## Exam Logistics

## Take-home kept in the registrar's office

- I'll create repositories like I did for the midterm, including
- Instruction page
- Blank question template
- Not required to typeset (registrar gives out "blue books", or use your own paper or write on exam, or combination of the above)
- But must print out and submit your exam inside registrar's envelope
- Review session:
- Monday evening from 7:30-8:30pm in TCL 206
- Practice questions:
- Best tools are homework and questions found in slides
- Rule of thumb for exam questions: will be representative of things you've done on homework or in-class activities (POGIL sessions in Ward Lab)


## 30-minute Question Review Sessions

- Will be sign-up slots for all day Monday and Tuesday
- Happy to do 1-off meetings if those don't work for you
- Not at all required; don't need to do 4 questions; use as you'd like
- Email me which questions you wish to go over so I can have them ready


## Office \& TA hours

## Many TA hours will happen

- Most TAs were happy to host normal hours over reading period
। I'll update the course schedule once I get their finalized hours
- 30-minute slots can be used however you'd like
- I'm happy to add additional office hours throughout the week, on-demand!
- Let me know in advance and I can advertise a time to the mailing list


## B-trees (Ubiquitous and otherwise)

## Lecture Outline

## Indexing Overview

- General task \& properties


## DAM model

- How to analyze external memory algorithms


## B-trees

- Operations
- Variants
- Discussion

Not on the exam; goal is to show you the flexibility and power of what you've learned

Why B-trees, why now when the semester is over?

- We've studied many algorithms and data structures; here is an example of how we can change our underlying algorithmic model and then apply the same analysis tools we've built throughout


# Big Picture Question: How do you keep data organized? 

## An Analogy from [Comer 79 CSUR]

## Filing cabinet with folders of employee records, alpha-sorted by employee last name

- We often think in terms of keys and values. Here?
- Keys are the employees' last names
- Values are the employee file (held in a folder, one per employee)
- A filing cabinet effectively supports two types of searches
- Sequential
- read through every folder in every drawer, in order
- Random (targeted)
- use the labels on the drawers \& folders to find the single record of interest


## In this scenario, the filing cabinet is an index of employee records

## Indexes (yes, colloquially pluralized that way)

## Indexes organize data

- Random (targeted) searches utilize an index to:
- Direct our search towards a small part of the total data
- (Hopefully) speed up our search


## Questions

- What operations does an index support?
- How do we quantify index performance?
- Is the data part of the index, or does the index "sit on top of" the data?
- Filing cabinet storing employee folders (data part of index) vs. library card catalog storing book call numbers (pointer to data stored in index)


## Q1: What operations does an index support?

## Operations

- Insert(k,v): inserts key-value pair (k,v)
- Delete(k): deletes any pair (k,*)
- PointQuery(k): returns all pairs (k,*)
- RangeQuery( $\mathrm{k}_{1}, \mathrm{k}_{2}$ ): returns all pairs $\left(\mathrm{k},{ }^{*}\right), \mathrm{k}_{1} \leq \mathrm{k} \leq \mathrm{k}_{2}$

In short, indexes support the dictionary interface.

- Often used for very large data sets.



## Q2: How to we quantify index performance?

## Algorithmically, we can use the DAM model:

- Useful model in scenarios when data is too big for memory

Data is transferred in blocks between RAM and disk.

- Premise: the number of block transfers dominates the running time.
- Searching through a given block is "free" (once block is in-memory)


## Goal: Minimize \# of I/Os

- Performance bounds are parameterized by block size $\boldsymbol{B}$, memory size $\boldsymbol{M}$, data size $\boldsymbol{N}$.

