Data Structures with “Randomness”: Hashtables
Flashback to Data Structures…

Recall the Dictionary interface

• What are the Dictionary operations?
 • What concrete Dictionary implementations did we study?
• What are the tradeoffs between binary search trees and hashtables?
• How often do we need to do successor/range operations?
 • Similarly: How much does locality matter?

Let’s develop a data structure with excellent (expected) point lookup/update performance but no support for range operations.
Hashtable Basics

- We have an underlying array of size m
 - We say this array has m slots or buckets
- Suppose we want to store n items, where $n < m$. What is ideal situation?
 - If every element has a unique, designated location, get $O(1)$ operations:
 - Insert a new item \rightarrow update slot
 - Look up an item \rightarrow check slot
 - Delete an item \rightarrow clear slot
- Unfortunately we usually have a universe of items U we may wish to store, where $|U|$ is much much bigger than m. Example universes?
 - Punchline: even with $n < m$, we can’t guarantee those n items their own dedicated locations because we don’t know which particular n items from our universe U that we will be storing…
.Hash table

- But we still want \(O(1)\) operations! Plus, you’ve been told we achieve that!
 - In reality, we settle for *expected* \(O(1)\) performance…

- **Idea:** use a **hash function** to map each item to a slot
 - \(h\) is a one-way function that maps the *universe* \(U\) of keys to *slots* in our array \(A\):
 \[
 h : U \rightarrow \{0,1,\ldots,m-1\}
 \]

- So, we say an item with key \(k\) **hashes** to slot \(h(k)\), and that \(h(k)\) is the item’s **hash value**
 - Textbook gives example hash functions (and why some are bad)
 - Textbook discusses universal hashing
 - Instead, we’re going to focus on analyzing the data structure under the assumption that we have a **uniform hash function**
Hash function: theory versus practice

- We will assume hash function h is ideal:
 - For all $i \in U, k$, assume $\Pr(h(i) = k) = 1/m$
 - Assume the hashes of all items are independent:
 $\Pr(h(i) = k \mid h(i_2) = k_2, h(i_3) = k_3, \ldots) = 1/m$

- Such hs called uniform random hash functions
- Good hash functions do behave this way in practice
- Lots of theoretical work about weaker assumptions on the hash functions

Dahlgaard et al. 2017
Hash table

- Hash function h, array A
- Item i is stored in $A[h(i)]$
- $m = 6$
Hash table

- Hash function h, array A
- Item i is stored in $A[h(i)]$

![Hash table diagram]

$h(\text{Amir}) = 3$
Hash table

- Hash function h, array A
- Item i is stored in $A[h(i)]$

$h(Beth) = 0$
Hash table

- Hash function h, array A
- Item i is stored in $A[h(i)]$
Hashtable Basics

- We said that even with \(n < m \), we can’t guarantee those \(n \) items their own dedicated locations because we don’t know which particular \(n \) items from our universe \(U \) that we will be storing…
 - So we say a collision occurs when two unique items hash to the same slot \(h(x_1) = h(x_2), x_1 \neq x_2 \)

- Practically, we need a way to manage collisions
 - Recall any strategies from data structures?
- Theoretically, we need a way to analyze the impact of collisions on our data structure performance
 - Our collision strategy needs to maintain our expected \(O(1) \) performance (luckily, several do!)
Managing Collisions via Chaining

• Idea: store a linked list at each array entry (what kind?)
• When an item hashes to a slot, store it in the (possibly empty) linked list
Managing Collisions via Chaining

- Idea: store a linked list at each array entry (what kind?)
- When an item hashes to a slot, store it in the (possibly empty) linked list
Managing Collisions via Chaining

- Idea: store a linked list at each array entry (what kind?)
- When an item hashes to a slot, store it in the (possibly empty) linked list

$h(\text{Nir}) = 4$
Managing Collisions via Chaining

- Idea: store a linked list at each array entry (what kind?)
- When an item hashes to a slot, store it in the (possibly empty) linked list

