit a red light or reach your target street. Then walk in the other
direction until you hit a red light or reach your target street.

• Each decision uses only local information, but your choices always
bring you closer to your goal (always makes progress)

• Surprisingly, greedy algorithms sometimes produce globally optimal solutions!

An Optimal Greedy Example: Filling Up on Gas

SFO NYC

Suppose you are on a road trip on a long straight highway

• Goal: minimize the number of times you stop to get gas

• Many possible ways to choose which gas station to stop at

• Greedy: wait until you are just about to run out of gas (i.e., you won’t
make it to the *next* gas station), then stop for gas

• This turns out to be an optimal solution!

A Typical Problem Structure

SFO NYC

Have a global objective. E.g., want to minimize or maximize a quantity

Make local optimizations. At every step, an algorithm can make
several choices; a greedy algorithm makes this choice myopically

• For some problems, a greedy algorithm ends up being optimal

• Greedy happens to be one way to reach an optimal solution

High-Level Problem Solving Steps
• Formalize the problem

• Design the algorithm to solve the problem

• Usually this is natural/intuitive/easy for greedy

• Prove that the algorithm is correct

• This means proving that greedy is optimal (i.e., the resulting
solution minimizes or maximizes the global problem objective)

• This is the hard part! (which is why we will focus on it)

• Analyze running time

• Often more straightforward for greedy algorithms than others

Problem Example: Class Scheduling
Class scheduling. Suppose you have a single classroom. 

You are given the list of start times and finish times
 of classes (labeled).  

What is the maximum number of non-conflicting classes you can
schedule?

s1, …, sn
f1, …, fn n 1,…, n

From Erickson’s Algorithms Book

Problem Example: Interval Scheduling
Job scheduling. Here is a general job scheduling problem:

Suppose you have a machine that can run one job at a time.

You are given job requests with start and finish times: and
.

n s1, …, sn
f1, …, fn

time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs d and g
are incompatible:

g starts before d ends

Schedule with jobs
b, e, and h
Is optimal

How do you determine the maximum number of compatible requests?

What to be Greedy About?
Algorithmic idea: Pick a criterion to be greedy about. Keep
choosing compatible jobs based on chosen criterion.

• Lets start with some of the obvious ones: job start time

• Greedy algorithm 1: schedule jobs with earliest start time first

• Is this the best way?

• If not, can we come up with a counter example?

counterexample for earliest start time

Many Ways to be Greedy
Algorithmic idea: Pick a criterion to be greedy about. Keep
choosing compatible jobs based on chosen criterion.

• Greedy algorithm 2: schedule jobs with shortest interval first

• That is, smallest value of

• Is this the best way?

• If not, can we come up with a counter example?

fi − si

counterexample for shortest interval

Many Ways to be Greedy
Algorithmic idea: Pick a criterion to be greedy about. Keep
choosing compatible jobs based on chosen criterion.

• Greedy algorithm 3: schedule jobs that conflict with the fewest
other jobs first

• Is this the best way?

• If not, can we come up with a counter example?

counterexample for fewest conflicts

Many Ways to be Greedy. Not all are equal…

Algorithmic idea: Pick a criterion to be greedy about. Keep
choosing compatible jobs based on chosen criterion.

• We’ve identified criteria that do not work:

• Earliest start time first

• Shortest interval first

• Fewest conflicts first

• How about: earliest finish time first?

• Surprisingly, this results in an optimal algorithm!

• But we need to prove why it is optimal

• Intuition: earliest finish time first frees the shared resource
as soon as possible (but this is not a proof!)

Earliest-Finish-Time-First Algorithm

Proving Algorithm Correctness
• We first want to prove our algorithm yields a valid schedule

• Valid here means consists of compatible requests

• This is true by construction!

• We next want to prove our algorithm yields an optimal schedule

• Optimal here means schedules the maximum number of
requests

• Note: there can be more than one optimal solution; we
just need to prove our algorithm always finds one of them

S

S

S

Proving Algorithm Correctness
• If we let be be some optimal set of jobs, then

• Goal: show , i.e., our greedy solution also
selects the same number of jobs and is therefore
optimal

• Notice, we don’t know exactly what is, and we don’t
know how to find it. But there must be at least one optimal
schedule, and we'll prove that it doesn’t schedule more
jobs than does by making an exchange argument.

