B-trees (Ubiquitous and otherwise)
Logistics

Deadlines

• Lab 2b
• Final Project

Project details

• Can choose partners
 ▸ Status quo is to remain with your FUSE FAT teammates

• Must submit proposal
 ▸ Must meet in person to discuss

• Final project includes a workshop-style write-up
Hashing and Filters

- Bloom filters
- Cuckoo filters
- Quotient filters

Support “approximate membership” queries

- No false negatives
- Tunable false positive rate

Cache efficiency matters

- Quotient > Cuckoo > Bloom

API matters

- Deletes? Merges? Resizing?
This Class

DAM model
 • How to analyze external memory algorithms

B-trees
 • Operations
 • Variants
 • Discussion
How do you keep data organized?
Filing Cabinet: folders of records, alpha-sorted by last name

• We think in terms of keys and values
 ▸ Keys are the employee’s last name
 ▸ Values are the employee file (held in a folder, one per employee)

• A filing cabinet supports two types of searches
 ▸ Sequential
 ▸ read through every folder in every drawer in order
 ▸ Random
 ▸ use the labels on the drawers & folders to find the single record of interest
Indexes organize data

- Random searches utilize an index to:
 - Direct our search towards a small part of the total data
 - (Hopefully) speed up our search

Questions

- What operations does an index support?
- How do we quantify index performance?
- Is the data part of the index, or does the index “sit on top of” the data?
What operations does an index support?

Operations

- Insert(k,v): inserts key-value pair (k,v)
- Delete(k): deletes any pair (k,*)
- PointQuery(k): returns all pairs (k,*)
- RangeQuery(k₁,k₂): returns all pairs (k,*), k₁≤k≤k₂

In short, indexes support the *dictionary* interface.

- Used when data is too big for memory.
How to quantify index performance?

DAM model:
- Useful when data is too big for memory
 - Data is transferred in blocks between RAM and disk.
- The number of block transfers dominates the running time.
 - Searching through a given block is “free” (once in-memory)

Goal: Minimize # of I/Os
- Performance bounds are parameterized by block size B, memory size M, data size N.

[Aggarwal+Vitter ’88]
DAM Model an B-tree Analysis

Analyze worst-case costs by counting I/Os

- **B**: unit of transfer
 - B-tree node size

- **M**: amount of main memory
 - We can cache M/B nodes in memory at once

- **N**: size of our data
 - We’re not worried about disk space, we use N to describe our tree

- We will think about the tree shape (height, fanout), then describe each operation’s cost in terms of the DAM model
The B-tree
B-trees store records

• **Records are key-value pairs**

• **We assume that keys are**
 ▸ Unique (to simplify analysis)
 ▸ Ordered
Rules for our B-trees

• **B-ary tree**
 ▶ Internal nodes have between d and $2d$ keys called pivots
 ▶ Must be half full!
 ▶ At least $d+1$ pointers to children (one more pointer than pivot key)

• If an operation would cause a violation of one of these invariants, must rebalance!

• **Note: our B-tree’s internal nodes do not store records**
 ▶ Option 1: Store (key, value) pairs in leaves
 ▶ Option 2: Store (key, pointer to value) in leaves
Several B-tree variants

• We will describe a “B?!+-tree” here, noting features of specific variants as they come up

Popular Variants of B-trees

• B-tree: more-or-less what we’ll describe here
• B+-tree: B-tree where leaves form a linked list
• B*-tree: B-tree where nodes always 2/3 full
B-tree: standard DAM dictionary

B-ary search tree

What does B Stand for?

\[B \geq \text{half full} \]

\[O(\log_B N) \]

\[O(\log_B N) \]

\[O(\log_B N) \]

\[O\left(\log_B N + \frac{K}{B}\right) \]

Summary

<table>
<thead>
<tr>
<th></th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>(O(\log_B N))</td>
<td>(O(\log_B N))</td>
<td>(O(\log_B N))</td>
<td>(O\left(\log_B N + \frac{K}{B}\right))</td>
</tr>
</tbody>
</table>
B-tree Point Queries
B-tree Point Queries

Steps

• Starting at the root, find the first pivot key that is larger than your search key, and follow the pointer to its left
 ▸ If there are no pivot keys larger than your search key, follow the last pointer
• Repeat until you arrive at a leaf node
• Search the leaf node (ordered list) for your target key
• Return the key-value pair (if found), or NONE

This work is done during an insert (need to find place where new key-value pair belongs), so we will walk through this then.
B-tree Point Queries

Cost

• How many nodes must be read/written in a search?
 ▶ We read the root node to search the pivot keys
 ▶ We recurse on the subtree

• Total cost of a search: $O(h)$
 ▶ Recall $h = O(\log_B N)$
B-tree Insertions
B-tree Insert

Steps

• Find the leaf node where your key-value pair belongs (point query)
• Insert your key-value pair into that leaf
B-tree: standard DAM dictionary

B-ary search tree

Summary

<table>
<thead>
<tr>
<th></th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
B-tree: standard DAM dictionary

B-ary search tree

<table>
<thead>
<tr>
<th>Summary</th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
B-tree: standard DAM dictionary

B-ary search tree

\begin{itemize}
 \item \textbf{Summary:}
 \begin{itemize}
 \item \textbf{Point Query:} $O(\log_B N)$
 \item \textbf{Insert:} $O(\log_B N)$
 \item \textbf{Delete:} $O(\log_B N)$
 \item \textbf{Range Query:} $O\left(\log_B N + \frac{K}{B}\right)$
 \end{itemize}
\end{itemize}
B-tree: standard DAM dictionary

B-ary search tree

<table>
<thead>
<tr>
<th>Summary</th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
B-tree: standard DAM dictionary

