
Data Structures with “Randomness”:
Hashtables

Flashback to Data Structures…
Recall the Dictionary interface

• What are the Dictionary operations?

• What concrete Dictionary implementations did we study?

• What are the tradeoffs between binary search trees and hashtables?

• How often do we need to do successor/range operations?

• Similarly: How much does locality matter?

Let’s develop a data structure with excellent (expected)
point lookup/update performance but no support for

range operations.

• We have an underlying array of size

• We say this array has slots or buckets

• Suppose we want to store items, where < . What is ideal situation?

• If every element has a unique, designated location, get operations:

• Insert a new item update slot

• Look up an item check slot

• Delete an item clear slot

• Unfortunately we usually have a universe of items we may wish to store,
where is much much bigger than . Example universes?

• Punchline: even with < , we can’t guarantee those items their own
dedicated locations because we don’t know which particular items from
our universe that we will be storing…

m
m

n n m
O(1)

→
→

→
U

|U | m
n m n

n
U

Hashtable Basics

• But we still want operations! Plus, you’ve been told we achieve that!

• In reality, we settle for expected performance…
• Idea: use a hash function to map each item to a slot

• is a one-way function that maps the universe of keys to slots in
our array :

• So, we say an item with key hashes to slot , and that is the
item’s hash value

• Textbook gives example hash functions (and why some are bad)
• Textbook discusses universal hashing
• Instead, we’re going to focus on analyzing the data structure under

the assumption that we have a uniform hash function

O(1)
O(1)

h U
A

h : U → {0,1,…, m − 1}
k h(k) h(k)

Hash table

• We will assume hash function is ideal :

• For all , assume
• Assume the hashes of all items are

independent:

• Such s called uniform random hash functions
• Good hash functions do behave this way in

practice
• Lots of theoretical work about weaker assumptions

on the hash functions

h
i ∈ U, k Pr(h(i) = k) = 1/m

Pr(h(i) = k |h(i2) = k2, h(i3) = k3, …) = 1/m

h

Hash function: theory versus practice

Dahlgaard et al. 2017

• Hash function , array

• Item is stored in

•

h A

i A[h(i)]

m = 6

Amir

Beth

Chris

Hash table

• Hash function , array

• Item is stored in

h A

i A[h(i)]

Hash table

Amir

Beth

Chris

Amir

h(Amir) = 3

Amir

Beth

Chris

Beth Amir

h(Beth) = 0

• Hash function , array

• Item is stored in

h A

i A[h(i)]

Hash table

Amir

Beth

Chris

Beth Amir Chris

h(Chris) = 4

• Hash function , array

• Item is stored in

h A

i A[h(i)]

Hash table

• We said that even with < , we can’t guarantee those items
their own dedicated locations because we don’t know which
particular items from our universe that we will be storing…

• So we say a collision occurs when two unique items hash to
the same slot ()

• Practically, we need a way to manage collisions
• Recall any strategies from data structures?

• Theoretically, we need a way to analyze the impact of collisions on
our data structure performance

• Our collision strategy needs to maintain our expected
performance (luckily, several do!)

n m n

n U

h(x1) = h(x2), x1 ≠ x2

O(1)

Hashtable Basics

Managing Collisions via Chaining

Amir

Beth

Chris

• Idea: store a linked list at each array entry (what kind?)
• When an item hashes to a slot, store it in the (possibly empty) linked

list

Amir ChrisBeth

Managing Collisions via Chaining

Amir

Beth

Chris

Amir ChrisBeth

• Idea: store a linked list at each array entry (what kind?)
• When an item hashes to a slot, store it in the (possibly empty) linked

list

Managing Collisions via Chaining

Amir

Beth

Chris

Nir

Amir Chris

h(Nir) = 4

Beth

• Idea: store a linked list at each array entry (what kind?)
• When an item hashes to a slot, store it in the (possibly empty) linked

list

• Idea: store a linked list at each array entry (what kind?)
• When an item hashes to a slot, store it in the (possibly empty) linked

list

Amir

Beth

Chris

Nir

Amir

Chris

h(Nir) = 4

Beth Nir

Managing Collisions via Chaining

• Store a doubly linked list at each array entry
• When an item hashes to a slot, prepend it to the

linked list

• How can we insert? (See above…)
• How can we lookup?
• How can we delete?

