
Directed Graphs

Announcements
• Homework 2 is due Wednesday at 10pm

• Solutions to in-class activities available on Glow

• Happy to answer questions in TA and office hours!

• Help hours today: course homepage calendar

• All hours today are in TCL 312 (back lab) 

• Bennington College Datathon (details sent to CS colloquium list) 

• Student announcements?

http://cs.williams.edu/~jannen/teaching/s23/cs256/index.html#cal

Quick Review: Trees
Recall (K&T 3.2, page 78): Let be an undirected graph on
nodes. Any two of the following statements implies the third:

1. is connected.

2. does not contain a cycle (equivalently, is acyclic).

3. has edges.

G = (V, E) n

G
G G
G n − 1

Note, this is a stronger version of the claim (K&T 3.1) that

every -node tree has exactly edges.n n − 1

Quick Review: Trees
Recall: Let be an undirected graph on nodes. Any two
of the following statements implies the third (3.2 from K&T, page 78):

1. is connected.

2. does not contain a cycle (equivalently, is acyclic).

3. has edges.

G = (V, E) n

G

G G

G n − 1

Prove (1), (2) ⟹ (3)

Let denote the statement, “Any graph with vertices that is connected
and acyclic must have edges.”

P(n) G n
n − 1

The proof is by induction on the number of nodes, . n

Base case: .n = 1
 is a single node with no edges; is connected and acyclic.G G

Inductive hypothesis:
Suppose holds for all values of from our base case until some : 
That is, assume that any connected, acyclic graph that has vertices has

 edges.

P(n) n k ≥ 1
G k

k − 1 continued…

Quick Review: Trees
Recall: Let be an undirected graph on nodes. Any two
of the following statements implies the third (3.2 from K&T, page 78):

1. is connected.

2. does not contain a cycle (equivalently, is acyclic).

3. has edges.

G = (V, E) n

G

G G

G n − 1

Prove (1), (2) ⟹ (3)

 cannot have any vertex where ____________________ G u deg(u) = 0

Claim 1: must have some vertex that is a leaf ()G v deg(v) = 1

Every vertex in cannot have degree because there would be a cycle: 
pick some vertex and walk at random until repeating a node. The walk cannot
get stuck because ________________________

G ≥ 2

because is connected. G

every vertex has degree .≥ 2

Quick Review: Trees
Recall: Let be an undirected graph on nodes. Any two
of the following statements implies the third (3.2 from K&T, page 78):

1. is connected.

2. does not contain a cycle (equivalently, is acyclic).

3. has edges.

G = (V, E) n

G

G G

G n − 1

Prove (1), (2) ⟹ (3)

Now, remove some vertex , where , along with its incident edge.v deg(v) = 1

Adding vertex and its incident edge back to does not introduce a cycle.
 is connected, acyclic, and has vertices and edges.

v G′￼

G k + 1 k

We are left with a graph that is still connected and still acyclic. Thus, 
we can apply our inductive hypothesis to conclude that ________________

G′￼

 has edges.G′￼ k − 1

Quick Review: Finding Connected Components

Algorithm. Given a graph :

• Pick some vertex , and run . Let be the set
of vertices returned by the breadth-first search from .

• Add to the set of connected components, and repeat the
process starting with some vertex that has not appeared in any
connected component so far.

• When all vertices have been included, all connected
components have been found.

G = (V, E)
v ∈ V BFS(G, v) S

v
S

Running time?

Quick Review: Directed Graphs
Notation. .

• Edges have “orientation”

• Edge (or sometimes denoted) leaves node and
enters node

• Vertices have an “in-degree” and an “out-degree”

Rest of graph terminology extends 
to directed graphs: directed  
paths, cycles, etc.

G = (V, E)

(u, v) u → v u
v

Directed Graphs Examples
Web graph:

• Nodes: __________

• Edges: _________

• Orientation of edges is crucial

• Search engines use hyperlink structure to rank web pages 

Road network:

• Vertices: ___________

• Edges: ______________

• Raise your hand if you’ve navigated 
(recently) without a GPS app?

