Take-home kept in the registrar’s office

* I’ll create repositories like | did for the midterm, including
» Instruction page
» Blank question template
» Not required to typeset (registrar gives out “blue books”, or use your own paper or write on
exam, or combination of the above)
» But must print out and submit your exam inside registrar’s envelope
 Review session:
» Monday evening from 7:30-8:30pm in TCL 206

 Practice questions:
» Best tools are homework and questions found in slides

» Rule of thumb for exam questions: will be representative of things you’ve done on homework
or in-class activities (POGIL sessions in Ward Lab)

30-minute Question Review Sessions
« Will be sign-up slots for all day Monday and Tuesday

» Happy to do 1-off meetings if those don’t work for you
» Not at all required; don’t need to do 4 questions; use as you'd like
» Email me which questions you wish to go over so | can have them ready

Many TA hours will happen

* Most TAs were happy to host normal hours over reading

period
» I'll update the course schedule once | get their finalized hours

» 30-minute slots can be used however you’d like

 I’'m happy to add additional office hours throughout the

week, on-demand!
» Let me know in advance and | can advertise a time to the mailing list

B-trees (Ubiquitous and
otherwise)

__scture _

Indexing Overview
« General task & properties

DAM model

* How to analyze external memory algorithms

B-trees
- O ti :
PErations Not on the exam; goal is to show you the
- Variants

* Discussion

flexibility and power of what you’ve learned

Why B-trees, why now when the semester is over?

« We’ve studied many algorithms and data structures; here is an
example of how we can change our underlying algorithmic model
and then apply the same analysis tools we’ve built throughout

Big Picture Question:
How do you keep data
organized?

Filing cabinet with folders of employee records,
alpha-sorted by employee last name

« We often think in terms of keys and values. Here?
» Keys are the employees’ last names
» Values are the employee file (held in a folder, one per employee)

A filing cabinet effectively supports two types of searches

» Sequential
» read through every folder in every drawer, in order

» Random (targeted)
» use the labels on the drawers & folders to find the single record of interest

In this scenario, the filing cabinet is an

Index of employee records

_Indexes (yes, colloquially pluralize

d that way)

i

Indexes organize data

- Random (targeted) searches utilize an index to:
» Direct our search towards a small part of the total data
» (Hopefully) speed up our search

Questions

» What operations does an index support?
» How do we quantify index performance”?

» Is the data part of the index, or does the index “sit on top of” the data?

» Filing cabinet storing employee folders (data part of index) vs. library card catalog
storing book call numbers (pointer to data stored in index)

Q1: What operations does an index support?

Operations
* Insert(k,v): inserts key-value pair (k,v)
 Delete(k): deletes any pair (k,*)
» PointQuery(k): returns all pairs (k,*)
- RangeQuery(ki,k2): returns all pairs (k,*), kisk<ko

In short, indexes support the dictionary interface.

 Often used for very large data sets.

ormance?

Algorithmically, we can use the DAM model:
* Useful model in scenarios when data is too big for memory
» Data is transferred in blocks between RAM and disk.
* Premise: the number of block transfers dominates the running time.
» Searching through a given block is “free” (once block is in-memory)

Goal: Minimize # of 1/0s

* Performance bounds are parameterized by
block size B, memory size M, data size N.

B

-<

—

|—M—|

|—B—|

[Aggarwal+Vitter ’88]

_DAM Model an Analysis

Analyze worst-case costs by counting I/Os

« B: unit of transfer
» B-tree node size

« M: amount of main memory
» We can cache M/B nodes in memory at once

* N: size of our data
» We're not worried about disk space, we use N to describe our tree

« We will think about the tree shape (hode size, height,
fanout), then describe each operation’s cost in terms of the
DAM model

The B-tree

B-trees store records
« Records are key-value pairs

* We assume that keys are
» Unigue (to simplify analysis)
» Ordered

_Terms and Conditions

Rules for our B-trees

» B-ary tree
» Internal nodes have between d and 2d keys called pivots
» This means nodes must always be half full!

» At least d+1 pointers to children (one more pointer than pivot key)
- |f an operation would cause a violation of one of these
invariants, must rebalance the treel!

 Note: our B-tree’s internal nodes do not store records

» Option 1: Store (key, value) pairs in leaves
» Option 2: Store (key, pointer to value) in leaves

Several B-tree variants

« We will describe a “B?'+--tree” here, noting features of
specific variants as they come up

Popular Variants of B-trees
« B-tree: more-or-less what we’ll describe here
- B+-tree: B-tree where leaves form a linked list
- B'-tree: B-tree where nodes always 2/3 full

B-tree: standard DAM dictionary

e

= half fuII O(logg N)

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

B-tree Point Queries

Steps

- Starting at the root, find the first pivot key that is larger than
your search key, and follow the pointer on its left

» If there are no pivot keys larger than your search key, follow the last
pointer

» Repeat until you arrive at a leaf node
- Search the leaf node (ordered list) for your target key
 Return the key-value pair (if found), or NONE

This work is done during an insert (need to

find place where new key-value pair
belongs), so we will walk through this then.

