Directed Graphs

Announcements

- Homework 2 is due Wednesday at 10pm
- Solutions to in-class activities available on Glow
- Happy to answer questions in TA and office hours!
- Help hours today: course homepage calendar
- All hours today are in TCL 312 (back lab)
- Bennington College Datathon (details sent to CS colloquium list)
- Student announcements?

Quick Review: Trees

Recall (K\&T 3.2, page 78): Let $G=(V, E)$ be an undirected graph on n nodes. Any two of the following statements implies the third:

1. G is connected.
2. G does not contain a cycle (equivalently, G is acyclic).
3. G has $n-1$ edges.

> Note, this is a stronger version of the claim (К\&т 3.1$)$ that every n-node tree has exactly $n-1$ edges.

Quick Review: Trees

Recall: Let $G=(V, E)$ be an undirected graph on n nodes. Any two of the following statements implies the third (3.2 from K\&T, page 78):

1. G is connected.

$$
\text { Prove (1), (2) } \Longrightarrow \text { (3) }
$$

2. G does not contain a cycle (equivalently, G is acyclic).
3. G has $n-1$ edges.

The proof is by induction on the number of nodes, n.
Let $P(n)$ denote the statement, "Any graph G with n vertices that is connected and acyclic must have $n-1$ edges."

Base case: $n=1$.
G is a single node with no edges; G is connected and acyclic.

Inductive hypothesis:

Suppose $P(n)$ holds for all values of n from our base case until some $k \geq 1$: That is, assume that any connected, acyclic graph G that has k vertices has $k-1$ edges.

Quick Review: Trees

Recall: Let $G=(V, E)$ be an undirected graph on n nodes. Any two of the following statements implies the third (3.2 from K\&T, page 78):

1. G is connected.

$$
\text { Prove (1), (2) } \Longrightarrow \text { (3) }
$$

2. G does not contain a cycle (equivalently, G is acyclic).
3. G has $n-1$ edges.

Claim 1: G must have some vertex v that is a leaf $(\operatorname{deg}(v)=1)$
G cannot have any vertex u where $\operatorname{deg}(u)=0$ because G is connected.

Every vertex in G cannot have degree ≥ 2 because there would be a cycle: pick some vertex and walk at random until repeating a node. The walk cannot get stuck because every vertex has degree ≥ 2.

Quick Review: Trees

Recall: Let $G=(V, E)$ be an undirected graph on n nodes. Any two of the following statements implies the third (3.2 from K\&T, page 78):

1. G is connected.

$$
\text { Prove (1), (2) } \Longrightarrow(3)
$$

2. G does not contain a cycle (equivalently, G is acyclic).
3. G has $n-1$ edges.

Now, remove some vertex v, where $\operatorname{deg}(v)=1$, along with its incident edge.

We are left with a graph G^{\prime} that is still connected and still acyclic. Thus, we can apply our inductive hypothesis to conclude that G^{\prime} has $k-1$ edges.

Adding vertex v and its incident edge back to G^{\prime} does not introduce a cycle. G is connected, acyclic, and has $k+1$ vertices and k edges.

Quick Review: Finding Connected Components

Algorithm. Given a graph $G=(V, E)$:

- Pick some vertex $v \in V$, and run $B F S(G, v)$. Let S be the set of vertices returned by the breadth-first search from v.
- Add S to the set of connected components, and repeat the process starting with some vertex that has not appeared in any connected component so far.
- When all vertices have been included, all connected components have been found.

Running time?

Quick Review: Directed Graphs

Notation. $G=(V, E)$.

- Edges have "orientation"
- Edge (u, v) (or sometimes denoted $u \rightarrow v$) leaves node u and enters node v
- Vertices have an "in-degree" and an "out-degree"

Rest of graph terminology extends to directed graphs: directed paths, cycles, etc.

Directed Graphs Examples

Web graph:

- Nodes: Webpages
- Edges: Hyperlinks
- Orientation of edges is crucial

- Search engines use hyperlink structure to rank web pages

Road network:

- Vertices: Intersections
- Edges: Streets (one-way)
- Raise your hand if you've navigated (recently) without a GPS app?

