
(Extra: Technique) 
 Cuckoo Hashing

img: http://phenomena.nationalgeographic.com/files/2016/04/Cuculus_canorus_vogelartinfo.jpg 
img: https://en.wikipedia.org/wiki/File:Eastern_Phoebe-nest-Brown-headed-Cowbird-egg.jpg

http://phenomena.nationalgeographic.com/files/2016/04/Cuculus_canorus_vogelartinfo.jpg
https://en.wikipedia.org/wiki/File:Eastern_Phoebe-nest-Brown-headed-Cowbird-egg.jpg


• We have an underlying array of size   

• We say this array has  slots or buckets 

• Suppose we want to store  items, where  < . What is ideal situation? 

• If every element has a unique, designated location, get  operations: 

• Unfortunately we usually have a universe of items  we may wish to store, 
where  is much much bigger than . 

• We need strategies for resolving collisions 

• Linear probing:  

• Quadratic probing:  

• Double hashing:  

• Power-of-two-choices: stored at  or , uses “cuckooing”

m
m

n n m
O(1)

U
|U | m

h(k, i) = (h(k) + i) mod m
h(k, i) = (h(k) + c1i + c2i2) mod m

h(k, i) = h(k | | i)
h1(k) h2(k)

Refresher: Hashtable Basics



0:

1:
2:

3:

4:
5:
6:

7:

8:

9:

Techniques to Resolve 
Collisions

• Cuckoo Hashing 
• Select 2 independent hash functions 

• A key can now land in 1 of 2 places 
• Resolve collisions by “pushing” others 
out of our bin and placing them in the bin 
associated with their other hash 

• The process may need to repeat 

• What happens when we: 
• put(X) where hash1(X) = 0? 
• put(Y) where hash1(Y) = 7?

We must avoid 
cycles!

src: https://en.wikipedia.org/wiki/Cuckoo_hashing#/media/File:Cuckoo.svg

https://en.wikipedia.org/wiki/Cuckoo_hashing#/media/File:Cuckoo.svg


Cuckoo Hashing
• For independent hash functions and low load factor, expected O(1) 

• No runs like we have with linear probing 

• No shifting “down the line” on inserts 

• We may have a “chain” of evictions, but if chain is too long, we 
simply “rehash and rebuild” 

• At most 2 checks per lookup 

• General technique is called power of two choices



(Extra: Problem) 
Membership Queries



Intersection of Systems and Theory
We’ve spent this class thinking about performance in terms of Big-O 

• Great for understanding scaling behavior of our algorithms/DSes 
• Not so great for optimizing a given data structure 

Problems with Big-O? 
• Hides limitations of hardware/environment 

• Ignores importance of locality: both temporal & physical 
• We often “count operations”, treating different operations as if 

they were the same cost 
Exciting problems show up when we think about physical 
implications during our algorithmic design/analysis!



Memory Hierarchy
• Problem 1: Sometimes (almost always?) we have 
more data than fits in memory 

• Solution: Store a subset of our data in a cache

•  When we need something 
that isn’t in cache, we kick 
out the least valuable things 
to make room for the thing 
we need



Memory Hierarchy
• Problem 2: Not all levels in our cache have the 
same cost



Memory Hierarchy
• Problem 2: Not all levels in our cache have the 
same cost

https://www.istockphoto.com/photo/pile-of-money-gm172637949-581154 
http://www.freephotosbank.com/photographers/photos1/45/med_53ff4957d796d0ff0a7d3151ec4e4a20.jpg

https://www.istockphoto.com/photo/pile-of-money-gm172637949-581154
http://www.freephotosbank.com/photographers/photos1/45/med_53ff4957d796d0ff0a7d3151ec4e4a20.jpg


Memory Hierarchy
• Problem 3: Not all levels in our cache have the 
same speed



Memory Hierarchy
•  Result: we have a lot of slow, cheap storage, less 
RAM, and very little CPU cache. 
• We will focus on the interaction between RAM and 
disk

Fast, 
expensive, 

scarce

Slow, 
cheap, 
plentiful



(Contrived) Scenario: Photo Storage

Suppose: 

• We have a small RAM cache that holds 2 photos 

• Our cache is initially empty 

• We read from disk into cache, and evict the least 
recently used photo when we need space



Memory Hierarchy

Big, slow

Small, fast



Memory Hierarchy

Big, slow

Small, fast

get(cat)

?



Memory Hierarchy

Big, slow

Small, fast

get(cat)



Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)

?



Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)



Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)

?



Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)



Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)
get(goat)

?



Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)
get(goat)



Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)
get(goat)
get(cat) ?



Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)
get(goat)
get(cat)



Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)
get(goat)
get(cat)
get(liger)

?



Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)
get(goat)
get(cat)
get(liger)

???

?



Memory Hierarchy
• Problem: We paid an expensive cost just to find out 
the thing we were looking for didn’t exist!! 

• Idea: Cache a set of all the keys (names of all 
photos on disk) 

1. Check the names set first *before* checking disk 

2. Don’t go to disk if we know the thing isn’t there



Membership Queries
• How to implement our name set? 

