
Data Structures with “Randomness”:  
Hashtables



Flashback to Data Structures…
Recall the Dictionary interface 

• What are the Dictionary operations? 

• What concrete Dictionary implementations did we study? 

• What are the tradeoffs between binary search trees and hashtables? 

• How often do we need to do successor/range operations? 

• Similarly: How much does locality matter?

Let’s develop a data structure with excellent (expected) 
point lookup/update performance but no support for 

range operations.



• We have an underlying array of size   

• We say this array has  slots or buckets 

• Suppose we want to store  items, where  < . What is ideal situation? 

• If every element has a unique, designated location, get  operations: 

• Insert a new item  update slot 

• Look up an item  check slot 

• Delete an item  clear slot 

• Unfortunately we usually have a universe of items  we may wish to store, 
where  is much much bigger than . Example universes? 

• Punchline: even with  < , we can’t guarantee those  items their own 
dedicated locations because we don’t know which particular  items from 
our universe  that we will be storing…
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• But we still want  operations! Plus, you’ve been told we achieve that! 

• In reality, we settle for expected  performance… 
• Idea: use a hash function to map each item to a slot 

•  is a one-way function that maps the universe  of keys to slots in 
our array : 
          

• So, we say an item with key  hashes to slot , and that  is the 
item’s hash value 

• Textbook gives example hash functions (and why some are bad) 
• Textbook discusses universal hashing 
• Instead, we’re going to focus on analyzing the data structure under 

the assumption that we have a uniform hash function
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• We will assume hash function  is ideal : 

• For all , assume  
• Assume the hashes of all items are 

independent: 
 

• Such s called uniform random hash functions 
• Good hash functions do behave this way in 

practice 
• Lots of theoretical work about weaker assumptions 

on the hash functions

h
i ∈ U, k Pr(h(i) = k) = 1/m

Pr(h(i) = k |h(i2) = k2, h(i3) = k3, …) = 1/m

h

Hash function: theory versus practice

Dahlgaard et al. 2017



• Hash function , array  

• Item  is stored in  

•
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• Hash function , array  

• Item  is stored in 
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• We said that even with  < , we can’t guarantee those  items 
their own dedicated locations because we don’t know which 
particular  items from our universe  that we will be storing… 

• So we say a collision occurs when two unique items hash to 
the same slot ( ) 

• Practically, we need a way to manage collisions 
• Recall any strategies from data structures? 

• Theoretically, we need a way to analyze the impact of collisions on 
our data structure performance 

• Our collision strategy needs to maintain our expected  
performance (luckily, several do!)
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Managing Collisions via Chaining
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• Idea: store a linked list at each array entry (what kind?) 
• When an item hashes to a slot, store it in the (possibly empty) linked 

list

Amir ChrisBeth



Managing Collisions via Chaining

Amir


Beth


Chris


Amir ChrisBeth

• Idea: store a linked list at each array entry (what kind?) 
• When an item hashes to a slot, store it in the (possibly empty) linked 

list



Managing Collisions via Chaining

Amir


Beth


Chris


Nir

Amir Chris

h(Nir) = 4

Beth

• Idea: store a linked list at each array entry (what kind?) 
• When an item hashes to a slot, store it in the (possibly empty) linked 

list



• Idea: store a linked list at each array entry (what kind?) 
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• Store a doubly linked list at each array entry 
• When an item hashes to a slot, prepend it to the 

linked list 

• How can we insert? (See above…) 
• How can we lookup? 
• How can we delete? 

• (Harder) How much time do these operations 
take?
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• Store a doubly linked list at each array entry 
• When an item hashes to a slot, prepend it to the 

linked list
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Managing Collisions via Chaining

Insert( ):k
Prepend  at the head of the list k A[h(k)]

• Runtime? 

•  — exactly; not in expectation! 

• Note, we assume  is not in hashtable 
• If don’t want that assumption, do a lookup first!
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Delete( ):k
Scan the list , and delete the entry with key A[h(k)] k

• Runtime? 

• , where  is the length of the chain in slot  

• What is ?

O(L) L h(k)
L

• Store a doubly linked list at each array entry 
• When an item hashes to a slot, prepend it to the 

linked list



Hashing and Chain Length
Worst-case delete time in a hash table with chaining: number of balls in a 
particular bin. Question: Expected number of balls in a particular bin ? 