[Aggarwal+Vitter '88]


## DAM Model an B-tree Analysis

## Analyze worst-case costs by counting I/Os

- B: unit of transfer
- B-tree node size
- M: amount of main memory
- We can cache M/B nodes in memory at once
- $\mathbf{N}$ : size of our data
- We're not worried about disk space, we use $\mathbf{N}$ to describe our tree
- We will think about the tree shape (node size, height, fanout), then describe each operation's cost in terms of the DAM model


## The B-tree

## Terms and Conditions

## B-trees store records

- Records are key-value pairs
- We assume that keys are
- Unique (to simplify analysis)
- Ordered


## Terms and Conditions

## Rules for our B-trees

- B-ary tree
- Internal nodes have between d and 2d keys called pivots
- This means nodes must always be half full!
- At least $\mathbf{d + 1}$ pointers to children (one more pointer than pivot key)
- If an operation would cause a violation of one of these invariants, must rebalance the tree!
- Note: our B-tree's internal nodes do not store records
- Option 1: Store (key, value) pairs in leaves
- Option 2: Store (key, pointer to value) in leaves


## Terms and Conditions

## Several B-tree variants

- We will describe a "B?!+--tree" here, noting features of specific variants as they come up


## Popular Variants of B-trees

- B-tree: more-or-less what we'll describe here
- B+-tree: B-tree where leaves form a linked list
- $B^{*}$-tree: B-tree where nodes always $2 / 3$ full


## B-tree: standard DAM dictionary

## B-ary search tree

What does B Stand for?



## B-tree Point Queries

## B-tree Point Queries

## Steps

- Starting at the root, find the first pivot key that is larger than your search key, and follow the pointer on its left
- If there are no pivot keys larger than your search key, follow the last pointer
- Repeat until you arrive at a leaf node
- Search the leaf node (ordered list) for your target key
- Return the key-value pair (if found), or NONE

This work is done during an insert (need to find place where new key-value pair belongs), so we will walk through this then.

## B-tree Point Queries

## Cost

- How many nodes must be read/written in a search?
- We read the root node to search the pivot keys
- We recurse on the subtree
- Total cost of a search: O(h)
- Recall $\mathbf{h}=\mathbf{O}\left(\log _{\mathrm{B}} \mathbf{N}\right)$


## B-tree Insertions

## B-tree Insert

## Steps

- Find the leaf node where your key-value pair belongs (point query)
- Insert your key-value pair into that leaf


## B-tree: standard DAM dictionary

## B-ary search tree



## B-tree: standard DAM dictionary

## B-ary search tree



## B-tree: standard DAM dictionary

## B-ary search tree



## B-tree: standard DAM dictionary

## B-ary search tree



## B-tree: standard DAM dictionary

## B-ary search tree



## B-tree: standard DAM dictionary

## B-ary search tree



## B-tree: standard DAM dictionary

## B-ary search tree



## Summary

| Point Query | Insert | Delete | Range Query |
| :---: | :---: | :---: | :---: |
| $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N+\frac{K}{B}\right)$ |

## B-tree: standard DAM dictionary

## B-ary search tree



## B-tree: standard DAM dictionary

## B-ary search tree



## B-tree: standard DAM dictionary



> Summary

| Point Query | Insert | Delete | Range Query |
| :---: | :---: | :---: | :---: |
| $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N+\frac{K}{B}\right)$ |

## B-tree: standard DAM dictionary

## B-ary search tree



> Summary

| Point Query | Insert | Delete | Range Query |
| :---: | :---: | :---: | :---: |
| $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N+\frac{K}{B}\right)$ |

## B-tree: standard DAM dictionary

## B-ary search tree



## B-tree: standard DAM dictionary

## B-ary search tree



## Summary

| Point Query | Insert | Delete | Range Query |
| :---: | :---: | :---: | :---: |
| $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N+\frac{K}{B}\right)$ |

## Splitting a B-tree node

## Steps

- Sort all 2d+1 keys (2d + new key that causes overflow)
- Make new node with first d keys
- Make new node with last d keys
- Move middle key as a pivot of the parent
- Add pointers to new children
- Recurse up the tree if necessary (rare)


## B-tree: standard DAM dictionary

## B-ary search tree



## B-tree: standard DAM dictionary

## B-ary search tree



## B-tree: standard DAM dictionary

## B-ary search tree



## B-tree: standard DAM dictionary

## B-ary search tree



## B-tree: standard DAM dictionary

## B-ary search tree



## Splitting a B-tree node

## Cost

-How many nodes must be read/written in a local split?