• (Harder) How much time do these operations
take?

 Amir

Chris

h(Nir) = 4

Beth Nir

Managing Collisions via Chaining

• Store a doubly linked list at each array entry
• When an item hashes to a slot, prepend it to the

linked list

 Amir

Chris

h(Nir) = 4

Beth Nir

Managing Collisions via Chaining

Insert():k
Prepend at the head of the list k A[h(k)]

• Runtime?

• — exactly; not in expectation!

• Note, we assume is not in hashtable
• If don’t want that assumption, do a lookup first!

O(1)
k

 Amir

Chris

h(Nir) = 4

Beth Nir

Managing Collisions via Chaining

Delete():k
Scan the list , and delete the entry with key A[h(k)] k

• Runtime?

• , where is the length of the chain in slot

• What is ?

O(L) L h(k)
L

• Store a doubly linked list at each array entry
• When an item hashes to a slot, prepend it to the

linked list

Hashing and Chain Length
Worst-case delete time in a hash table with chaining: number of balls in a
particular bin. Question: Expected number of balls in a particular bin ?

• Let denote indicator r.v. that item hashes to bucket

• Assuming uniform hashing,

•
Let denote the number of items that hash to bucket

•
By linearity of expectation,

b

Xi i b

Pr(Xi = 1) =
1
m

X =
n

∑
i=1

Xi b

E[X] = E[
n

∑
i=1

Xi] =
n

∑
i=1

E[Xi] =
n

∑
i=1

1
m

=
n
m

 Amir

Chris

h(Nir) = 4

Beth Nir

Managing Collisions via Chaining

Delete():k
Scan the list , and delete the entry with key A[h(k)] k

• Runtime?

• , where is the length of the chain in slot

• What is ?

• . We’ll also call this the hashtable’s load factor

O(L) L h(k)
L

E[L] =
n
m

• Store a doubly linked list at each array entry
• When an item hashes to a slot, prepend it to the

linked list

 Amir

Chris

h(Nir) = 4

Beth Nir

Managing Collisions via Chaining

Lookup():k
Scan the list ; return the entry with key if an entry existsA[h(k)] k

• Runtime?
• (Surprisingly?) Lookup behavior is different in two cases!

• “Successful” lookup vs. “unsuccessful”
• Why?

• Store a doubly linked list at each array entry
• When an item hashes to a slot, prepend it to the

linked list

Hashing and Chain Length
Worst-case lookup time in a hash table with chaining: number of balls in a
particular bin. Question: what’s different about successful and unsuccessful
cases?

• Unsuccessful lookup: must scan through entire chain

• Cost is , and we showed that

• Successful lookup stops once we find the target element. Analysis is tricky
because we always insert at the front of the list!

• Expected cost to lookup item when is in the hashtable is
the expected number of items that collided with after
was inserted

O(L) E[L] =
n
m

x x
x x

Cost of Successful Lookup
• Assume that element is equally likely to be any of table’s elements

• Number of elements checked is 1 plus number of elements that appear
before in list

• Observation: all elements are placed at the front of the list, so this is
precisely the number of elements that collided with and were inserted
after was

• Let be the th element inserted into the list

• Let be the indicator r.v. that equals 1 when

• i.e., is 1 when there is a collision between and , 0 otherwise

• Under uniform hashing assumption,

x n

x A[h(x)]

x
x

xi i

Xij h(xi) = h(xj)

Xij xi xj

E[Xij] = 1/m

Cost of Successful Lookup
Expected number of collisions with that occur after is inserted?