$h(Nir) = 4$
Managing Collisions via Chaining

- Store a doubly linked list at each array entry
- When an item hashes to a slot, **prepend** it to the linked list
- How can we insert? (See above…)
- How can we lookup?
- How can we delete?
- (Harder) How much time do these operations take?
Managing Collisions via Chaining

- Store a doubly linked list at each array entry
- When an item hashes to a slot, **prepend** it to the linked list

Insert(k):

Prepend k at the head of the list $A[h(k)]$

- Runtime?
 - $O(1)$ — exactly; not in expectation!
 - Note, we assume k is not in hashtable
 - If don’t want that assumption, do a lookup first!
Managing Collisions via Chaining

- Store a doubly linked list at each array entry
- When an item hashes to a slot, **prepend** it to the linked list

Delete(\(k\)):

Scan the list \(A[h(k)]\), and delete the entry with key \(k\)

- Runtime?
 - \(O(L)\), where \(L\) is the length of the chain in slot \(h(k)\)
 - What is \(L\)?
Hashing and Chain Length

Worst-case delete time in a hash table with chaining: number of balls in a particular bin. **Question:** Expected number of balls in a particular bin \(b \)?

- Let \(X_i \) denote indicator r.v. that item \(i \) hashes to bucket \(b \)

 - Assuming uniform hashing, \(Pr(X_i = 1) = \frac{1}{m} \)

- Let \(X = \sum_{i=1}^{n} X_i \) denote the number of items that hash to bucket \(b \)

 - By linearity of expectation, \(E[X] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} \frac{1}{m} = \frac{n}{m} \)
Managing Collisions via Chaining

• Store a doubly linked list at each array entry
• When an item hashes to a slot, **prepend** it to the linked list

Delete\(k\):

Scan the list \(A[h(k)]\), and delete the entry with key \(k\)

• Runtime?
 • \(O(L)\), where \(L\) is the length of the chain in slot \(h(k)\)
 • What is \(L\)?
 • \(E[L] = \frac{n}{m}\). We’ll also call this the hashtable’s **load factor**
Managing Collisions via Chaining

- Store a doubly linked list at each array entry
- When an item hashes to a slot, **prepend** it to the linked list

Lookup(k):
- Scan the list $A[h(k)]$; return the entry with key k if an entry exists

- Runtime?
 - (Surprisingly?) Lookup behavior is different in two cases!
 - “Successful” lookup vs. “unsuccessful”
 - Why?
Hashing and Chain Length

Worst-case lookup time in a hash table with chaining: number of balls in a particular bin. **Question:** what’s different about successful and unsuccessful cases?

- **Unsuccessful** lookup: must scan through entire chain

 Cost is $O(L)$, and we showed that $E[L] = \frac{n}{m}$

- **Successful** lookup stops once we find the target element. Analysis is tricky because we always insert at the front of the list!

 - Expected cost to lookup item x when x is in the hashtable is the expected number of items that collided with x *after* x was inserted
Cost of Successful Lookup

- Assume that element x is equally likely to be any of table’s n elements
 - Number of elements checked is 1 plus number of elements that appear before x in list $A[h(x)]$
 - Observation: all elements are placed at the front of the list, so this is precisely the number of elements that collided with x and were inserted after x was
- Let x_i be the i^{th} element inserted into the list
- Let X_{ij} be the indicator r.v. that equals 1 when $h(x_i) = h(x_j)$
 - i.e., X_{ij} is 1 when there is a collision between x_i and x_j, 0 otherwise
- Under uniform hashing assumption, $E[X_{ij}] = 1/m$
Cost of Successful Lookup

Expected number of collisions with \(x \) that occur after \(x \) is inserted?