Cost

- How many nodes must be read/written in a search?
» We read the root node to search the pivot keys
» We recurse on the subtree

- Total cost of a search: O(h)
» Recall h = O(logsN)

B-tree Insertions

Steps
- Find the leaf node where your key-value pair belongs (point

query)
* Insert your key-value pair into that leaf

B-tree: standard DAM dictionary

B-ary search tree

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

B-tree: standard DAM dictionary

B-ary search tree

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

B-tree: standard DAM dictionary

B-ary search tree

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

B-tree: standard DAM dictionary

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

B-tree: standard DAM dictionary

B-ary search tree

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

B-tree: standard DAM dictionary

B-ary search tree

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

B-tree: standard DAM dictionary

B-ary search tree

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

B-tree: standard DAM dictionary

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

B-tree: standard DAM dictionary

B-ary search tree

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

B-tree: standard DAM dictionary

B-ary search tree

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

B-tree: standard DAM dictionary

B-ary search tree

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

B-tree: standard DAM dictionary

B-ary search tree

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

B-tree: standard DAM dictionary

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

Splitting a B-tree node

Steps
- Sort all 2d+1 keys (2d + new key that causes overflow)
- Make new node with first d keys
+ Make new node with last d keys

« Move middle key as a pivot of the parent
- Add pointers to new children

- Recurse up the tree if necessary (rare)

B-tree: standard DAM dictionary

B-ary search tree

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

B-tree: standard DAM dictionary

B-ary search tree

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

B-tree: standard DAM dictionary

B-ary search tree

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

B-tree: standard DAM dictionary

B-ary search tree

O(logp N)

77]e1]s2] feoloo]os]

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

o2Jos Jo | fas]zoaa] [sofealrs

B-tree: standard DAM dictionary

B-ary search tree

O(logp N)

77 a1 Jo2 mm-a =

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

o2Jos Jo | fas]zoaa] [sofealrs

Splitting a

-tree node

Cost

- How many nodes must be read/written in a local split?
» We read the node being split
» We write the old node and the new node (first d keys, last d keys)
» We read/write the parent node

« What if we overflow the parent?

» If we recurse, we already read the parent, so we repeat the same steps
one level above

- Total cost of an insert: O(h)
» Reads: O(h)
» Writes: O(2h)

B-tree Range Queries

Range Query

(Range query: point query + successork)

Steps

 Find the leaf node where the first key-value pair belongs
(point query)

- Read all key-value pairs from that node that are part of your
range

« Consult your parent to find its next child pointer

- Read all key-value pairs from that node that are part of your
range

* Loop

Summary gllliRel:1aY Insert Delete Range Query

O(logg N) O(logg N) O(logg N) O(IOgBN_i_%

B-tree Deletes

B-tree Deletions

Steps
- Search for the leaf containing the target key-value pair

(point query)
- Remove the element from the leaf (if present)

* |f the size of the node drops below d, merge with a
neighbor

» Remove extra pivot key and pointer from parent (the pointer to the node
that is being deleted as part of the merge)

» Merge contents of nodes
» Write parent and merged node
» If the parent size dropped below d, recurse upwards

B-tree: standard DAM dictionary

B-ary search tree £

Summary glllifel:1aY m Range Query
O(logg N) Of(logg N O(logg N) O logBN—l—

B-tree: standard DAM dictionary

Summary glllifel:1aY m Range Query
O(logg N) Of(logg N O(logg N) O logBN—l—

B-tree: standard DAM dictionary

Summary glllifel:1aY m Range Query
O(logg N) Of(logg N O(logg N) O logBN—l—

B-tree: standard DAM dictionary

B-ary search tree

Too small!
Need to merge

e

O(logp N)

ozfosJos] fas]zo s9lea]7s

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

mm

B-tree: standard DAM dictionary

Summary glllifel:1aY m Range Query
O(logg N) Of(logg N O(logg N) O logBN—l—

B-tree: standard DAM dictionary

e

O(logp N)

Summary glllifel:1aY m Range Query
O(logg N) O(logg N) O(logg N) O logBN—l—

« B-trees are the de-facto search structure for external
memory applications

* Variants exist to tune utilization and range scan
performance, but the idea is the same

* We can analyze performance using the DAM model

Other discussions

- Concurrent access - how to lock the tree?
» Hand-over-hand locking for queries
» Reservations or top-down splitting

- How to choose the node size (B)?

» Must balance competing goals:
» Small B minimizes write amplification (each update requires writing whole node)

» Large B minimizes fragmentation (more data read per seek)

B-trees because they are widely used, but they also serve
as a starting point to discuss more recent advances in trees

+ Log structured merge trees
+ Be-trees

The above trees employ write optimization

» Better 1/0O performance for writes
» Not asymptotically worse off for reads

If you like this type of analysis (the intersection of
asymptotic analysis and system optimization)

« Several electives!
» Applied algorithms
» Storage Systems
» Parallel Processing // Distributed Systems

We’ve covered a lot this semester

» My first time teaching 256, so I've learned a lot
» | hope to learn what was most helpful for you

« Covered important topics that will help you think about,
formally define, and quantify problems and their solutions
» Asymptotic analysis
» Graphs: traversals, algorithms, and applications
» Greedy algorithms & proving their optimality
» Divide and conquer // Recurrences
» Dynamic programming
» Network flow & problem reductions
» Intractability: NP & NP hardness & more problem reductions
» Randomized algorithms and analysis

—— — _ — -

CS256 Opens up several doors
* Prerequisite to both theory and “applications” electives
 Prerequisite to Theory of Computation

* There isn’t anyone in this room | wouldn’t recommend for
research in CS (if that is what you actually want...)

» Theorists in CS faculty include...
» Sam McCauley
» Shikha Singh
» Aaron Williams
» Intersection of Theory and XXXXX
» Data structures/indexing/filters (Bill & Sam & Shikha)
» Many PL problems (Dan & Steve)

» Distributed Systems (Jeannie)
» Algorithmic Game Theory (Shikha)

- Summer research, theses, and (sometimes) RAs
* REU programs are available in other places too!

http://cs.williams.edu/~jannen/teaching/cs-prereqgs.svg

http://cs.williams.edu/~jannen/teaching/cs-prereqs.svg