𝒪

|S | = |𝒪 |

𝒪

S

Exchange Argument
Idea behind proof by exchange argument:

• Transform into one step at a time, without hurting solution
(that is, each of our transformations must preserve optimality)

• Let be the sequence of jobs scheduled by the
optimal algorithm, and let be the sequence of
jobs scheduled by greedy, such that

• Our goal is to modify to produce a new solution that is:

• No worse than , and

• Closer to in some measurable way

O G

O = o1, o2, …, om
G = g1, g2, …, gk

O ≠ G

O O′￼

O

G

 (optimal)G (optimal)O (optimal)→ O′￼ (optimal)→ O′￼′￼ → ⋯ →

Exchange Argument Proof Example
• Let be the sequence of jobs scheduled by the

optimal algorithm, and 
Let be the sequence of jobs scheduled by
greedy, both ordered by increasing finish time

• By induction, we will show that we can exchange each job
scheduled by optimal with a non-conflicting job scheduled by
greedy to create a new optimal schedule

Base case: . In the beginning, greedy picks the job with the
earliest finish time, so , thus does not conflict with any of
the jobs

• We can therefore exchange with to get a new conflict-free
optimal schedule

O = o1, o2, …, om

G = g1, g2, …, gk

j = 1
fg1

≤ fo1
g1

o2, …, om

o1 g1
g1, o2, o3, …, om

Exchange Argument Proof Example
Inductive hypothesis: Assume we have an optimal conflict-free
schedule that is the same as greedy from job up to job

• In other words, we have:

• Because both and consist on non-conflicting jobs, neither
nor conflict with

• Recall, greedy picks earliest finish time among non-conflicting jobs

• Since which means does not conflict with
any remaining jobs

• We can exchange with the greedy choice to construct a new
optimal schedule

1 j − 1
O′￼= g1, g2, …, gj−1, oj, …, om

G O′￼ gj
oj g1, g2, …, gj−1

fgj
≤ foj

≤ soj+1
gj

oj+1, …om

oj gj
g1, g2, …, gj, oj+1, …, om

Are We Done? Almost
• We can keep replacing every job scheduled by the optimal

algorithm with a non-conflicting job scheduled by greedy until we
have an optimal schedule that contains all the greedy jobs

• But what if ? Then we’s have: 

• We next need to prove that .

• That is, our greedy schedule schedules the same number of
jobs as an optimal schedule, and its therefore optimal.

k < m
O′￼= g1, g2, …, gk, ok+1, …, om

k = m

Are We Done? Almost
Lemma 2. Greedy is optimal, that is, .

Proof. (By contradiction) Suppose .

• That is, we assume that there is a job that starts after ends

• What is the contradiction?

• Greedy keeps selecting jobs until no more compatible jobs left.
Since , greedy would also select compatible job

k = m
m > k

ok+1 gk

fgk
≤ fok

ok+1

(⇒⇐) ∎

Review: Exchange Argument Idea
• Assume there is an optimal solution that is different from the

greedy solution

• Show that we can modify to produce a new solution that is:

• No worse than

• Closer to in some measurable way

Idea behind proof by exchange argument:

• Transform into one step at a time, without hurting solution
(that is, each transformation preserves optimality)

 (optimal) (optimal) (optimal) (optimal)

O
G

O O′￼

O

G

O G

O → O′￼ → O′￼′￼ → ⋯ → G

Caution: Not Uniquely Optimal

We did not prove that greedy was the only optimal
solution: there can be more than one optimal solution

Caution: Induction Often Necessary

When making an exchange argument, we’re often recursively
applying some rule.

Induction and recursion are intimately related. Induction lets us
rigorously argue why we can continue to make these exchanges at
every step of the way.

Greedy: Proof Techniques
The textbook (reading) talks about two approaches to proving
correctness of greedy algorithms 

• Greedy stays ahead: Partial greedy solution is, at all times, as
good as an "equivalent" portion of any other solution

• Simple induction, often has an implicit exchange
argument at its heart

• Exchange Property: An optimal solution can be transformed
into a greedy solution without sacrificing optimality

• Structural bounds: There may be some lower (upper) bound
that a valid solution cannot exceed. Sometimes we can prove
greedy optimality by showing that greedy achieves this bounds.

Can use any approach that proves correctness

Example: Running Time Analysis
Let’s analyze all the steps of our job-scheduling algorithm:

• Sorting and relabelling jobs by finish times

•

• For each selected job , find next job such that

• We work our way through the list from ,
considering each job once

• Identifying compatibility is per interval (job), so

•

• Overall time

O(n log n)

i j sj ≥ fi

i = 1…n

O(1)

O(n)

O(n log n)

Review: Problem Solving Steps
• Formalize the problem

• Design the algorithm to solve the problem

• Usually this is natural/intuitive/easy for greedy

• Prove that the algorithm is correct

• This means proving that greedy is optimal (i.e., the resulting
solution minimizes or maximizes the global problem objective)

• This is the hard part! (which is why we spent most of our time on it)

• Analyze running time

• Often straightforward, since greedy rules are often simple

Acknowledgments

• The pictures in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

• Much of the content was based on slides developed by Shikha
Singh

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

