Directed Graphs

Announcements

Homework 2 is due Wednesday at 10pm
e Solutions to in-class activities available on Glow
 Happy to answer questions in TA and office hours!

Help hours today: course homepage calendar

e All hours today are in TCL 312 (back lab)

Bennington College Datathon (details sent to CS colloguium list)

Student announcements?

http://cs.williams.edu/~jannen/teaching/s23/cs256/index.html#cal

Quick Review: Trees

Recall ka13.2 page 78): Let G = (V, E) be an undirected graph on n
nodes. Any two of the following statements implies the third:

1. G is connected.
2. (G does not contain a cycle (equivalently, G is acyclic).

3. Ghasn — 1 edges.

Note, this is a stronger version of the claim k&t 3.1) that

every n-node tree has exactly n — 1 edges.

Quick Review: Trees

Recall: Let G = (V, E) be an undirected graph on n nodes. Any two

of the following statements implies the third (3.2 from K&T, page 78):
1. G is connected. Prove (1)9 (2) — (3)

2. G does not contain a cycle (equivalently, G is acyclic).

3. Ghasn— 1 edges.

The proof is by induction on the number of nodes, 7.

Let P(n) denote the statement, “Any graph G with 7 vertices that is connected
and acyclic must have n — 1 edges.”

Base case: n = 1.

G is a single node with no edges; G is connected and acyclic. Q

Inductive hypothesis:

Suppose P(n) holds for all values of n from our base case until some k > 1:
That is, assume that any connected, acyclic graph G that has k vertices has

k — 1 edges. continued. ..

Quick Review: Trees

Recall: Let G = (V, E) be an undirected graph on n nodes. Any two

of the following statements implies the third (3.2 from K&T, page 78):
1. G is connected. Prove (1)9 (2) — (3)

2. G does not contain a cycle (equivalently, G is acyclic).

3. Ghasn— 1 edges.

Claim 1: G must have some vertex v that is a leaf (deg(v) = 1) O

G cannot have any vertex u where deg(u) = 0 because G is connected.

Every vertex in G cannot have degree > 2 because there would be a cycle:

pick some vertex and walk at random until repeating a node. The walk cannot
get stuck because every vertex has degree > 2.

Quick Review: Trees

Recall: Let G = (V, E) be an undirected graph on n nodes. Any two

of the following statements implies the third (3.2 from K&T, page 78):
1. G is connected. Prove (1)9 (2) — (3)

2. G does not contain a cycle (equivalently, G is acyclic).

3. Ghasn— 1 edges.

Now, remove some vertex v, where deg(v) = 1, along with its incident edge.

We are left with a graph G’ that is still connected and still acyclic. Thus,
we can apply our inductive hypothesis to conclude that G" has k — 1 edges.

Adding vertex v and its incident edge back to G’ does not introduce a cycle.
G is connected, acyclic, and has k + 1 vertices and k edges.

Quick Review: Finding Connected Components

Algorithm. Given a graph G = (V, E):

« Pick some vertex v € V, and run BFS(G, v). Let S be the set
of vertices returned by the breadth-first search from v.

« Add § to the set of connected components, and repeat the
process starting with some vertex that has not appeared in any
connected component so far.

 \When all vertices have been included, all connected
components have been found.

Running time?

Quick Review: Directed Graphs

Notation. G = (V, E).
 Edges have “orientation”

« Edge (u, v) (or sometimes denoted u — v) leaves node u and
enters node v

* \Vertices have an “in-degree” and an “out-degree”

Rest of graph terminology extends
to directed graphs: directed
paths, cycles, etc.

Directed Graphs Examples

Web graph:

Nodes: Webpages

Edges: Hyperlinks
Orientation of edges is crucial

CSCI 256

Algorithms

Home | Schedule | Resources | Williams CS | Glow

Home

I Bill Jannen

Email: 09wkj@williams.edu

Office: TPL 304

Office Hours: M 11-noon, Tu 3-4:30, W 1:30-3, and by appt.

Class Meetings: MWF 10-10:50 in TBL 202 (or Ward Lab)

TAs: Max Enis, Max Kan, Petros Markopoulos Andrew Megalaa Ye Shu
TA help hours: TCL 206, see calendar below

Course Description

eofa

ng the structure
ional

This course investigates methods for designing efficient and reliable algorithms. By carefully analyzis
crease the

lanrithm and

problem within a mathematical framework, it is often possible to dramatically d
of an

find a enlntinn Tn additian analucic nravidac a mathad far varifuina the

needed to

Search engines use hyperlink structure to rank web pages

Road network:

Vertices: Intersections
Edges: Streets (one-way

Raise your hand if you've navigated
recently) without a GPS app?

