
Exam Logistics
Take-home kept in the registrar’s office

• I’ll create repositories like I did for the midterm, including

‣ Instruction page

‣Blank question template

‣Not required to typeset (registrar gives out “blue books”, or use your own paper or write on

exam, or combination of the above)

‣ But must print out and submit your exam inside registrar’s envelope

• Review session:

‣Monday evening from 7:30-8:30pm in TCL 206

• Practice questions:

‣Best tools are homework and questions found in slides

‣Rule of thumb for exam questions: will be representative of things you’ve done on homework

or in-class activities (POGIL sessions in Ward Lab)

30-minute Question Review Sessions
• Will be sign-up slots for all day Monday and Tuesday

‣Happy to do 1-off meetings if those don’t work for you

‣Not at all required; don’t need to do 4 questions; use as you’d like

‣Email me which questions you wish to go over so I can have them ready

Office & TA hours

Many TA hours will happen
• Most TAs were happy to host normal hours over reading

period

‣ I’ll update the course schedule once I get their finalized hours

• 30-minute slots can be used however you’d like

• I’m happy to add additional office hours throughout the

week, on-demand!

‣Let me know in advance and I can advertise a time to the mailing list

B-trees (Ubiquitous and
otherwise)

Lecture Outline

Indexing Overview
• General task & properties

DAM model
• How to analyze external memory algorithms

B-trees
• Operations

• Variants

• Discussion

Why B-trees, why now when the semester is over?
• We’ve studied many algorithms and data structures; here is an

example of how we can change our underlying algorithmic model
and then apply the same analysis tools we’ve built throughout

Not on the exam; goal is to show you the
flexibility and power of what you’ve learned

Big Picture Question:
How do you keep data

organized?

An Analogy from [Comer 79 CSUR]

Filing cabinet with folders of employee records,
alpha-sorted by employee last name
• We often think in terms of keys and values. Here?

‣Keys are the employees’ last names

‣Values are the employee file (held in a folder, one per employee) 

• A filing cabinet effectively supports two types of searches

‣Sequential

‣ read through every folder in every drawer, in order

‣Random (targeted)

‣ use the labels on the drawers & folders to find the single record of interest

In this scenario, the filing cabinet is an
index of employee records

Indexes (yes, colloquially pluralized that way)

Indexes organize data
• Random (targeted) searches utilize an index to:
‣Direct our search towards a small part of the total data

‣ (Hopefully) speed up our search

Questions
‣What operations does an index support?

‣How do we quantify index performance?

‣ Is the data part of the index, or does the index “sit on top of” the data?

‣ Filing cabinet storing employee folders (data part of index) vs. library card catalog

storing book call numbers (pointer to data stored in index)

Q1: What operations does an index support?

Operations
• Insert(k,v): inserts key-value pair (k,v)

• Delete(k): deletes any pair (k,*)

• PointQuery(k): returns all pairs (k,*)

• RangeQuery(k1,k2): returns all pairs (k,*), k1≤k≤k2

In short, indexes support the dictionary interface.
• Often used for very large data sets.

Q2: How to we quantify index performance?
Algorithmically, we can use the DAM model:
• Useful model in scenarios when data is too big for memory

‣Data is transferred in blocks between RAM and disk.

• Premise: the number of block transfers dominates the running time.

‣Searching through a given block is “free” (once block is in-memory)

Goal: Minimize # of I/Os
• Performance bounds are parameterized by  

block size B, memory size M, data size N.

DiskRAM

B

B

M

[Aggarwal+Vitter ’88]

DAM Model an B-tree Analysis

Analyze worst-case costs by counting I/Os
• B: unit of transfer

‣B-tree node size

• M: amount of main memory

‣We can cache M/B nodes in memory at once

• N: size of our data

‣We’re not worried about disk space, we use N to describe our tree 

 

• We will think about the tree shape (node size, height,
fanout), then describe each operation’s cost in terms of the
DAM model

The B-tree

Terms and Conditions

B-trees store records
• Records are key-value pairs

• We assume that keys are

‣Unique (to simplify analysis)

‣Ordered

Terms and Conditions

Rules for our B-trees
• B-ary tree

‣ Internal nodes have between d and 2d keys called pivots

‣ This means nodes must always be half full!

‣At least d+1 pointers to children (one more pointer than pivot key)

• If an operation would cause a violation of one of these
invariants, must rebalance the tree! 

• Note: our B-tree’s internal nodes do not store records

‣Option 1: Store (key, value) pairs in leaves

‣Option 2: Store (key, pointer to value) in leaves

Terms and Conditions

Several B-tree variants
• We will describe a “B?!+--tree” here, noting features of

specific variants as they come up

Popular Variants of B-trees
• B-tree: more-or-less what we’ll describe here

• B+-tree: B-tree where leaves form a linked list

• B*-tree: B-tree where nodes always 2/3 full

B-ary search tree

B-tree: standard DAM dictionary

B

≧ half full O(logB N)

Summary Point Query Insert Delete Range Query

B-tree

23 57 76

02 05 06

12

77 81 86

90

25 29 43 59 64 75

O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

What does B Stand for?

B-tree Point Queries

B-tree Point Queries

Steps
• Starting at the root, find the first pivot key that is larger than

your search key, and follow the pointer on its left
‣ If there are no pivot keys larger than your search key, follow the last

pointer

• Repeat until you arrive at a leaf node

• Search the leaf node (ordered list) for your target key

• Return the key-value pair (if found), or NONE

This work is done during an insert (need to
find place where new key-value pair

belongs), so we will walk through this then.

