
File System Aging
Featuring slides modified from

Martín Farach-Colton
Rutgers University

Outline

Aging
• This video focus on ideas from two papers

‣Smith and Seltzer (1997)
‣Conway et al. (2017)

Outline
• I/O Models preview

• Verifying models through simulation and measurement

• Aging Problem

• Types of Fragmentation

• Quantifying and measuring aging

How do we model
performance?

How do we account for disk I/O?

DAM model: One way that theorists think about
external memory algorithms
• Data is transferred in blocks between RAM and disk.

• The number of block transfers dominates the running time.

Goal: Minimize # of I/Os
• Performance bounds are parameterized by  

block size B, memory size M, data size N.

DiskRAM

B

B

M

[Aggarwal+Vitter ’88]

Is the DAM Model
any good?

Short answer: Yes (2-competitive)

Long answer: …but not great (can’t tune parameters)

Affine Model

Affine model:
• Data is transferred in blocks between RAM and disk.

• If k blocks are transferred, the cost is

• On hard disks, 1 is the normalized seek cost and ⍺ is the
incremental bandwidth cost of transferring subsequent blocks

• On SSDs, it’s more complicated, but the affine model still “fits”
better than DAM model.

• (And PDAM fits even better…)

1 + αk

Takeaway: the affine model captures the size of I/Os
as well as the speed of the device itself (⍺).

We’ll refer to this

What does the DAM
Model Say About

Aging?

Aging

The DAM Model Says That Locality Matters:
• Transferring up to B contiguous bytes is free

‣ Each seek incurs an additional DAM I/O

‣ Ideal world (real): we read entire objects with a single seek

‣ Ideal world (DAM): we always read B bytes per seek

• What causes seeks in our file system?

‣ Fragmentation!

Aging is the Accumulation of Fragmentation Over Time
• Aging manifests as degrades performance

• Unless we intervene, “age” is typically monotonically increasing

Does aging happen in
file systems?

Do file system age?

Do file system age?

Chris Hoffman at howtogeek.com says:

“Linux’s ext2, ext3, and ext4 file systems… [are] designed to avoid
 fragmentation in normal use.”

“If you do have problems with fragmentation on Linux, you
probably need a larger hard disk.”

http://howtogeek.com

Do file system age?

Chris Hoffman at howtogeek.com says:

“Linux’s ext2, ext3, and ext4 file systems… [are] designed to avoid
 fragmentation in normal use.”

“If you do have problems with fragmentation on Linux, you
probably need a larger hard disk.”

“Modern Linux filesystems keep
fragmentation at a minimum…Therefore it is
not necessary to worry about fragmentation

in a Linux system.”

http://howtogeek.com

So it’s all pointless,
right?

Do file system age?

So: as of 1997, file systems aged.
Then file systems got better, and sys admins say
they don’t age.

What’s the actual story?

Theory of Aging over
the Ages

Euclid’s view of hard disks

101
0

0

Year: X+~4 years

Euclid’s view of hard disks

101
0

0

Year: X+~4 years

Density: doubles in

each dimension every

4 years or so

Euclid’s view of hard disks

Year: X+~4 years

Density: doubles in

each dimension every

4 years or so

101
0

0

α ∝
1

D

Read Length vs Bandwidth

Fr
ac

tio
n

of
 m

ax
im

um

ba
nd

w
id

th

0.001

0.01

0.1

1

Sequential Read Length

4KiB 16KiB 64KiB 256KiB 1MiB 4MiB 16MiB 64MiB 256MiB

Read length/bandwidth over time

10KiB/s
100KiB/s
1MiB/s

10MiB/s
100MiB/s

1GiB/s

Higher is better

—
1968
1981
1994
2007

2020?

Hard disks gradually increase ⍺

Empirical measurements on have a sell-by date
… we should solve the problem algorithmically

Perspective

Assumption
• Random seek is 100x slower than sequential

• 1% of blocks are non-sequential in the file system

Conclusion
• That’s enough to limit IO to 50%

So, for people who think that file systems don’t
age, are you sure that modern file systems
keep fragmentation to under 1%?

Let’s test the hypothesis!
How?

Smith and Seltzer ‘97

Keith Smith started grad school in ’92
• He decided to take snapshots of a bunch of computers

‣Every day
‣ For years

• (A snapshot is a fixed state of some disk/FS)

Logistical Challenges of this approach:
• Data collection process is very time consuming

• The cost of storing the snapshots could be huge

• How to figure out set of operations that transition between

consecutive snapshot states?

‣Necessary if want to recreate same process on multiple different file systems
‣There are operations that could occur between Snapshot i and Snapshot i+1,

but that wouldn’t up in either snapshot (short lived files, sets of updates, etc.)
• Reproducibility?