Directed Reachability

Directed reachability. Given a node s find all nodes reachable from s.

- Can use both BFS and DFS. They both visit exactly the set of nodes reachable from start node s (but perhaps different orders).
- BFS/DFS trees show reachability from s, but do not say anything about reaching s from any other nodes!!!

Strong Connectivity

- Strong connectivity. Connected components in directed graphs are defined based on mutual reachability. Two vertices u, v in a directed graph G are mutually reachable if there is a directed path from u to v AND from from v to u.
- A graph G is strongly connected if every pair of vertices are mutually reachable

Strongly Connected Components

- Strongly-connected components. For each $v \in V$, the set of vertices mutually reachable from v, defines the strongly-connected component of G containing v.

Deciding Strong Connectivity

Problem. Given a directed graph G, determine if G is strongly connected.

Any ideas?

Testing Strong Connectivity

Idea. Flip the edges of G and do a BFS on the new graph

- Build $G_{\mathrm{rev}}=\left(V, E_{\mathrm{rev}}\right)$ where $(u, v) \in E_{\mathrm{rev}}$ iff $(v, u) \in E$
- There is a directed path from v to u in $G_{\text {rev }}$ iff there is a directed path from u to v in G
- Call $\operatorname{BFS}\left(G_{\text {rev }}, v\right)$: Every vertex is reachable from v (in $G_{\text {rev }}$) if and only if v is reachable from every vertex (in G).

Analysis (Performance)

- $\operatorname{BFS}(G, v): O(n+m)$ time
- Build $G_{\text {rev }}: O(n+m)$ time
- $\operatorname{BFS}\left(G_{\mathrm{rev}}, v\right): O(n+m)$ time
- Overall, linear time algorithm!

Testing Strong Connectivity

Idea. Flip the edges of G and do a BFS on the new graph

- Build $G_{\mathrm{rev}}=\left(V, E_{\mathrm{rev}}\right)$ where $(u, v) \in E_{\mathrm{rev}}$ iff $(v, u) \in E$
- There is a directed path from v to u in $G_{\text {rev }}$ iff there is a directed path from u to v in G
- Call $\operatorname{BFS}\left(G_{\text {rev }}, v\right)$: Every vertex is reachable from v (in $G_{\text {rev }}$) if and only if v is reachable from every vertex (in G).

Analysis (Correctness)

- Claim. If v is reachable from every node in G and every node in G is reachable from v then G must be strongly connected
- Proof. For any two nodes $x, y \in V$, they are mutually reachable through v, that is, $x \leadsto v \leadsto y$ and $y \leadsto v \leadsto z \square$

Directed Acyclic Graphs (DAGs)

Definition. A directed graph is acyclic (or a DAG) if it contains no (directed) cycles.

- DAG is typically pronounced, not spelled out
- Rhymes with "bag"

an example DAG

Topological Ordering

Problem. Given a DAG $G=(V, E)$ find a linear ordering of the vertices such that for any edge $(v, w) \in E, v$ appears before w in the ordering.
(Said differently, if you number all of the vertices in your sequence of n vertices v_{1}, \ldots, v_{n}, then any edge that leaving a vertex v_{i} can only enter a vertex $v_{j>i}$)

Example. Find an ordering in which courses can be taken that satisfies prerequisites.

Topological Ordering: Example

Any ordering where all arrows "go to the right" is a valid topological sort

Not a valid topo. sort!

Topological Ordering and DAGs

Lemma. If G has a topological ordering, then G is a DAG.
Proof. [By contradiction] Suppose G has a cycle C. Let
$v_{1}, v_{2}, \ldots, v_{n}$ be the topological ordering of G

- Let v_{i} be the lowest-indexed node in C, and let v_{j} be the node just before v_{i} in the cycle; because C starts and ends on $v_{i},\left(v_{j}, v_{i}\right)$ is an edge
- By our choice of i, we have $i<j$.
- On the other hand, since $\left(v_{j}, v_{i}\right)$ is an edge and $v_{1}, v_{2}, \ldots, v_{n}$ is a topological order, we must have $j<i(\Rightarrow \Leftarrow)$ ■
the directed cycle C

the supposed topological order: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$

Topological Ordering and DAGs

- No directed cyclic graph can have a topological ordering. Why?
- Does every DAG have a topological ordering?
- Yes, can prove by induction (and construction)
- How do we compute a topological ordering?
- What property should the first node in any topological ordering satisfy?
- Cannot have incoming edges, i.e., indegree $=0$
- Can we use this idea repeatedly?