•If we want to look things up quickly, use a hash set 

• If we want to avoid collisions: 
• Make it big 
• Use a large hash so to uniquely fingerprint each 
file  (P(collision) == small) 

• New problem: keys can be long, fingerprints are 
large. Now our set takes up a large portion of our 
cache



Membership Queries
• Insight: we don’t need to be perfect. 

• If we go to disk an extra time, no worse off 
• False positives are not ideal, but they are OK 

• If we don’t go to disk when something exists, BAD 
• False negatives are correctness bugs; that’s not OK 

• We will build a structure that does approximate 
membership queries and is more efficient than a set.



Bloom Filters

Goal: approximately represent a set of n elements 
using a bit array
• Returns either:

• Definitely NOT in the set
• Possibly in the set

Parameters: m, k
• m: Number of bits in the array
• k: Set of k hash functions { h1, h2, …, hk }, each with 

range {0…m-1}



Bloom Filters

for hashFunctioni in hashFuncionsi…k:
bitmap[hashFunctioni(key) % m] = 1

Insert(key):

for hashFunctioni in hashFuncionsi…k:
if (bitmap[hashFunctioni(key) % m] != 1):

return “not in set”
return “maybe in set”

Query(key):



Concrete Example: k=3, m=10

h1 (    )

h2 (    )

h3 (    )

0 0 0 0 0 0 0 0 0 0M =

INSERT(     )



Concrete Example: k=3, m=10

h1 (    )

h2 (    )

h3 (    )

0 1 0 0 1 0 0 0 0 1M =

INSERT(     )

Set: 



Concrete Example: k=3, m=10

h1 (    )

h2 (    )

h3 (    )

0 1 0 0 1 0 0 0 0 1M =

INSERT(     )

Set: 



Concrete Example: k=3, m=10

h1 (    )

h2 (    )

h3 (    )

0 1 0 1 1 0 0 1 0 1M =

INSERT(     )

Set: 

Note: bit was
already set



Concrete Example: k=3, m=10

h1 (    )

h2 (    )

h3 (    )

0 1 0 1 1 0 0 1 0 1M =

LOOKUP(     )

Set: 

All k bits are 1:
return 
“possibly in set”



Concrete Example: k=3, m=10

h1 (    )

h2 (    )

h3 (    )

0 1 0 1 1 0 0 1 0 1M =

LOOKUP(     )

Set: 

Not all k bits are 1:
return 
“definitely NOT in set”



Concrete Example: k=3, m=10

h1 (    )

h2 (    )

h3 (    )

0 1 0 1 1 0 0 1 0 1M =

LOOKUP(     )

Set: 

All k bits are 1:
return 
“possibly in set”

False Positive!



Tuning False Positives

• What happens if we increase m?
• What happens if we increase k?

• False positive rate f is:

P(a given bit is still 0 after n insertions with k independent hash functions)



Bloom Filters

• Are there any problems with Bloom filters?
• What operations do they support/not support?
• How do you grow a Bloom filter?
• What if your filter itself exceeds RAM (how bad is 

locality)?
• What does the cache behavior look like?



Bloom Filters
•  Deleting keys? 

•  A key maps to k bits, and although setting any one of 
those k bits to zero would remove that key from the set, it 
will also remove every key that maps to one of those bits. 

•  Deleting would introduce false negatives! 

•  Resizing Bitmap? 
•  No way to grow array using just the bit values 
•  Although keys are not stored, they are often available 
•  When the false positive rate gets too high (overloaded, 
too many “deletes” still in bitmap), read keys from slower 
media and resize+rehash



Bloom Filters: Challenges

• What if your filter itself exceeds RAM?
• What does the cache behavior look like?

• Good hash functions intentionally create a uniform distribution 
to avoid “clumping”

• So even if the filter fits in RAM, the cache locality is poor due to 
k random accesses

• If the data set is truly large, there are a few options:
• Use fewer bits per item (sacrifice precision)
• Tolerate higher false positive rates
• Use caching techniques, adding potential for expensive misses



Bloom Filters: Challenges

• What operations do they support/not support?
• insert?
• query?
• delete?
• rename?
• “count”?

Yes!
Yes!
No! (Multiple items may have “set” any given bit)
No! (rename = delete + insert)
No! (maybe/no answers only)

Bloom filter extensions that add support for additional operations do exist, 
but these operations are not supported by the standard data structure.



Filters: the BIG idea

• Filters are not exact. By embracing approximation, 
filters can be memory efficient data structures
• Some false positives are allowed

• Claim something is in the set when it is actually not present
• But false negatives are never tolerated

• Claim that something is absent when it is actually present

• Many applications are OK with this behavior
• Typically filters are used in applications where a wrong 

answer just wastes work, but does not harm correctness
• Recall the photo example from before:

• If we confirm the photo doesn’t exist, we don’t search (correct)
• If we mistakenly say the photo exists, all we do is waste the time that 

we would have needed in the absence of the filter (correct, but slow)


