=xtra: lechnigue
Cuckoo Hashing

img: http://phenomena.nationalgeographic.com/files/2016/04/Cuculus_canorus_vogelartinfo.jpg
imQ: https://en.wikipedia.org/wiki/File:Eastern_Phoebe-nest-Brown-headed-Cowbird-egg.jpg

http://phenomena.nationalgeographic.com/files/2016/04/Cuculus_canorus_vogelartinfo.jpg
https://en.wikipedia.org/wiki/File:Eastern_Phoebe-nest-Brown-headed-Cowbird-egg.jpg

Refresher: Hashtable Basics

o We say this array has m slots or buckets
e SUPpPOSe we want to store n items, where n < m. What is ideal situation”
. If every element has a unique, designated location, get O(1) operations:

« Unfortunately we usually have a universe of items U we may wish to store,
where | U| is much much bigger than m.

* We need strategies for resolving collisions
o Linear probing: h(k,i) = (h(k) + 1) mod m
. Quadratic probing: A(k, 1) = (h(k) + ci + cziz) mod m
 Double hashing: i(k, i) = h(k||i)

. Power-of-two-choices: stored at h;(k) or h,(k), uses “cuckooing’

lechnigues to Resolve
Collisions

e Cuckoo Hashing

e Select 2 independent hash func

e Akeycannow landin1of2p

e Resolve collisions by “pushing” others
out of our bin and placing them in the bin

assoclated with their other hash

10NS

dCES

® [he process may need to repeat

e \Vhat happens when we:
e put(X) where hash4(X) = 07
e pUt(Y) where hashy(Y) = 77

0: &

1: ¢

20—

= B |
H e

We must avoid
cycles!

src: https://en.wikipedia.org/wiki/Cuckoo_hashing#/media/File:Cuckoo.svg

https://en.wikipedia.org/wiki/Cuckoo_hashing#/media/File:Cuckoo.svg

Cuckoo Hashing

e For independent hash functions and low load factor, expected O(1)
e No runs like we have with linear probing
e No shifting "down the line” on inserts

* \We may have a “chain” of evictions, but if chain is too long, we
simply “rehash and rebuild”

o At most 2 checks per lookup

e General technique is called power of two choices

(Extra: Problem)
Membership Queries

Intersection of Systems and Theory

We've spent this class thinking about performance in terms of Big-O
o (Great for understanding scaling behavior of our algorithms/DSes
* Not so great for optimizing a given data structure
Problems with Big-O7
e Hides limitations of hardware/environment
* |gnores importance of locality: both temporal & physical

 We often “count operations”, treating different operations as it
they were the same cost

Exciting problems show up when we think about physical
implications during our algorithmic design/analysis!

Vlemory Hierarchy

* Problem 1: Sometimes (almost always”) we have
more data than fits in memory

e Solution: Store a subset of our data in a cache

e \When we need something
that isn't iIn cache, we kick
out the least valuable things
to make room for the thing
we need

Vlemory Hierarchy

e Problem 2: Not all levels in our cache have the
same cost

Vlemory Hierarchy

e Problem 2: Not all levels in our cache have the
same cost

https://www.istockphoto.com/photo/pile-of-money-gm172637949-581154
http://www.freephotosbank.com/photographers/photos1/45/med_53ff4957d796d0ff0a7d3151ec4e4a20.jpg

https://www.istockphoto.com/photo/pile-of-money-gm172637949-581154
http://www.freephotosbank.com/photographers/photos1/45/med_53ff4957d796d0ff0a7d3151ec4e4a20.jpg

Vlemory Hierarchy

e Problem 3: Not all levels in our cache have the
same speed

Vlemory Hierarchy

e Result: we have a lot of slow, cheap storage, less
RAM, and very little CPU cache.

e \\Ne will focus on the interaction between RAM and
disk

P Fast,
&4 expensive,

) S
. SCarce

. Slow,
cheap,
s‘plentiful

(Contrived) Scenario: Photo Storage

Suppose:
 We have a small RAM cache that holds 2 photos
* Our cache is initially empty

e We read trom disk into cache, and evict the least
recently used photo when we need space

Vlemory Hierarchy

Small, fast

Big, slow

Vlemory Hierarchy

get(cat)

Small, fast

Vlemory Hierarchy

get(cat)

Small, fast

Vlemory Hierarchy

get(cat)
get (cow)

Small, fast

Vlemory Hierarchy

get(cat)
get (cow)

Small, fast

Vlemory Hierarchy

get(cat)
get (cow)

get (dog) Small, fast

Vlemory Hierarchy

get(cat)
get (cow)

get (dog) Small, fast

Vlemory Hierarchy

Small, fast

Vlemory Hierarchy

Small, fast

Vlemory Hierarchy

Small, fast

Vlemory Hierarchy

Small, fast

Vlemory Hierarchy

Small, fast

get(cat)

Vlemory Hierarchy

Small, fast

get(cat)

Vlemory Hierarchy

* Problem: We paid an expensive cost just to find out
the thing we were looking for didn'’t exist!!