B-tree Point Queries

Cost
• How many nodes must be read/written in a search?

‣We read the root node to search the pivot keys

‣We recurse on the subtree

• Total cost of a search: O(h)

‣Recall h = O(logBN)

B-tree Insertions

B-tree Insert

Steps
• Find the leaf node where your key-value pair belongs (point

query)

• Insert your key-value pair into that leaf

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

90

O(logB N)

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

90

89

O(logB N)

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

90

89

O(logB N)

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

90 8989

O(logB N)

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

9089

O(logB N)

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

9089

O(logB N)

82

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

9089

O(logB N)

82

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

9089

O(logB N)

82
82

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 82

8986

O(logB N)

90

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

O(logB N)

95

77 81 82

8986 90

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

O(logB N)

95

77 81 82

8986 90

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 82

8986

O(logB N)

95

90

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 82

8986

O(logB N)95

90

95

No room! Need
to split the node.

Splitting a B-tree node

Steps
• Sort all 2d+1 keys (2d + new key that causes overflow)

• Make new node with first d keys

• Make new node with last d keys

• Move middle key as a pivot of the parent

• Add pointers to new children

• Recurse up the tree if necessary (rare)

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 82

8986

O(logB N)95

90

95

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 82

8986

O(logB N)

90

95

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 82

8986

O(logB N)

90

95

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 82 89

86

O(logB N)

90 95

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 82 89

86

O(logB N)

90 95

Splitting a B-tree node

Cost
• How many nodes must be read/written in a local split?

‣We read the node being split

‣We write the old node and the new node (first d keys, last d keys)

‣We read/write the parent node

• What if we overflow the parent?

‣ If we recurse, we already read the parent, so we repeat the same steps

one level above

• Total cost of an insert: O(h)

‣Reads: O(h)

‣Writes: O(2h)

B-tree Range Queries

B-tree Range Query

(Range query: point query + successork)

Steps
• Find the leaf node where the first key-value pair belongs

(point query)

• Read all key-value pairs from that node that are part of your

range

• Consult your parent to find its next child pointer

• Read all key-value pairs from that node that are part of your

range

• Loop

B-ary search tree

B-tree: standard DAM dictionary

B

Summary Point Query Insert Delete Range Query

B-tree

O(logB N)

23 57 76

02 05 06

12

77 81 86

90

25 29 43 59 64 75

O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B-tree Deletes

B-tree Deletions

Steps
• Search for the leaf containing the target key-value pair

(point query)

• Remove the element from the leaf (if present)

• If the size of the node drops below d, merge with a

neighbor

‣Remove extra pivot key and pointer from parent (the pointer to the node

that is being deleted as part of the merge)

‣Merge contents of nodes

‣Write parent and merged node

‣ If the parent size dropped below d, recurse upwards

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

90

43

O(logB N)

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

90

43

O(logB N)

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

90

43

O(logB N)

02 05 06 25 29 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

90

O(logB N)

Too small!

Need to merge

02 05 06 25 29

59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23

57

76

12

77 81 86

90

O(logB N)

02 05 06 25 29

59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23

57

76

12

77 81 86

90

O(logB N)

Summary
• B-trees are the de-facto search structure for external

memory applications

• Variants exist to tune utilization and range scan

performance, but the idea is the same

• We can analyze performance using the DAM model

Other discussions
• Concurrent access - how to lock the tree?

‣ Hand-over-hand locking for queries

‣ Reservations or top-down splitting

• How to choose the node size (B)?

‣Must balance competing goals:

‣ Small B minimizes write amplification (each update requires writing whole node)

‣ Large B minimizes fragmentation (more data read per seek)

Looking Ahead
B-trees because they are widely used, but they also serve
as a starting point to discuss more recent advances in trees
• Log structured merge trees

• Be-trees

The above trees employ write optimization
‣Better I/O performance for writes

‣Not asymptotically worse off for reads

 
If you like this type of analysis (the intersection of
asymptotic analysis and system optimization)
• Several electives!

‣Applied algorithms

‣Storage Systems

‣Parallel Processing // Distributed Systems

Taking Stock

We’ve covered a lot this semester
• My first time teaching 256, so I’ve learned a lot

‣ I hope to learn what was most helpful for you

• Covered important topics that will help you think about,
formally define, and quantify problems and their solutions

‣Asymptotic analysis

‣Graphs: traversals, algorithms, and applications

‣Greedy algorithms & proving their optimality

‣Divide and conquer // Recurrences

‣Dynamic programming

‣Network flow & problem reductions

‣ Intractability: NP & NP hardness & more problem reductions

‣Randomized algorithms and analysis

What’s Next?

CS256 Opens up several doors
• Prerequisite to both theory and “applications” electives

• Prerequisite to Theory of Computation

• There isn’t anyone in this room I wouldn’t recommend for

research in CS (if that is what you actually want…)

‣Theorists in CS faculty include…

‣ Sam McCauley

‣ Shikha Singh

‣ Aaron Williams

‣ Intersection of Theory and XXXXX

‣ Data structures/indexing/filters (Bill & Sam & Shikha)

‣ Many PL problems (Dan & Steve)

‣ Distributed Systems (Jeannie)

‣ Algorithmic Game Theory (Shikha)

• Summer research, theses, and (sometimes) RAs

• REU programs are available in other places too!

CS Courses

http://cs.williams.edu/~jannen/teaching/cs-prereqs.svg

http://cs.williams.edu/~jannen/teaching/cs-prereqs.svg