- Let \(x_i \) be the \(i^{th} \) element inserted into the list
 - In other words, we insert \(x_1, x_2, \ldots, x_n \) into \(A \)

- Let \(X_{ij} \) be the indicator r.v. that equals 1 when \(h(x_i) = h(x_j) \)
 - Note: \(X_{ij} \) is 1 when there is a collision between \(x_i \) and \(x_j \), 0 otherwise

- Under our uniform hashing assumption, \(E[X_{ij}] = \frac{1}{m} \)

- With this, can we reason about the number of elements examined in a successful search?
Cost of Successful Lookup

The expected number of elements examined in a successful search is:

\[
E \left[\frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} X_{ij} \right) \right]
\]

Since \(x \) may be any of the \(n \) elements we insert, we average the contribution of each of the \(n \) items.

of comparisons to find \(x_i \) are 1 plus the expected number of collisions among all items inserted after \(x_i \).
Cost of Successful Lookup

\[E \left[\frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} X_{ij} \right) \right] \]

\[= \frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} E[X_{ij}] \right) \]

\[= \frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} \frac{1}{m} \right)
= \frac{1}{n} \sum_{i=1}^{n} \left(1 + \frac{1}{mn} \sum_{i=1}^{n} (n - i) \right)
= 1 + \frac{1}{mn} \sum_{i=1}^{n} (n - i)
= 1 + \frac{1}{mn} \left(\sum_{i=1}^{n} n - \sum_{i=1}^{n} i \right)
= 1 + \frac{1}{mn} \left(\frac{2n^2 - n^2 - n}{2} \right)
= 1 + \frac{n - 1}{2m} \]

by Linearity of Expectation
Hashtable Summary

We can get close to $O(1)$ performance for insert, lookup, and delete operations ($O(1 + n/m)$ in expectation, where n/m can be controlled by resizing)

- There are other strategies for resolving collisions, but analyzing their performance is tricky
 - Linear probing: $h(k, i) = (h(k) + i) \mod m$
 - Quadratic probing: $h(k, i) = (h(k) + c_1 i + c_2 i^2) \mod m$
 - Double hashing: $h(k, i) = h(k || i)$
 - Power-of-two-choices: stored at $h_1(k)$ or $h_2(k)$, uses “cuckooing”

Hashtables are a great data structure for many applications

- As long as you don’t need to iterate or sort!
(Extra: Technique)

Cuckoo Hashing
Techniques to Resolve Collisions

- **Cuckoo Hashing**
 - Select 2 independent hash functions
 - A key can now land in 1 of 2 places
 - Resolve collisions by “pushing” others out of our bin and placing them in the bin associated with their other hash
 - The process may need to repeat

- What happens when we:
 - put(X) where hash$_1$(X) = 0?
 - put(Y) where hash$_1$(Y) = 7?

source: https://en.wikipedia.org/wiki/Cuckoo_hashing#/media/File:Cuckoo.svg
Cuckoo Hashing

• For independent hash functions and low load factor, expected $O(1)$

• No runs like we have with linear probing
 • No shifting “down the line” on inserts
 • At most 2 checks per lookup
(Extra: Problem)
Membership Queries
Memory Hierarchy

• **Problem 1:** Sometimes (almost always?) we have more data than fits in memory

• **Solution:** Store a subset of our data in a cache

 • When we need something that isn’t in cache, we kick out the least valuable things to make room for the thing we need
Memory Hierarchy

• **Problem 2:** Not all levels in our cache have the same cost
Memory Hierarchy

- **Problem 2:** Not all levels in our cache have the same cost
Memory Hierarchy

- **Problem 3**: Not all levels in our cache have the same speed
Memory Hierarchy

- Result: we have a lot of slow, cheap storage, less RAM, and very little CPU cache.
- We will focus on the interaction between RAM and disk
Scenario: Photo Storage

Suppose:

• We have a small RAM cache that holds 2 photos
• Our cache is initially empty
• We read from disk into cache, and evict the least recently used photo when we need space
Memory Hierarchy

