
Stable Matching &
Asymptotic Analysis

Reminders
• Confirm that your Gradescope account is set up & you can see the

assignment submission portal

• Assignment 0 due Wed, Feb 8 at 10 pm

• Bill’s office hours:

• (Today) 11-noon

• (Tomorrow) 3-4:30 pm

• (Wednesday) 1:30-3pm

TAs:

• I plan to post the TA help schedule this afternoon

• Largely 6-10pm in TCL 206

https://www.gradescope.com/courses/507291

Resources
LaTeX guides & Overleaf

• https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes

Other Topics? How do we feel about these:

• Induction

• “Key” Data structures (APIs: pseudocode/sketching & Big-O)

• Lists & arrays, trees, heaps, graphs, hash tables

• Asymptotic analysis building blocks

• Sorting

• Counting and Probability

https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes

Input. A set of hospitals, a set of students and their
preferences (each hospital ranks each student, each
students ranks each hospital)

 = { MA, NH, OH }

 = { Aamir, Beth, Chris }

H n S n

H
S

Matching Med-Students to Hospitals

1st 2nd 3rd

Aamir NH MA OH

Beth MA NH OH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Beth Chris

NH Beth Aamir Chris

OH Aamir Beth Chris

Intuitively: 
What features make a matching good?

What features makes a matching bad?

Definition. A matching is a set of ordered pairs where
 and such that

• Each hospital is in at most one pair in

• Each student is in at most one pair in

A matching is perfect if each hospital is matched to exactly one
student and vice versa (i.e.,)

M (h, s)
h ∈ H s ∈ S

h M
s M

M
|M | = |H | = |S |

Perfect Matchings

1st 2nd 3rd

Aamir NH MA OH

Beth MA NH OH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Beth Chris

NH Beth Aamir Chris

OH Aamir Beth Chris

Unstable Pairs

1st 2nd 3rd

Aamir NH MA OH

Beth MA NH OH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Beth Chris

NH Beth Aamir Chris

OH Aamir Beth Chris

Definition. A perfect matching is unstable if there exists an
unstable pair , that is, both of the following are true:

• prefers to its current match in , and

• prefers to its current match in

M
(h, s) ∈ H × S

h s M
s h M

Can you point to any unstable
pairings in this matching?

Definition. A perfect matching is unstable if there exists an
unstable pair , that is, both of the following are true:

• prefers to its current match in , and

• prefers to its current match in

•

M
(h, s) ∈ H × S

h s M
s h M

Unstable Pairs

1st 2nd 3rd

Aamir NH MA OH

Beth MA NH OH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Beth Chris

NH Beth Aamir Chris

OH Aamir Beth Chris

(Beth, MA) are better off together

Can you point to any unstable
pairings in this matching?

Problem. Given the preference lists of hospitals and students,
find a perfect stable matching, that is, matching where:

• every doctor is assigned to a single hospital, and every
hospital is assigned to a single doctor, and

• no hospital and doctor would both prefer to leave their
current match to join each other.

 
Question. Does such a matching always exist? 
 
The answer to this does not seem obvious!

n n
M

h d

Stable Matching Problem

Proceed greedily in rounds until matched. In each round:

• Each hospital makes an offer to its top available candidate

• Each doctor accepts its top offer (irrevocable contract) and

rejects any others

Does anything go wrong? Let’s try it!

A First Attempt

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir

Proceed greedily in rounds until matched.

• (Round 1) MA Aamir, NH Aamir, OH Chris
→ → →

A First Attempt

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

What does Amir do?

What does Beth do?

What does Chris do?

Proceed greedily in rounds until matched.

• (Round 1) MA Aamir, NH Aamir, OH Chris

• (Round 1) Aamir rejects MA, accepts NH, Chris accepts OH

→ → →

A First Attempt

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir

Proceed greedily in rounds until matched.

• (Round 1) MA Aamir, NH Aamir, OH Chris

• (Round 1) Aamir rejects MA, accepts NH, Chris accepts OH

• (Round 2) Only Beth and MA left, and must match

→ → →

A First Attempt

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir

Proceed greedily in rounds until matched.

• (Round 1) MA Aamir, NH Aamir, OH Chris

• (Round 1) Aamir rejects MA, accepts NH, Chris accepts OH

• (Round 2) Only Beth and MA left, and must match

Is this a stable matching?

→ → →

A First Attempt

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir

Proceed greedily in rounds until matched.

• (Round 1) MA Aamir, NH Aamir, OH Chris

• (Round 1) Aamir rejects MA, accepts NH, Chris accepts OH

• (Round 2) Only Beth and MA left, and must match

Is this a stable matching?

• No! Unstable pair: (MA, Chris). What could have avoided it?