‣A single workstation/lab may not be representative, and the problems above

prohibit using this approach on a global scale

Smith and Seltzer ‘97

Despite challenges, many important takeaways
He and Seltzer found that:
• If you replay the changes implied by the snapshots

• File system performance degrades significantly

Layout score for measuring a FS age:
• The layout score of a single file is the percentage of

blocks in the file that are optimally allocated

‣No gap between a block and the previous block of the same file.
‣File’s first block is ignored because it has no “previous block”

Smith and Seltzer ‘97

Layout score limitations?
• Layout score only captures data blocks of a single file

‣What about metadata accessed along with the file (e.g., inode)
‣What about related files?
‣ Files in the same directory are likely read together
‣What about free space?
‣ Fragmentation of free space could affect allocation of future files

• Layout score is a static measure

‣Does not necessarily reflect the access patterns of a real system

Question: How else could we measure
fragmentation?

How else could we measure fragmentation?

Like timing a preorder traversal of FS tree…

Should measure variety of fragmentation types
• Why?

time grep -r random_string /path/to/fs

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

Metadata
Fragmentation

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

Metadata
Fragmentation

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

Metadata
Fragmentation

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

Metadata
Fragmentation

Intrafile
Fragmentation

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

Metadata
Fragmentation

Intrafile
Fragmentation

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

Metadata
Fragmentation

Intrafile
Fragmentation

Interfile
Fragmentation

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

Metadata
Fragmentation

Intrafile
Fragmentation

Interfile
Fragmentation

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

Metadata
Fragmentation

Intrafile
Fragmentation

Interfile
Fragmentation

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

Metadata
Fragmentation

Intrafile
Fragmentation

Interfile
Fragmentation

Then normalize per gigabyte read

Conway et al. ‘17

Used normalized cost of a recursive grep as a
dynamic age measurement

Conway et al. ‘17

Used normalized cost of a recursive grep as a
dynamic age measurement
Captures three categories of fragmentation:
• Intrafile fragmentation is fragmentation involving blocks

from the same file.

• Interfile fragmentation is fragmentation involving blocks

from two different files.

• Metadata fragmentation is fragmentation involving at

least one metadata block.

Limitations of recursive grep:
• Only captures costs of reads

‣Does not capture free space fragmentation, which affects write

aging

Do modern file
systems really age?

Git workload on ext4 on HDD

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

200

400

600

800

System Age (in Git pulls)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Lower is better

Our Setup: Cold Cache, 3.4 GHz Quad Core, 4GiB RAM,
20 GiB HDD partition - SATA 7200 RPM

2x slowdown2x slowdown

14.3x

Git workload on ext4 on HDD

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

200

400

600

800

System Age (in Git pulls)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

14.3x
Lower is better

Our Setup: Cold Cache, 3.4 GHz Quad Core, 4GiB RAM,
20 GiB HDD partition - SATA 7200 RPM

2x slowdown

4x slowdown

Git workload on ext4 on HDD

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

200

400

600

800

System Age (in Git pulls)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Lower is better

Our Setup: Cold Cache, 3.4 GHz Quad Core, 4GiB RAM,
20 GiB HDD partition - SATA 7200 RPM

15 minutes to grep 1.2GiB
14.3x

Ruling out alternative
explanations

Is it a change in the
file system?

Smaller files, shallower tree, …

Aging ext4 with Git on HDD

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

200

400

600

800

System Age (in Git pulls)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Lower is better Aged

Unaged

8.8x

Aging ext4 with Git on HDD

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

200

400

600

800

System Age (in Git pulls)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Lower is better Aged

Unaged

8.8xSmaller average file size
makes the unaged 60% slower

Is it just ext4?

Aging other file systems with Git on HDD
Btrfs

0

200

400

600

800

F2FS

0

500

1000

1500

2000

ZFS

0

500

1000

1500

2000

XFS

0

200

400

600

800

20.6x 22.4x

2.2x

weird unaged
behavior on XFS

11.8x

Lower is better

Will SSDs save us?

1.9x

Git Workload on XFS on SSD

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

10

20

30

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Aged

Unaged

Lower is better

Other file systems give similar results (~2x slowdown)

Key Takeaways

Aging is real
• It’s easy to age standard file systems

Aging hides in plain sight
• Aging so fast that FSs are always aged

• Old disks would have shown little aging

‣Because they had a smaller random-vs-sequential gap

If we want to describe a system’s performance, we
must think carefully about a “representative state”
of the system
• We must age our file systems

‣Measuring from a “clean slate” is not realistic
‣Conway et al. proposed one way to age a file system that is not file-

system-specific, but there are other options
‣ However, unaged should not be one of them!