» R—
§ s %
5 7] %,
S s %o
@ 2 2
S] <
Vestry s 3 ooe/
Vestry s
-aight St !
& Laight st
P
§
3 Laight 5
£
& L
bert st =
5 Hubert 5¢
§ [.
S @ 5
H 2 Z
g = s
2 5 2 .
o Q £ r
Beach st I
Ericsson s¢
Moore ¢
N Moore g
2
&
o
&
F K
5 ranklin sy 2
H
H
&
2
amison g¢ [.
Harmison St

Staple

Laight St —
<

StJohins [

York Sy

() Cy
£ &
> &
Z $
@ HAG <
& % %
5
S Y o
S & &
S &
1 Q)
S
/ WIS
e,
O’SI g Qo
%
S
U,
e,
z 2,
@
o
5
N~/
1 £ S
2 < -
5.0
2
&
Bl

AN

s
3
s

©2008 Google - Map data ©2008 Sanbor, NAVTEQ™ - Terms of Use

Directed Reachability

Directed reachability. Given a node s find all nodes reachable from s.

e Can use both BFS and DFS. They both visit exactly the set of
nodes reachable from start node s (but perhaps different orders).

e BFS/DFS trees show reachability from s, but do not say anything
about reaching s from any other nodes!!!

Strong Connectivity

e Strong connectivity. Connected components in directed graphs
are defined based on mutual reachability. Two vertices u, v in a

directed graph G are mutually reachable if there is a directed path
from u to v AND from from v to u.

e A graph G is strongly connected if every pair of vertices are
mutually reachable

/.\ Strongly Connected!

Strongly Connected Components

e Strongly-connected components. For each v € V, the set of
vertices mutually reachable from v, defines the strongly-connected
component of G containing v.

Deciding Strong Connectivity

Problem. Given a directed graph G, determine if
G is strongly connected.

Testing Strong Connectivity

Idea. Flip the edges of G and do a BFS on the new graph
e Build Gyey = (V, E(oy) Where (u,v) € Er iff (V,u) € E

« There is a directed path from v to u in G, iff there is a directed
path fromu tovin G

o Call BFS(Gygy, v): Every vertex is reachable from v (in Gyg,)) if
and only if v is reachable from every vertex (in G).

Analysis (Performance)
. BFS(G,v): O+ m)time
. BUild Goy: O(n 4+ m) time
« BFS(GeysVv): O(n + m) time

e OQOverall, linear time algorithm!

Kosaraju’s Algorithm

Testing Strong Connectivity

Idea. Flip the edges of G and do a BFS on the new graph
e Build Gyey = (V, E(oy) Where (u,v) € Er iff (V,u) € E

« There is a directed path from v to u in G, iff there is a directed
path fromu tovin G

o Call BFS(Gygy, v): Every vertex is reachable from v (in Gyg,)) if
and only if v is reachable from every vertex (in G).

Analysis (Correctness)

Claim. If v is reachable from every node in G and every node in
G is reachable from v then G must be strongly connected

Proof. For any two nodes x,y € V, they are mutually reachable
through v, thatis, x ~ v ~yandy ~v ~ z 11

Directed Acyclic Graphs (DAGS)

Definition. A directed graph is acyclic (or a DAG) if it contains no
(directed) cycles.

- DAG is typically pronounced, not spelled out
- Rhymes with “bag”

/\/\
\/\/

an example DAG

Topological Ordering

Problem. Given a DAG G = (V, E) find a linear ordering of the vertices
such that for any edge (v, w) € E, v appears before w in the ordering.

(Said differently, if you number all of the vertices in your sequence of n
vertices vy, ..., v,, then any edge that leaving a vertex v, can only enter

a vertex v)

Example. Find an ordering in which courses can be taken that satisfies
p re req U I S Ites ' Computer Science Course Prerequisites

4 136

331 358

333

373

336T 374

338

371

y

(Mostly) up-to-date 337T 339

A

/ At least one o

{334, 256 y
N

At least one ¢
237,334,256

VA

http://www.cs.williams.edu/~jannen/teaching/cs-preregs.svg 326 432 434t N Recommendss

http://www.cs.williams.edu/~jannen/teaching/cs-prereqs.svg

Any ordering where

Topological Ordering: Example
all arrows “go to the right”

: 'S a valid topological sort
. @
. \ B G Cp E

o
Not a valid topo. sort!