Address Holland Tunnel

New York, NY 10013

©2008 Google - Map data ©2008 Sanborn, NAVTEQ™ - Terms of Use

To see all the details that are visible on the screen,use the
"Print" link next to the map.

Webpages

Hyperlinks

Intersections
Streets (one-way)

Directed Reachability
Directed reachability. Given a node find all nodes reachable from .

• Can use both BFS and DFS. They both visit exactly the set of
nodes reachable from start node (but perhaps different orders).

• BFS/DFS trees show reachability from , but do not say anything
about reaching from any other nodes!!!

s s

s
s

s

Strong Connectivity
• Strong connectivity. Connected components in directed graphs

are defined based on mutual reachability. Two vertices in a
directed graph are mutually reachable if there is a directed path
from to AND from from to .

• A graph is strongly connected if every pair of vertices are
mutually reachable

u, v
G

u v v u
G

Strongly Connected!

Strongly Connected Components
• Strongly-connected components. For each , the set of

vertices mutually reachable from , defines the strongly-connected
component of containing .

v ∈ V
v

G v

Deciding Strong Connectivity

Problem. Given a directed graph , determine if
 is strongly connected.

G
G

Any ideas?

Idea. Flip the edges of G and do a BFS on the new graph

• Build where

• There is a directed path from to in iff there is a directed
path from to in

• Call : Every vertex is reachable from (in) if
and only if is reachable from every vertex (in).

Analysis (Performance)

• :

• Build :

• :

• Overall, linear time algorithm!

Grev = (V, Erev) (u, v) ∈ Erev iff (v, u) ∈ E
v u Grev

u v G
𝖡𝖥𝖲(Grev, v) v Grev

v G

𝖡𝖥𝖲(G, v)
Grev

𝖡𝖥𝖲(Grev, v)

Testing Strong Connectivity

Kosaraju’s Algorithm

 timeO(n + m)
 timeO(n + m)

 timeO(n + m)

Idea. Flip the edges of G and do a BFS on the new graph

• Build where

• There is a directed path from to in iff there is a directed
path from to in

• Call : Every vertex is reachable from (in) if
and only if is reachable from every vertex (in).

Analysis (Correctness)

• Claim. If is reachable from every node in and every node in
 is reachable from then must be strongly connected

• Proof. For any two nodes , they are mutually reachable
through , that is, and

Grev = (V, Erev) (u, v) ∈ Erev iff (v, u) ∈ E
v u Grev

u v G
𝖡𝖥𝖲(Grev, v) v Grev

v G

v G
G v G

x, y ∈ V
v x ↝ v ↝ y y ↝ v ↝ z ∎

Testing Strong Connectivity

Directed Acyclic Graphs (DAGs)
Definition. A directed graph is acyclic (or a DAG) if it contains no
(directed) cycles.

• DAG is typically pronounced, not spelled out

• Rhymes with “bag”

an example DAG

v2 v3

v6 v5 v4

v7 v1

Topological Ordering
Problem. Given a DAG find a linear ordering of the vertices
such that for any edge , appears before in the ordering.

(Said differently, if you number all of the vertices in your sequence of
vertices , then any edge that leaving a vertex can only enter
a vertex)

Example. Find an ordering in which courses can be taken that satisfies
prerequisites.

G = (V, E)
(v, w) ∈ E v w

n
v1, …, vn vi
vj>i

(Mostly) up-to-date

http://www.cs.williams.edu/~jannen/teaching/cs-prereqs.svg

http://www.cs.williams.edu/~jannen/teaching/cs-prereqs.svg

Topological Ordering: Example

A

B

C

D E F

A B C D EF

AB C D E F

Not a valid topo. sort!

Any ordering where 
all arrows “go to the right” 
is a valid topological sort

Topological Ordering and DAGs
Lemma. If has a topological ordering, then is a DAG.

Proof. [By contradiction] Suppose has a cycle . Let
 be the topological ordering of

• Let be the lowest-indexed node in , and let be the node just 
before in the cycle; because starts and ends on , is
an edge

• By our choice of , we have .