→ → →

A First Attempt

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir

• We want to prove: a perfect stable matching always exists

• One way:

• Give an algorithm to find a stable matching

• Prove that it is always successful

• Constructive method

• Luckily, we now have some insights from our failed  
attempt, so let’s look at the…

False Starts are a Problem.

Gale-Shapely Deferred Acceptance Algorithm*

Propose-Reject Algorithm
Initialize each doctor and hospital as d h Free
while there is a free doctor who hasn’t proposed to every hospital do

Choose a free doctor d
 first hospital on ’s list to whom has not yet proposedh ← d d

if is thenh Free
 and are d h Matched

else if prefers to its current match thenh d d′￼

 and are and is d h Matched d′￼ Free
else

end if
end while

 rejects and remains h d Free

(Write these down, we’ll use them later)

Observation 1. A doctor proposes at most times, to
different hospitals.

n n

Observations

Propose-Reject Algorithm
Initialize each doctor and hospital as d h Free
while there is a free doctor who hasn’t proposed to every hospital do

Choose a free doctor d
 first hospital on ’s list to whom has not yet proposedh ← d d

if is thenh Free
 and are d h Matched

else if prefers to its current match thenh d d′￼

 and are and is d h Matched d′￼ Free
else

end if
end while

 rejects and remains h d Free

Doctors only propose to hospitals
that they have not yet proposed to

(Write these down, we’ll use them later)

Observation 1. A doctor proposes at most times, to
different hospitals.

Observation 2. Once a hospital is matched, it never
becomes unmatched, it only “trades up”.

n n

Observations

Propose-Reject Algorithm
Initialize each doctor and hospital as d h Free
while there is a free doctor who hasn’t proposed to every hospital do

Choose a free doctor d
 first hospital on ’s list to whom has not yet proposedh ← d d

if is thenh Free
 and are d h Matched

else if prefers to its current match thenh d d′￼

 and are and is d h Matched d′￼ Free
else

end if
end while

 rejects and remains h d Free
Only case where a hospital breaks its

match is if it “trades up”

(Write these down, we’ll use them later)

Observation 1. A doctor proposes at most times, to
different hospitals.

Observation 2. Once a hospital is matched, it never
becomes unmatched, it only “trades up”.

n n

Observations

Now let’s make and prove some claims about
the algorithm.

(By explicitly stating and labeling our observations, we can refer to
them in our proofs!)

Claim 1. The propose-reject algorithm terminates after at
most iterations of the while loop.

Proof. The proof directly analyzes the structure of the
algorithm.

1. A doctor proposes during each iteration of the while loop

n2

Algorithm Analysis

Propose-Reject Algorithm
Initialize each doctor and hospital as d h Free
while there is a free doctor who hasn’t proposed to every hospital do

Choose a free doctor d
 first hospital on ’s list to whom has not yet proposedh ← d d

if is thenh Free
 and are d h Matched

else if prefers to its current match thenh d d′￼

 and are and is d h Matched d′￼ Free
else

end if
end while

 rejects and remains h d Free

“Proposal” (accepted)

“Proposal” (accepted)

“Proposal” (rejected)

Claim 1. The propose-reject algorithm terminates after at
most iterations of the while loop.

Proof. The proof directly analyzes the structure of the
algorithm.

1. A doctor proposes during each iteration of the while loop

2. Since there are doctors and each can propose to at
most different hospitals, the while loop can execute at
most times.

n2

n
n
n2

Algorithm Analysis

Observation 1.

Claim 2. The propose-reject algorithm returns a perfect
matching.

Proof. The proof is by contradiction. 
Suppose the algorithm yields an imperfect matching.

1. Since we do not allow many-to-one relationships, there must
be both a doctor and a hospital who are unmatched.

2. By Observation 2, was never proposed to by anyone,
which includes .

3. But if is still free, then, by the while loop condition, must
have proposed to every hospital, including . This is a
contradiction.

d h

h
d

d d
h

Algorithm Analysis

Claim 3. The perfect matching yielded by the algorithm is stable.

Proof. The proof is by contradiction. 
Suppose the algorithm yields an unstable perfect matching.

1. Then there exist two pairs and such that and
 prefer each other to their current assignment.  

In other words, the rankings look something like:  
 and .

2. Since ranks higher than , proposed to sometime
before proposing to .

3. But by Observation 2, only ever trades up, so must be
ranked higher than . This is a contradiction.

(d1, h1) (d2, h2) d1
h2

d1 : …, h2, …, h1, … h2 : …, d1, …, d2, …

d1 h2 h1 d1 h2
h1

h2 d2
d1

Algorithm Analysis

So far we have analyzed the algorithm in a couple of ways:

• We proved key properties about its output

• It yields perfect matchings (Claim 2)

• It yields stable matchings (Claim 3)

• We showed that the while loop executes at most times
(Claim 1)

• Question: Does this mean the algorithm is ?

n2

O(n2)

What Have We Shown?