- We read the node being split
- We write the old node and the new node (first d keys, last d keys)
- We read/write the parent node
- What if we overflow the parent?
- If we recurse, we already read the parent, so we repeat the same steps one level above
- Total cost of an insert: O(h)
- Reads: O(h)
- Writes: O(2h)


## B-tree Range Queries

## B-tree Range Query

## (Range query: point query + successork)

## Steps

- Find the leaf node where the first key-value pair belongs (point query)
- Read all key-value pairs from that node that are part of your range
- Consult your parent to find its next child pointer
- Read all key-value pairs from that node that are part of your range
- Loop


## B-tree: standard DAM dictionary

## B-ary search tree



## B-tree Deletes

## B-tree Deletions

## Steps

- Search for the leaf containing the target key-value pair (point query)
- Remove the element from the leaf (if present)
- If the size of the node drops below d, merge with a neighbor
- Remove extra pivot key and pointer from parent (the pointer to the node that is being deleted as part of the merge)
- Merge contents of nodes
- Write parent and merged node
- If the parent size dropped below d, recurse upwards


## B-tree: standard DAM dictionary

## B-ary search tree



> Summary

| Point Query | Insert | Delete | Range Query |
| :---: | :---: | :---: | :---: |
| $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N+\frac{K}{B}\right)$ |

## B-tree: standard DAM dictionary

## B-ary search tree



> Summary

| Point Query | Insert | Delete | Range Query |
| :---: | :---: | :---: | :---: |
| $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N+\frac{K}{B}\right)$ |

## B-tree: standard DAM dictionary

## B-ary search tree



## B-tree: standard DAM dictionary

## B-ary search tree



> Summary

| Point Query | Insert | Delete | Range Query |
| :---: | :---: | :---: | :---: |
| $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N\right)$ | $O\left(\log _{B} N+\frac{K}{B}\right)$ |

## B-tree: standard DAM dictionary

## B-ary search tree



## B-tree: standard DAM dictionary

## B-ary search tree



## Summary

- B-trees are the de-facto search structure for external memory applications
- Variants exist to tune utilization and range scan performance, but the idea is the same
- We can analyze performance using the DAM model


## Other discussions

- Concurrent access - how to lock the tree?
- Hand-over-hand locking for queries
- Reservations or top-down splitting
- How to choose the node size (B)?
- Must balance competing goals:
- Small B minimizes write amplification (each update requires writing whole node)
- Large B minimizes fragmentation (more data read per seek)


## Looking Ahead

B-trees because they are widely used, but they also serve as a starting point to discuss more recent advances in trees

- Log structured merge trees
- Be-trees

The above trees employ write optimization

- Better I/O performance for writes
- Not asymptotically worse off for reads

If you like this type of analysis (the intersection of asymptotic analysis and system optimization)

- Several electives!
- Applied algorithms
- Storage Systems
- Parallel Processing // Distributed Systems


## Taking Stock

## We've covered a lot this semester

- My first time teaching 256, so l've learned a lot
- I hope to learn what was most helpful for you
- Covered important topics that will help you think about, formally define, and quantify problems and their solutions
- Asymptotic analysis
- Graphs: traversals, algorithms, and applications
- Greedy algorithms \& proving their optimality
- Divide and conquer // Recurrences
- Dynamic programming
- Network flow \& problem reductions
- Intractability: NP \& NP hardness \& more problem reductions
- Randomized algorithms and analysis


## What's Next?

## CS256 Opens up several doors

- Prerequisite to both theory and "applications" electives
- Prerequisite to Theory of Computation
- There isn't anyone in this room I wouldn't recommend for research in CS (if that is what you actually want...)
- Theorists in CS faculty include...
- Sam McCauley
- Shikha Singh
- Aaron Williams
- Intersection of Theory and XXXXX
- Data structures/indexing/filters (Bill \& Sam \& Shikha)
- Many PL problems (Dan \& Steve)
- Distributed Systems (Jeannie)
- Algorithmic Game Theory (Shikha)
- Summer research, theses, and (sometimes) RAs
- REU programs are available in other places too!


## CS Courses

http://cs.williams.edu/~jannen/teaching/cs-prereqs.svg

