
Ch 36: I/O Devices

(Adapted from content by Youjip Won, Associate Professor
at Dept. of Electrical and Computer Engineering,
Hanyang University, Seoul, Korea)

CSCI 333 : Storage Systems

http://www.dmclab.hanyang.ac.kr/

I/O Devices

p Input/Output is arguably what makes our programs interesting. We

need to be able to send and receive data to/from various hardware.

p Issues discussed in this video:

w How should I/O be integrated into system hardware designs?

w What are the general mechanisms for communication?

w How can we efficiently communicate between software and I/O hardware?

p Questions to think about as we discuss:

w Which things can we, as software developers, change?

w What things can we, as software developers, actually know?

What Do We Actually Need to Know As Software Designers?

ACME Device
Prototype

Device Interface:
- Message formats/parameters
- Return types/codes
- Error conditions/failure behavior
- Physical interface specification

- Data/Power/Ports

Device Internals:
- Data structures used
- Firmware design/op. complexity
- Physical component details
- Lifetime (wear-out) and failure

modes (fail-stop or degradation)

What Do We Actually Need to Know As Software Designers?

p Knowing the interface is necessary to USE the device

p Knowing the details of the device internals can be helpful to optimize

system performance.

w Both factor into the way we design software on top of the device.

w Device heterogeneity and the increasing internal complexity of newer devi

ces makes it very hard to build a general-purpose system that performs o

ptimally

Question 1: How do we connect to I/O devices?

Structure of input/output (I/O) device

CPU Memory

Graphics

Prototypical System Architecture

Memory Bus
(proprietary)

General I/O Bus
(e.g., PCIe)

Peripheral I/O Bus
(e.g., SCSI, SATA, USB)

CPU is attached to the main memory of the system via a fast memory bus.

A small number of fast devices are connected to the system via a general I/O bus.

(Potentially many) slower devices are connected via a Peripheral bus.

NVMe

(Note: line thickness
correlates to bandwidth)

Structure of a Northbridge/Southbridge Chipset

https://s.hswstatic.com/gif/motherboard-busses.jpg https://turbofuture.com/computers/the-motherboard-components

PCIe

Interfaces are constantly evolving: e.g., PCI vs. PCIe

The original uploader was Smial at German Wikipedia. [CC B
Y-SA 2.0 DE (https://creativecommons.org/licenses/by-sa/2
.0/de/deed.en)]

A motherboard with two 32-
bit PCI slots and two sizes
of PCI Express slots

Question 2: How do we communicate
with I/O devices?

w Hardware interface allows system software to control device operation.

w Device Internals are device/implementation specific.

A Canonical Device

Command Data

Canonical Device

Registers:

Micro-controller(CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

Status interface

internals

standard

unique

Hardware Interface for a Canonical Device

p status register

w reflects the current status of the device (e.g., BUSY, READY)

p command register

w instructs the device to perform a certain task

p data register

w Passes data: OS->device (write), or device->OS (read)

Command Data

Canonical Device

Registers:

Micro-controller(CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

Status interface

internals

By reading and writing to device registers,
the operating system can control device behavior.

Device interaction option 1: polling

p One common technique to interact with a device is polling.

p Typical polling interaction:

p What is a disadvantage?

while (STATUS == BUSY)

; //wait until device is not busy

<write data to data register>

<write command to command register> //starts device & execs command

while (STATUS == BUSY)

; //wait until device is done with your request

Downsides of Polling

p The OS waits until the device is ready by repeatedly reading the

status register.

w Simple and easy to understand/implement.

w Wastes CPU time just waiting for the device.

¢ System could be making progress if CPU were to switch to another task.

.1 1 1 1 1 p p p p p 1 1 1 1 1CPU

Disk

Diagram of CPU utilization using polling

1 1 1 1 1

: task 11 : pollingP
“waiting for IO”

Device Interaction Option 2: interrupts

p The OS puts the process that is requesting I/O (1) to sleep and then

context switches to another process (2).

p When the device is finished, an interrupt wakes the sleeping process

w Advantage: CPU and the disk are both utilized.

1 1 1 1 1 2 2 2 2 2 1 1 1 1 1CPU

Disk

Diagram of CPU utilization using interrupts

1 1 1 1 1

: task 11 : task 22

Polling vs interrupts

p Is there one “best” solution?

w What if device is fast?

w What if device is slow?

w What if performance is bimodal (sometimes fast, sometimes slow)?

Direct Memory Access (DMA)
p The CPU may waste a lot of time copying large chunks of data from

memory to the device.

1 1 1 1 C C C 2 2 2 2 2 1 1 1CPU

Disk

Diagram of CPU utilization without DMA

1 1 1 1 1

“I/O pre-work” : task 11 : task 22

C : copy data from memory

DMA (Direct Memory Access)

p Technique: offload the copy from memory to device

w Really only need to know 2 things

¢ where the data lives in memory (source and destination)

¢ how much data to copy

p When completed, DMA raises an interrupt, I/O begins on Disk.

1 1 1 1 2 2 2 2 2 2 2 2 1 1 1CPU

DMA

Diagram of CPU utilization using DMA

1 1 1 1 1

C C C

Disk

: task 11 : task 22

C : copy data from memory

Question 3: How do we support so many
different I/O devices in one system?

Layers and Abstraction

p Recall the Linux software storage stack and the interfaces between

layers

The Software Storage Stack

kernel

Application

File System

Generic Block Layer

Device Driver [SCSI, ATA, etc]

Specific Block Interface [protocol-specific read/write]

Generic Block Interface [block read/write]

user

FS syscal API [open, read, write, close, etc]

Problems With the File system Abstraction

p If there is a device with nonstandard capabilities, those capabilities will

go unused in the generic interface layer.

w General Problem: Abstraction hides details, sometimes to our detriment

¢ Any workarounds?

p Over 70% of OS code is found in device drivers.

w Many device drivers are available to your OS by default because you

might one day plug a device into your system

¢ Standard OS distributions often contain a superset of your actual hardware’s

drivers, but modules can be loaded on demand

w Device drivers are a primary contributor to kernel crashes, and often

introduce security vulnerabilities

Final Thoughts

p There are things we know (device interface), things we guess (general i

nternal structure), and things we are blind to (internal state of device)

w We try our best to do the things that device designs do well and avoid th

e things that we expect will lead to bad behaviors

p There are different ways to interact with devices, with pros/cons

w Polling is good for fast devices, but “busy waits”

w Interrupts are good for slower devices

w Hybrid approaches can also make sense

p The layered design of our systems is a huge boon, but as devices get f

aster and faster, software overheads become a problem

w Generic design limits adoption of device-specific features

w Sometimes “jumping over” the OS is our best path to good performance

Credit & Thanks

p This lecture slide set was initially developed for an Operating System course in the

Computer Science Dept. at Hanyang University. This lecture slide set draws from the

OSTEP book written by Remzi and Andrea at the University of Wisconsin. It has been

modified substantially, but much credit deservingly goes to the original authors.