We’ve specified the algorithm using a powerful and abstract
pseudocode.

• Our pseudocode ignores data representation

We can reason about correctness, but not efficiency.

• Efficiency comes when we add the data structures!

What Have We Shown?

Representing the Input
Idea: Order the doctors arbitrarily from to . Similarly, arbitrarily
order the hospitals from to . A ranking list for doctors is an

 matrix , where position gives the favorite
hospital for doctor . Similarly, construct matrix for hospitals.

1 n
1 n

n × n D D(i, j) jth

i H

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

Aamir (1), Beth (2), Chris (3)
MA (1), NH (2), OH (3)

3 2 1

1 3 2

1 2 3

Doctor 1 (Aamir) ranks
Hospital 3 (OH) first

Doctor 3 (Chris) ranks
Hospital 2 (NH) second

Identifying Free Doctors
Idea: Use a queue! A doubly-linked list allows enqueuing and
dequeuing in time.

• Each doctor that is free is stored in the queue.

• Matching a doctor means dequeuing them

• Unmatching means putting the doctor back into the queue.

O(1)

Identifying Next Proposal
For each doctor, we need to know the highest ranked hospital that
they have not yet proposed to.

Idea: A particular doctor’s preferences are represented by a row in
the matrix . A given doctor will propose in preference order, i.e.,
from left to right across row .

For each doctor, maintain a counter that is incremented after each
proposal. The counter for doctor is the index into the preference
array at row of .

D i
i

i
i D

Tracking Matches
We need to know which doctor is matched to which hospital (and
vice versa). Since matchings are symmetric, we only need to keep
track of one direction.

Idea: Keep track of each hospital’s match using an array of length .
Call this array .

 means that hospital is matched to doctor

 means that hospital is unmatched

n
matched

matched(i) = j i j

matched(i) = − 1 i

Tracking Hospital Preferences
We need to know if a hospital prefers its current partner to the
doctor who just proposed to it.

Idea: Create what is called an inverted index of the matrix (hospital
preference matrix), which we will call (for ranks). For a given
hospital, doesn’t store it’s preference list; instead, stores the rank
(to) of each doctor. So to compare a hospital ’s ranking of two
doctors, and , we can check and compare it to

We can build the inverted index in time by consulting (a
one-time setup cost), and with it, we compare two doctors rankings in

 time.

h

H
R R

R R
1 n h

i j R(h, i) R(h, j)

O(n2) H

O(1)

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir

Inverted Index Example
• Let’s use our running example where we’ve numbered our 3 hospitals and 3 doctors as follows: 

 Doctors 1: Aamir, 2: Beth, 3: Chris Hospitals 1: MA, 2: NH, and 3: OH

• In our hospital preference table (left), each row specifies a hospital’s preferences for doctors in descending order. So in a
given hospital row, the first column is the hospital’s first choice, the second column second...

• In our inverted index (right), each row specifies a hospital’s ranks for doctors, indexed using the doctors’ numbers. So in
a given hospital row, the first column is the ranking of the first doctor, the second column is the ranking of the second
doctor...

• stores the hospital ’s ranking (ranging from) for doctor R(i, j) i 1…n j

1 3 2

1 2 3

3 2 1

Hospital Preferences (visual)

: Hospital 1 (MA) ranks
Doctor 3 (Chris) second

R(1,3)

: Hosptial 3 (OH) ranks
Doctor 2 (Beth) second

R(3,2)

Inverted Index R

Inverted Index Example
• We can query the inverted index in to check if a hospital prefers one doctor to another

• Suppose we wanted to check whether NH prefers Chris or Aamir:

• NH is hospital 2, Chris is doctor 3, and Aamir is doctor 1

• stores NH’s ranking for Chris, and stores NH’s ranking for Aamir: 
 
 -> , while , so Aamir is ranked higher!

O(1)

R(2,3) R(2,1)

R(2,3) = 3 R(2,1) = 1

1 3 2

1 2 3

3 2 1

Inverted Index R

Doctors 1: Aamir, 2: Beth, 3: Chris, and 
Hospitals 1: MA, 2: NH, and 3: OH.

Propose-Reject Algorithm
Initialize each doctor and hospital as d h Free
while there is a free doctor who hasn’t proposed to every hospital do

Choose a free doctor d
 first hospital on ’s list to whom has not yet proposedh ← d d

if is thenh Free
 and are d h Matched

else if prefers to its current match thenh d d′￼

 and are and is d h Matched d′￼ Free
else

end if
end while

 rejects and remains h d Free

Dequeue

Array lookupArray lookup

Array update

Compare inverted index

Array update Enqueue d′￼

Enqueue d