• Let  denote indicator r.v. that item  hashes to bucket  

• Assuming uniform hashing,  

•
Let  denote the number of items that hash to bucket  

•
By linearity of expectation, 
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Delete( ):k
Scan the list , and delete the entry with key A[h(k)] k

• Runtime? 

• , where  is the length of the chain in slot  

• What is ? 

• . We’ll also call this the hashtable’s load factor
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E[L] =
n
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• Store a doubly linked list at each array entry 
• When an item hashes to a slot, prepend it to the 

linked list
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Lookup( ):k
Scan the list ; return the entry with key  if an entry existsA[h(k)] k

• Runtime? 
• (Surprisingly?) Lookup behavior is different in two cases! 

• “Successful” lookup vs. “unsuccessful” 
• Why?

• Store a doubly linked list at each array entry 
• When an item hashes to a slot, prepend it to the 

linked list



Hashing and Chain Length
Worst-case lookup time in a hash table with chaining: number of balls in a 
particular bin. Question: what’s different about successful and unsuccessful 
cases? 

• Unsuccessful lookup: must scan through entire chain 

• Cost is , and we showed that  

• Successful lookup stops once we find the target element. Analysis is tricky 
because we always insert at the front of the list! 

• Expected cost to lookup item  when  is in the hashtable is 
the expected number of items that collided with  after  
was inserted

O(L) E[L] =
n
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Cost of Successful Lookup
• Assume that element  is equally likely to be any of table’s  elements 

• Number of elements checked is 1 plus number of elements that appear 
before  in list  

• Observation: all elements are placed at the front of the list, so this is 
precisely the number of elements that collided with  and were inserted 
after  was 

• Let  be the th element inserted into the list 

• Let  be the indicator r.v. that equals 1 when   

• i.e.,  is 1 when there is a collision between  and , 0 otherwise 

• Under uniform hashing assumption, 
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Cost of Successful Lookup
Expected number of collisions with  that occur after  is inserted? 

• Let  be the th element inserted into the list 

• In other words, we insert  into  

• Let  be the indicator r.v. that equals 1 when   

• Note:  is 1 when there is a collision between  and , 0 otherwise 

• Under our uniform hashing assumption,  

• With this, can we reason about the number of elements examined in a 
successful search?
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Cost of Successful Lookup
The expected number of elements examined in a successful search is: 
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Cost of Successful Lookup
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Hashtable Summary
We can get close to  performance for insert, lookup, and delete 
operations (  in expectation, where  can be controlled 
by resizing) 

• There are other strategies for resolving collisions, but analyzing their 
performance is tricky 

• Linear probing:  
• Quadratic probing:  
• Double hashing:  
• Power-of-two-choices: stored at  or , uses “cuckooing” 

Hashtables are a great data structure for many applications 
• As long as you don’t need to iterate or sort!
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h(k, i) = (h(k) + i) mod m
h(k, i) = (h(k) + c1i + c2i2) mod m

h(k, i) = h(k | | i)
h1(k) h2(k)



(Extra: Technique) 
 Cuckoo Hashing

img: http://phenomena.nationalgeographic.com/files/2016/04/Cuculus_canorus_vogelartinfo.jpg 
img: https://en.wikipedia.org/wiki/File:Eastern_Phoebe-nest-Brown-headed-Cowbird-egg.jpg

http://phenomena.nationalgeographic.com/files/2016/04/Cuculus_canorus_vogelartinfo.jpg
https://en.wikipedia.org/wiki/File:Eastern_Phoebe-nest-Brown-headed-Cowbird-egg.jpg


Techniques to Resolve 
Collisions

• Cuckoo Hashing 
• Select 2 independent hash functions 

• A key can now land in 1 of 2 places 
• Resolve collisions by “pushing” others 
out of our bin and placing them in the bin 
associated with their other hash 

• The process may need to repeat 

• What happens when we: 
• put(X) where hash1(X) = 0? 
• put(Y) where hash1(Y) = 7?