Small, fast
RAM

Big, slow
Hard Drive

Images of a cat, dog, cow, and goat.
Memory Hierarchy

get(cat)
Memory Hierarchy

get(cat)
Memory Hierarchy

get(cat)
get(cow)

Small, fast
RAM

Big, slow
Memory Hierarchy

get(cat)
get(cow)

Small, fast

Big, slow
Memory Hierarchy

cat
get(cat)
cow
get(cow)
dog
get(dog)

Big, slow

Small, fast

RAM

?
Memory Hierarchy

get(cat)
get(cow)
get(dog)
Memory Hierarchy

cat

Small, fast

RAM

?

dog

goose

Big, slow
Memory Hierarchy

get(cat)
get(cow)
get(dog)
get(goat)
Memory Hierarchy

get(cat)
get(cow)
get(dog)
get(goat)
get(cat)

Small, fast

Big, slow

RAM

?
Memory Hierarchy

- get(cat)
- get(cow)
- get(dog)
- get(goat)
- get(cat)
Memory Hierarchy

get(cat)
get(cow)
get(dog)
get(goat)
get(cat)
get(iger)
Memory Hierarchy

get(cat)
get(cow)
get(dog)
get(goat)
get(cat)
get(liger)

Small, fast

Big, slow
Memory Hierarchy

• **Problem:** We paid an expensive cost just to find out the thing we were looking for didn’t exist!!

• **Idea:** Cache a set of all the keys (names of all photos on disk)

 1. Check the names set first *before* checking disk

 2. Don’t go to disk if we know the thing isn’t there
Membership Queries

• How to implement our name set?
 • If we want to look things up quickly, use a hash set

• If we want to avoid collisions:
 • Make it big
 • Use a large hash so to uniquely fingerprint each file ($P(\text{collision}) == \text{small}$)

• **New problem**: keys can be long, fingerprints are large. Now our set takes up a large portion of our cache
Membership Queries

• **Insight**: we don’t need to be perfect.

• If we go to disk an extra time, no worse off
 • False positives are not ideal, but they are OK

• If we don’t go to disk when something exists, BAD (or sick)
 • False negatives are correctness bugs, not OK

• We will build a structure that does approximate membership queries and is more efficient than a set.
Bloom Filter

• Answers with “possibly in set” or “definitely not in set”
• We save space by not explicitly storing hashes or keys

• How it works:
 • Create a bit array of m bits
 • Select k hash functions
 • Hash each element k times and set all k bits
 • An element is missing if any of its k bits is unset
 • An element may be present if all of its k bits are set
Bloom Filters

Insert(key):
 for hashFunction_i in hashFunctions_i...k:
 bitmap[hashFunction_i(key) % m] = 1

Query(key):
 for hashFunction_i in hashFunctions_i...k:
 if (bitmap[hashFunction_i(key) % m] != 1):
 return “not in set”
 return “maybe in set”
Bloom Filters

• Deleting keys?
 • A key maps to \(k \) bits, and although setting any one of those \(k \) bits to zero would remove that key from the set, it will also remove every key that maps to one of those bits.
 • Deleting would introduce false negatives!

• Resizing Bitmap?
 • No way to grow array using just the bit values
 • Although keys are not stored, they are often available
 • When the false positive rate gets too high (overloaded, too many “deletes” still in bitmap), read keys from slower media and resize+rehash
Related DS: Quotient Filters

- A nifty idea with an even nifty-er paper name *(Don’t Thrash: How to Cache your Hash in Flash)*
- Uses linear probing to support efficient deletes and merges
- “Write-optimized” data structure (my research area)
- Based on an end-of-chapter problem in an undergraduate data structures textbook
- Takeaway: You can publish a paper with the skills you already have!
Acknowledgments

- Some of the material in these slides are taken from
 - Shikha Singh
 - CLRS