• Let be the th element inserted into the list

• In other words, we insert into

• Let be the indicator r.v. that equals 1 when

• Note: is 1 when there is a collision between and , 0 otherwise

• Under our uniform hashing assumption,

• With this, can we reason about the number of elements examined in a
successful search?

x x

xi i

x1, x2, …, xn A

Xij h(xi) = h(xj)

Xij xi xj

E[Xij] = 1/m

Cost of Successful Lookup
The expected number of elements examined in a successful search is:

 E
1
n

n

∑
i=1

1 +
n

∑
j=i+1

Xij

Since may be any of the
elements we insert, we average the
contribution of each of the items

x n

n

of comparisons to find are 1 plus
the expected number of collisions
among all items inserted after

xi

xi

Cost of Successful Lookup

E
1
n

n

∑
i=1

1 +
n

∑
j=i+1

Xij =
1
n

n

∑
i=1

1 +
n

∑
j=i+1

E[Xij] by Linearity of Expectation

=
1
n

n

∑
i=1

1 +
n

∑
j=i+1

1
m

=
1
n

n

∑
i=1

1 +
1

mn

n

∑
j=i+1

1

= 1 +
1

mn

n

∑
i=1

(n − i) = 1 +
1

mn (
n

∑
i=1

n −
n

∑
i=1

i)
= 1 +

1
mn (n2 −

n(n + 1)
2) = 1 +

1
nm (2n2 − n2 − n

2)
= 1 +

n − 1
2m = 1 +

n
m

2
−

n
m

2n
= O(1 +

n
m

)

Hashtable Summary
We can get close to performance for insert, lookup, and delete
operations (in expectation, where can be controlled
by resizing)

• There are other strategies for resolving collisions, but analyzing their
performance is tricky

• Linear probing:
• Quadratic probing:
• Double hashing:
• Power-of-two-choices: stored at or , uses “cuckooing”

Hashtables are a great data structure for many applications
• As long as you don’t need to iterate or sort!

O(1)
O(1 + n/m) n/m

h(k, i) = (h(k) + i) mod m
h(k, i) = (h(k) + c1i + c2i2) mod m

h(k, i) = h(k | | i)
h1(k) h2(k)

(Extra: Technique)
 Cuckoo Hashing

img: http://phenomena.nationalgeographic.com/files/2016/04/Cuculus_canorus_vogelartinfo.jpg
img: https://en.wikipedia.org/wiki/File:Eastern_Phoebe-nest-Brown-headed-Cowbird-egg.jpg

http://phenomena.nationalgeographic.com/files/2016/04/Cuculus_canorus_vogelartinfo.jpg
https://en.wikipedia.org/wiki/File:Eastern_Phoebe-nest-Brown-headed-Cowbird-egg.jpg

Techniques to Resolve
Collisions

• Cuckoo Hashing
• Select 2 independent hash functions

• A key can now land in 1 of 2 places
• Resolve collisions by “pushing” others
out of our bin and placing them in the bin
associated with their other hash

• The process may need to repeat

• What happens when we:
• put(X) where hash1(X) = 0?
• put(Y) where hash1(Y) = 7?

We must avoid
cycles!

src: https://en.wikipedia.org/wiki/Cuckoo_hashing#/media/File:Cuckoo.svg

https://en.wikipedia.org/wiki/Cuckoo_hashing#/media/File:Cuckoo.svg

Cuckoo Hashing
• For independent hash functions and low load factor,
expected O(1)

•No runs like we have with linear probing

• No shifting “down the line” on inserts

• At most 2 checks per lookup

(Extra: Problem)
Membership Queries

Memory Hierarchy
• Problem 1: Sometimes (almost always?) we have
more data than fits in memory

• Solution: Store a subset of our data in a cache

• When we need something
that isn’t in cache, we kick
out the least valuable things
to make room for the thing
we need