Topological Ordering and DAGs

Lemma. If G has a topological ordering, then G is a DAG.

Proof. [By contradiction] Suppose G has a cycle C. Let
Vi, Vo, ..., V, be the topological ordering of G

» Letv; be the lowest-indexed node in C, and let v; be the node just
before v; in the cycle; because C starts and ends on v, (vj, V;) is
an edge

« By our choice of I, we have 1 < J.

« On the other hand, since (vj, Vv;) is an edge and v, vy, ..., V, is a
topological order, we musthave j <i (=><)i

the directed cycle C

Q/Q\‘@O@

W O W
\

the supposed topological order: vy, ..., v,

Topological Ordering and DAGs

 No directed cyclic graph can have a topological ordering. Why?

 Does every DAG have a topological ordering?
* Yes, can prove by induction (and construction)
e How do we compute a topological ordering?

 What property should the first node in any topological
ordering satisty?

 (Cannot have incoming edges, i.e., indegree = 0

 (Can we use this idea repeatedly?

00!

Finding a Topological Ordering

Claim. Every DAG has a vertex with in-degree zero.

Proof. [By contradiction] Suppose G = (V, E) is a DAG where every
vertex v € V has an incoming edge.

« Pick any vertex t. There must be an edge (s, ?).
 Walk backwards following these incoming edges for each vertex

« After n + 1 steps, we must have visited some vertex w twice
(why?)

« Nodes between two successive visits to w form a cycle. This is a
contradiction, because G is a DAG. (=<) I

Can we use this claim as a building block in an

algorithm to find a topological ordering”’

Topological Sorting Algorithm

ldea: Repeatedly “remove” vertices that have in-degree 0 from the DAG.
TopologicalSorting(G) <« G = (V,E) 1s a DAG

Initialize T[1l..n]J< @ and 1 <« 0
while V 1s not empty do
1<1+1
Find a vertex v € V with indeg(v) = 0
T[1] « v
Delete v (and 1ts edges) from G
Analysis:

e Correctness, any ideas how to proceed?

* Running time?”

Topological Sorting Algorithm

Analysis (Correctness). Proof by induction on number of vertices n:

e Base case:

« n = 1. There are no edges; the vertex itself forms topological
ordering

* Inductive hypotheis:
« Suppose our algorithm is correct for all DAGs w/ less than k vertices

» Consider an arbitrary DAG with k vertices
« Must contain a vertex v with in-degree 0 (we proved it)

 Deleting that vertex and all outgoing edges gives us a graph G’
with less than k vertices that is still a DAG

« Can invoke inductive hypothesis on G’

e Letuy,u,,...,u, ; be atopological ordering of G, then v, Ui, Uyy ooy Uy
must be a topological ordering of G B

Topological Sorting Algorithm

Running time: What tasks do we need to perform?

* (Initialize) Create an “in-degree array”

« O(n+ m)time
 Find a vertex with in-degree zero

. O(n)time

[1..n] of all vertices

Can we do better?

. We do this repeatedly this until we run out of vertices! O(n?)

« Update in-degree of all vertices adjacent to removed vertex

» O(outdegree(v)) time for each v: O(n + m) time total

 \What is the Bottleneck step?

* Finding vertices with in-degree zero

Linear-Time Algorithm

We need a faster way to find vertices with in-degree 0 instead of
searching through the entire in-degree array!

Idea: Maintain a queue (or stack) S of in-degree 0 vertices

Update S: When v is deleted, decrement ID[u] for each neighbor
u; if ID[u] =0, add u to S:

« O(outdegree(v)) time

Total time for previous step over all vertices:

) Z O(outdegree(v)) = O(n + m) time

veV

Topological sorting takes O(n + m) time and space!

Traversals: Many More Applications

BFS and/or DFS can also be used to solve many other problems

« Find a (directed) cycle in a (directed) graph

« Find a cycle containing a specific vertex v

« Find all cut vertices of a graph (A cut vertex is one whose
removal increases the number of connected components)

 Find all bridges of a graph (A bridge is an edge whose removal
Increases the number of connected components

 Find all biconnected components of a graph (A biconnected
component is a maximal subgraph having no cut vertices)

e Solve fun problems on Homework 3!

All of this can be done in O(| V| + | E|) space and time!