Finding a Topological Ordering

Claim. Every DAG has a vertex with in-degree zero.
Proof. [By contradiction] Suppose $G=(V, E)$ is a DAG where every vertex $v \in V$ has an incoming edge.

- Pick any vertex t. There must be an edge (s, t).
- Walk backwards following these incoming edges for each vertex
- After $n+1$ steps, we must have visited some vertex w twice (why?)
- Nodes between two successive visits to w form a cycle. This is a contradiction, because G is a DAG. $(\Rightarrow \Leftarrow)$ ■

> Can we use this claim as a building block in an algorithm to find a topological ordering?

Topological Sorting Algorithm

Idea: Repeatedly "remove" vertices that have in-degree 0 from the DAG.

TopologicalSorting(G) $\triangleleft G=(V, E)$ is a DAG

Initialize T[1..n] $\leftarrow 0$ and $\mathrm{i} \leftarrow 0$
while V is not empty do
$i \leftarrow i+1$
Find a vertex $v \in \mathrm{~V}$ with indeg(v) $=0$
$\mathrm{T}[\mathrm{i}] \leftarrow \mathrm{v}$
Delete v (and its edges) from G
Analysis:

- Correctness, any ideas how to proceed?
- Running time?

Topological Sorting Algorithm

Analysis (Correctness). Proof by induction on number of vertices n :

- Base case:
- $n=1$. There are no edges; the vertex itself forms topological ordering
- Inductive hypotheis:
- Suppose our algorithm is correct for all DAGs w/ less than k vertices
- Consider an arbitrary DAG with k vertices
- Must contain a vertex v with in-degree 0 (we proved it)
- Deleting that vertex and all outgoing edges gives us a graph G^{\prime} with less than k vertices that is still a DAG
- Can invoke inductive hypothesis on G^{\prime} !
- Let $u_{1}, u_{2}, \ldots, u_{n-1}$ be a topological ordering of G^{\prime}, then $v, u_{1}, u_{2}, \ldots, u_{n-1}$ must be a topological ordering of $G \square$

Topological Sorting Algorithm

Running time: What tasks do we need to perform?

- (Initialize) Create an "in-degree array" ID[l..n] of all vertices
- $O(n+m)$ time
- Find a vertex with in-degree zero

Can we do better?

- $O(n)$ time
- We do this repeatedly this until we run out of vertices! $O\left(n^{2}\right)$
- Update in-degree of all vertices adjacent to removed vertex
- O (outdegree(v)) time for each $v: O(n+m)$ time total
- What is the Bottleneck step?
- Finding vertices with in-degree zero

Linear-Time Algorithm

- We need a faster way to find vertices with in-degree 0 instead of searching through the entire in-degree array!
- Idea: Maintain a queue (or stack) S of in-degree 0 vertices
- Update S : When v is deleted, decrement $\operatorname{ID}[u]$ for each neighbor u; if $\operatorname{ID}[u]=0$, add u to S :
- O (outdegree(v)) time
- Total time for previous step over all vertices:

$$
\sum_{v \in V} O(\text { outdegree }(v))=O(n+m) \text { time }
$$

- Topological sorting takes $O(n+m)$ time and space!

Traversals: Many More Applications

BFS and/or DFS can also be used to solve many other problems

- Find a (directed) cycle in a (directed) graph
- Find a cycle containing a specific vertex v
- Find all cut vertices of a graph (A cut vertex is one whose removal increases the number of connected components)
- Find all bridges of a graph (A bridge is an edge whose removal increases the number of connected components
- Find all biconnected components of a graph (A biconnected component is a maximal subgraph having no cut vertices)
- Solve fun problems on Homework 3!

All of this can be done in $O(|V|+|E|)$ space and time!