Memory Hierarchy
• Problem 2: Not all levels in our cache have the
same cost

Memory Hierarchy
• Problem 2: Not all levels in our cache have the
same cost

https://www.istockphoto.com/photo/pile-of-money-gm172637949-581154
http://www.freephotosbank.com/photographers/photos1/45/med_53ff4957d796d0ff0a7d3151ec4e4a20.jpg

https://www.istockphoto.com/photo/pile-of-money-gm172637949-581154
http://www.freephotosbank.com/photographers/photos1/45/med_53ff4957d796d0ff0a7d3151ec4e4a20.jpg

Memory Hierarchy
• Problem 3: Not all levels in our cache have the
same speed

Memory Hierarchy
• Result: we have a lot of slow, cheap storage, less
RAM, and very little CPU cache.
• We will focus on the interaction between RAM and
disk

Fast,
expensive,

scarce

Slow,
cheap,
plentiful

Scenario: Photo Storage

Suppose:

• We have a small RAM cache that holds 2 photos

• Our cache is initially empty

• We read from disk into cache, and evict the least
recently used photo when we need space

Memory Hierarchy

Big, slow

Small, fast

Memory Hierarchy

Big, slow

Small, fast

get(cat)

?

Memory Hierarchy

Big, slow

Small, fast

get(cat)

Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)

?

Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)

Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)

?

Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)

Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)
get(goat)

?

Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)
get(goat)

Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)
get(goat)
get(cat) ?

Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)
get(goat)
get(cat)

Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)
get(goat)
get(cat)
get(liger)

?

Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)
get(goat)
get(cat)
get(liger)

???

?

Memory Hierarchy
• Problem: We paid an expensive cost just to find out
the thing we were looking for didn’t exist!!

• Idea: Cache a set of all the keys (names of all
photos on disk)

1. Check the names set first *before* checking disk

2. Don’t go to disk if we know the thing isn’t there

Membership Queries
• How to implement our name set?

•If we want to look things up quickly, use a hash set

• If we want to avoid collisions:
• Make it big
• Use a large hash so to uniquely fingerprint each
file (P(collision) == small)

• New problem: keys can be long, fingerprints are
large. Now our set takes up a large portion of our
cache

Membership Queries
• Insight: we don’t need to be perfect.

• If we go to disk an extra time, no worse off
• False positives are not ideal, but they are OK

• If we don’t go to disk when something exists, BAD (or sick)
• False negatives are correctness bugs, not OK

• We will build a structure that does approximate
membership queries and is more efficient than a set.

Bloom Filter
• Answers with “possibly in set” or “definitely not in set”
• We save space by not explicitly storing hashes or keys

• How it works:
• Create a bit array of m bits
• Select k hash functions
• Hash each element k times and set all k bits
• An element is missing if any of its k bits is unset
• An element may be present if all of its k bits are set

Bloom Filters

for hashFunctioni in hashFuncionsi…k:
bitmap[hashFunctioni(key) % m] = 1

Insert(key):

for hashFunctioni in hashFuncionsi…k:
if (bitmap[hashFunctioni(key) % m] != 1):

return “not in set”
return “maybe in set”

Query(key):

Bloom Filters
• Deleting keys?

• A key maps to k bits, and although setting any one of
those k bits to zero would remove that key from the set, it
will also remove every key that maps to one of those bits.

• Deleting would introduce false negatives!

• Resizing Bitmap?
• No way to grow array using just the bit values
• Although keys are not stored, they are often available
• When the false positive rate gets too high (overloaded,
too many “deletes” still in bitmap), read keys from slower
media and resize+rehash

Related DS: Quotient Filters

• A nifty idea with an even nifty-er paper name (Don’t
Thrash: How to Cache your Hash in Flash)

• Uses linear probing to support efficient deletes and
merges

• “Write-optimized” data structure (my research area)
• Based on an end-of-chapter problem in an

undergraduate data structures textbook
• Takeaway: You can publish a paper with the skills

you already have!

Acknowledgments
• Some of the material in these slides are taken from

• Shikha Singh

• CLRS