• On the other hand, since is an edge and is a
topological order, we must have

G G
G C

v1, v2, …, vn G

vi C vj
vi C vi (vj, vi)

i i < j
(vj, vi) v1, v2, …, vn

j < i (⇒⇐) ∎

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

• No directed cyclic graph can have a topological ordering. Why?

• Does every DAG have a topological ordering?

• Yes, can prove by induction (and construction)

• How do we compute a topological ordering?

• What property should the first node in any topological
ordering satisfy?

• Cannot have incoming edges, i.e., indegree = 0

• Can we use this idea repeatedly?

Topological Ordering and DAGs

A B C D EF

Finding a Topological Ordering
Claim. Every DAG has a vertex with in-degree zero.

Proof. [By contradiction] Suppose is a DAG where every
vertex has an incoming edge.

• Pick any vertex . There must be an edge .

• Walk backwards following these incoming edges for each vertex

• After steps, we must have visited some vertex twice
(why?)

• Nodes between two successive visits to form a cycle. This is a
contradiction, because is a DAG.  

G = (V, E)
v ∈ V

t (s, t)

n + 1 w

w
G (⇒⇐) ∎

Can we use this claim as a building block in an
algorithm to find a topological ordering?

Topological Sorting Algorithm
TopologicalSorting(G) ◃ G = (V,E) is a DAG

 Initialize T[1..n]← 0 and i ← 0
 while V is not empty do
 i←i+1
 Find a vertex v ∈ V with indeg(v) = 0
 T[i] ← v
 Delete v (and its edges) from G
Analysis:

• Correctness, any ideas how to proceed?

• Running time?

Idea: Repeatedly “remove” vertices that have in-degree 0 from the DAG.

Topological Sorting Algorithm
Analysis (Correctness). Proof by induction on number of vertices :

• Base case:

• . There are no edges; the vertex itself forms topological

ordering

• Inductive hypotheis:

• Suppose our algorithm is correct for all DAGs w/ less than vertices

• Consider an arbitrary DAG with vertices

• Must contain a vertex with in-degree (we proved it)

• Deleting that vertex and all outgoing edges gives us a graph
with less than vertices that is still a DAG

• Can invoke inductive hypothesis on !

• Let be a topological ordering of , then
must be a topological ordering of

n

n = 1

k
k

v 0
G′￼

k
G′￼

u1, u2, …, un−1 G′￼ v, u1, u2, …, un−1
G ∎

Topological Sorting Algorithm
Running time: What tasks do we need to perform?

• (Initialize) Create an “in-degree array” ID[1..n] of all vertices

• time

• Find a vertex with in-degree zero

• time

• We do this repeatedly this until we run out of vertices!

• Update in-degree of all vertices adjacent to removed vertex

• time for each : time total

• What is the Bottleneck step?

• Finding vertices with in-degree zero

O(n + m)

O(n)

O(n2)

O(outdegree(v)) v O(n + m)

Can we do better?

Linear-Time Algorithm
• We need a faster way to find vertices with in-degree 0 instead of

searching through the entire in-degree array!

• Idea: Maintain a queue (or stack) of in-degree 0 vertices

• Update : When is deleted, decrement ID[u] for each neighbor
; if ID[u] = 0, add to :

• time

• Total time for previous step over all vertices:

•
 time

• Topological sorting takes time and space!

S
S v

u u S
O(outdegree(v))

∑
v∈V

O(outdegree(v)) = O(n + m)

O(n + m)

Traversals: Many More Applications
BFS and/or DFS can also be used to solve many other problems

• Find a (directed) cycle in a (directed) graph

• Find a cycle containing a specific vertex

• Find all cut vertices of a graph (A cut vertex is one whose
removal increases the number of connected components)

• Find all bridges of a graph (A bridge is an edge whose removal
increases the number of connected components

• Find all biconnected components of a graph (A biconnected
component is a maximal subgraph having no cut vertices)

• Solve fun problems on Homework 3!

All of this can be done in space and time!

v

O(|V | + |E |)