B-ary search tree

Summary

<table>
<thead>
<tr>
<th></th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
B-tree: standard DAM dictionary

B-ary search tree

Summary

<table>
<thead>
<tr>
<th></th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
B-tree: standard DAM dictionary

B-ary search tree

Summary

<table>
<thead>
<tr>
<th></th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
B-tree: standard DAM dictionary

B-ary search tree

Summary

<table>
<thead>
<tr>
<th></th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
B-tree: standard DAM dictionary

B-ary search tree

Summary

<table>
<thead>
<tr>
<th></th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O \left(\log_B N + \frac{K}{B} \right)$</td>
</tr>
</tbody>
</table>
B-tree: standard DAM dictionary

B-ary search tree

- **Summary**
 - **Point Query**: $O(\log_B N)$
 - **Insert**: $O(\log_B N)$
 - **Delete**: $O(\log_B N)$
 - **Range Query**: $O\left(\log_B N + \frac{K}{B}\right)$

- **B-tree**

- Diagram showing a B-tree structure with keys 02, 05, 06, 12, 23, 57, 76, 25, 29, 43, 59, 64, 75, 77, 81, 82, 86, 89, 90.
B-tree: standard DAM dictionary

B-ary search tree

Summary

<table>
<thead>
<tr>
<th></th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
B-tree: standard DAM dictionary

B-ary search tree

Summary

<table>
<thead>
<tr>
<th></th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
B-tree: standard DAM dictionary

B-ary search tree

No room! Need to split the node.

Summary

<table>
<thead>
<tr>
<th>Summary</th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
Splitting a B-tree node

Steps

• Sort all $2d+1$ keys ($2d + \text{new key that causes overflow}$)
• Make new node with first d keys
• Make new node with last d keys
• Move middle key as a pivot of the parent
• Add pointers to new children
• Recurse up the tree if necessary (rare)
B-tree: standard DAM dictionary

B-ary search tree

Summary

<table>
<thead>
<tr>
<th></th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>(O(\log_B N))</td>
<td>(O(\log_B N))</td>
<td>(O(\log_B N))</td>
<td>(O\left(\log_B N + \frac{K}{B}\right))</td>
</tr>
</tbody>
</table>
B-tree: standard DAM dictionary

B-ary search tree

Summary

<table>
<thead>
<tr>
<th></th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
B-tree: standard DAM dictionary

B-ary search tree

Summary

<table>
<thead>
<tr>
<th></th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
B-tree: standard DAM dictionary

B-ary search tree

Summary

<table>
<thead>
<tr>
<th></th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
B-tree: standard DAM dictionary

B-ary search tree

<table>
<thead>
<tr>
<th>Summary</th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
Splitting a B-tree node

Cost

• How many nodes must be read/written in a local split?
 ▶ We read the node being split
 ▶ We write the old node and the new node (first d keys, last d keys)
 ▶ We read/write the parent node

• What if we overflow the parent?
 ▶ If we recurse, we already read the parent, so we repeat the same steps
 one level above

• Total cost of an insert: $O(h)$
 ▶ Reads: $O(h)$
 ▶ Writes: $O(2h)$
B-tree Range Queries
B-tree Range Query

(Range query: point query + successor^k)

Steps

- Find the leaf node where the first key-value pair belongs (point query)
- Read all key-value pairs from that node that are part of your range
- Consult your parent to find its next child pointer
- Read all key-value pairs from that node that are part of your range
- Loop
B-tree: standard DAM dictionary

B-ary search tree

Summary

<table>
<thead>
<tr>
<th>Summary</th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
B-tree Deletes
B-tree Deletions

Steps

• Search for the leaf containing the target key-value pair (point query)
• Remove the element from the leaf (if present)
• If the size of the node drops below d, merge with a neighbor
 ▸ Remove extra pivot key and pointer from parent (the pointer to the node that is being deleted as part of the merge)
 ▸ Merge contents of nodes
 ▸ Write parent and merged node
 ▸ If the parent size dropped below d, recurse upwards
B-tree: standard DAM dictionary

B-ary search tree

Summary

<table>
<thead>
<tr>
<th></th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
B-tree: standard DAM dictionary

B-ary search tree

Summary

<table>
<thead>
<tr>
<th></th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
B-tree: standard DAM dictionary

B-ary search tree

Summary

<table>
<thead>
<tr>
<th>Summary</th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
B-tree: standard DAM dictionary

B-ary search tree

Summary

<table>
<thead>
<tr>
<th></th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
B-tree: standard DAM dictionary

B-ary search tree

<table>
<thead>
<tr>
<th>Summary</th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
B-tree: standard DAM dictionary

B-ary search tree

Summary

<table>
<thead>
<tr>
<th></th>
<th>Point Query</th>
<th>Insert</th>
<th>Delete</th>
<th>Range Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
<td>$O\left(\log_B N + \frac{K}{B}\right)$</td>
</tr>
</tbody>
</table>
Summary

• B-trees are the de-facto search structure for external memory applications
• Variants exist to tune utilization and range scan performance, but the idea is the same
• We can analyze performance using the DAM model

Other discussions

• Concurrent access - how to lock the tree?
 ▸ Hand-over-hand locking for queries
 ▸ Reservations or top-down splitting

• How to choose the node size (B)?
 ▸ Must balance competing goals:
 ▸ Small B minimizes write amplification (each update requires writing whole node)
 ▸ Large B minimizes fragmentation (more data read per seek)
Looking Ahead

More trees
- Log structured merge trees (next class)
- B^e-trees Monday

Write optimization
- Making our trees lazy!
 - Better I/O performance for writes
 - Not worse off for reads