We must avoid 
cycles!

src: https://en.wikipedia.org/wiki/Cuckoo_hashing#/media/File:Cuckoo.svg

https://en.wikipedia.org/wiki/Cuckoo_hashing#/media/File:Cuckoo.svg


Cuckoo Hashing
• For independent hash functions and low load factor, 
expected O(1) 

•No runs like we have with linear probing 

• No shifting “down the line” on inserts 

• At most 2 checks per lookup



(Extra: Problem) 
Membership Queries



Memory Hierarchy
• Problem 1: Sometimes (almost always?) we have 
more data than fits in memory 

• Solution: Store a subset of our data in a cache

•  When we need something 
that isn’t in cache, we kick 
out the least valuable things 
to make room for the thing 
we need



Memory Hierarchy
• Problem 2: Not all levels in our cache have the 
same cost



Memory Hierarchy
• Problem 2: Not all levels in our cache have the 
same cost

https://www.istockphoto.com/photo/pile-of-money-gm172637949-581154 
http://www.freephotosbank.com/photographers/photos1/45/med_53ff4957d796d0ff0a7d3151ec4e4a20.jpg

https://www.istockphoto.com/photo/pile-of-money-gm172637949-581154
http://www.freephotosbank.com/photographers/photos1/45/med_53ff4957d796d0ff0a7d3151ec4e4a20.jpg


Memory Hierarchy
• Problem 3: Not all levels in our cache have the 
same speed



Memory Hierarchy
•  Result: we have a lot of slow, cheap storage, less 
RAM, and very little CPU cache. 
• We will focus on the interaction between RAM and 
disk

Fast, 
expensive, 

scarce

Slow, 
cheap, 
plentiful



Scenario: Photo Storage

Suppose: 

• We have a small RAM cache that holds 2 photos 

• Our cache is initially empty 

• We read from disk into cache, and evict the least 
recently used photo when we need space



Memory Hierarchy

Big, slow
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Memory Hierarchy
• Problem: We paid an expensive cost just to find out 
the thing we were looking for didn’t exist!! 

• Idea: Cache a set of all the keys (names of all 
photos on disk) 

1. Check the names set first *before* checking disk 

2. Don’t go to disk if we know the thing isn’t there



Membership Queries
• How to implement our name set? 

•If we want to look things up quickly, use a hash set 

• If we want to avoid collisions: 
• Make it big 
• Use a large hash so to uniquely fingerprint each 
file  (P(collision) == small) 

• New problem: keys can be long, fingerprints are 
large. Now our set takes up a large portion of our 
cache



Membership Queries
• Insight: we don’t need to be perfect. 

• If we go to disk an extra time, no worse off 
• False positives are not ideal, but they are OK 

• If we don’t go to disk when something exists, BAD (or sick)  
• False negatives are correctness bugs, not OK 

• We will build a structure that does approximate 
membership queries and is more efficient than a set.



Bloom Filter
• Answers with “possibly in set” or “definitely not in set” 
• We save space by not explicitly storing hashes or keys 

• How it works: 
• Create a bit array of m bits  
• Select k hash functions 
• Hash each element k times and set all k bits 
• An element is missing if any of its k bits is unset 
• An element may be present if all of its k bits are set



Bloom Filters

for hashFunctioni in hashFuncionsi…k:
bitmap[hashFunctioni(key) % m] = 1

Insert(key):

for hashFunctioni in hashFuncionsi…k:
if (bitmap[hashFunctioni(key) % m] != 1):

return “not in set”
return “maybe in set”

Query(key):



Bloom Filters
•  Deleting keys? 

•  A key maps to k bits, and although setting any one of 
those k bits to zero would remove that key from the set, it 
will also remove every key that maps to one of those bits. 

•  Deleting would introduce false negatives! 

•  Resizing Bitmap? 
•  No way to grow array using just the bit values 
•  Although keys are not stored, they are often available 
•  When the false positive rate gets too high (overloaded, 
too many “deletes” still in bitmap), read keys from slower 
media and resize+rehash



Related DS: Quotient Filters

• A nifty idea with an even nifty-er paper name (Don’t 
Thrash: How to Cache your Hash in Flash) 

• Uses linear probing to support efficient deletes and 
merges 

• “Write-optimized” data structure (my research area) 
• Based on an end-of-chapter problem in an 

undergraduate data structures textbook 
• Takeaway: You can publish a paper with the skills 

you already have!
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