¢ |[dea: Cache a set of all the keys (names of all
ohotos on disk)

1. Check the names set first *before* checking disk

2. Don't go to disk if we know the thing isn't there

Membership Queries

e How to Implement our name set”
o|f we want to look things up quickly, use a hash set

e |f we want to avoid collisions:

e Make It big
e Use a large hash so to unigquely fingerprint each
file (P(collision) == small)

e New problem: keys can be long, fingerprints are
large. Now our set takes up a large portion of our
cache

Membership Queries

* Insight: we don't need to be perfect.

o [f we go to disk an extra time, no worse off
e False positives are not ideal, but they are OK

e [f we don't go to disk when something exists, BAD
e False negatives are correctness bugs; that’'s not OK

e \We will build a structure that does approximate
membership queries and is more efficient than a set.

Bloom Filters

Goal: approximately represent a set of n elements
using a bit array

e Returns either:
* Definitely NOT in the set

e Possibly in the set
Parameters: m, k

 m: Number of bits in the array

* k: Set of k hash functions { h, h,, ..., h, }, each with
range {0..m-1}

Bloom rilters

Insert(key):

for hashFunction; in hashFuncions; x:
bitmap[hashFunction;(key) % m] = 1

Query(key):

for hashFunction; in hashFuncions;j_k:

1f (bitmap[hashFunctioni(key) % m] != 1):

return “not in set”
return “maybe 1n set”

Concrete Example: k=3, m=10

Concrete Example: k=3, m=10

Concrete Example: k=3, m=10

INSERT ()

hy |)

h, ()

hy ()

Concrete Example: k=3, m=10

INSERT (

hy |

hy (

hy (

)

Note: bit was
(e

already set

Concrete Example: k=3, m=10

All k bits are 1:

return
h; (.) “possibly in set”

Concrete Example: k=3, m=10

Not all k bits are 1:

return
h; (A) —— “definitely NOT in set”

Concrete Example: k=3, m=10

® ® ®
M = O(1|0]1(1|0(0|1]0(1

_ All k bits are 1:

return

h; (.) “possibly in set”

False Positive!

Tuning False Positives

 What happens if we increase m?
 What happens if we increase k?

* False positive rate f is:

= (-) e

P(a given bit is still 0 after n insertions with k independent hash functions)

Bloom Filters

* Are there any problems with Bloom filters?
* What operations do they support/not support?
 How do you grow a Bloom filter?

 What if your filter itself exceeds RAM (how bad is
locality)?
* What does the cache behavior look like?

Bloom rilters

e Deleting keys?

e A key maps to k bits, and although setting any one of
those k bits to zero would remove that key from the set, it
will also remove every key that maps to one of those Dbits.

e Deleting would introduce false negatives!

e Resizing Bitmap?
e No way to grow array using just the bit values
o Although keys are not stored, they are often available
 \When the false positive rate gets too high (overloaded,
too many “deletes” still in bitmap), read keys from slower
media and resize+rehash

Bloom Filters: Challenges

* What if your filter itself exceeds RAM?

 What does the cache behavior look like?

* Good hash functions intentionally create a uniform distribution
to avoid “clumping”

* So even if the filter fits in RAM, the cache locality is poor due to
k random accesses

* If the data set is truly large, there are a few options:
* Use fewer bits per item (sacrifice precision)
* Tolerate higher false positive rates
* Use caching techniques, adding potential for expensive misses

Bloom Filters: Challenges

* What operations do they support/not support?
* insert? Ves!
* query? VYes!
e delete? No! (Multiple items may have “set” any given bit)
* rename? No! (rename = delete + insert)
e “count”? No! (maybe/no answers only)

Bloom filter extensions that add support for additional operations do exist,

but these operations are not supported by the standard data structure.

Filters: the BIG idea

* Filters are not exact. By embracing approximation,
filters can be memory efficient data structures

* Some false positives are allowed

* Claim something is in the set when it is actually not present
* But false negatives are never tolerated

* Claim that something is absent when it is actually present

* Many applications are OK with this behavior

* Typically filters are used in applications where a wrong
answer just wastes work, but does not harm correctness
* Recall the photo example from before:
* If we confirm the photo doesn’t exist, we don’t search (correct)

* If we mistakenly say the photo exists, all we do is waste the time that
we would have needed in the absence of the filter (correct, but slow)

