Data Structures with "Randomness": Hashtables

Flashback to Data Structures...

Recall the Dictionary interface

- What are the Dictionary operations?
- What concrete Dictionary implementations did we study?
- What are the tradeoffs between binary search trees and hashtables?
- How often do we need to do successor/range operations?
- Similarly: How much does locality matter?

Let's develop a data structure with excellent (expected) point lookup/update performance but no support for range operations.

Hashtable Basics

- We have an underlying array of size m

- We say this array has m slots or buckets
- Suppose we want to store n items, where $n<m$. What is ideal situation?
- If every element has a unique, designated location, get $O(1)$ operations:
- Insert a new item \rightarrow update slot
- Look up an item \rightarrow check slot
- Delete an item \rightarrow clear slot
- Unfortunately we usually have a universe of items U we may wish to store, where $|U|$ is much much bigger than m. Example universes?
- Punchline: even with $n<m$, we can't guarantee those n items their own dedicated locations because we don't know which particular n items from our universe U that we will be storing...

Hash table

- But we still want $O(1)$ operations! Plus, you've been told we achieve that!
- In reality, we settle for expected $O(1)$ performance...
- Idea: use a hash function to map each item to a slot
- h is a one-way function that maps the universe U of keys to slots in our array A :

$$
h: U \rightarrow\{0,1, \ldots, m-1\}
$$

- So, we say an item with key k hashes to slot $h(k)$, and that $h(k)$ is the item's hash value
- Textbook gives example hash functions (and why some are bad)
- Textbook discusses universal hashing
- Instead, we're going to focus on analyzing the data structure under the assumption that we have a uniform hash function

Hash function: theory versus practice

- We will assume hash function h is ideal:
- For all $i \in U, k$, assume $\operatorname{Pr}(h(i)=k)=1 / m$
- Assume the hashes of all items are independent:

$$
\operatorname{Pr}\left(h(i)=k \mid h\left(i_{2}\right)=k_{2}, h\left(i_{3}\right)=k_{3}, \ldots\right)=1 / m
$$

Dahlgaard et al. 2017

- Such h s called uniform random hash functions
- Good hash functions do behave this way in practice
- Lots of theoretical work about weaker assumptions on the hash functions

Hash table

- Hash function h, array A
- Item i is stored in $A[h(i)]$
- $m=6$

Amir

Beth
Chris

Hash table

- Hash function h, array A
- Item i is stored in $A[h(i)]$

Amir
Beth
Chris

Hash table

- Hash function h, array A
- Item i is stored in $A[h(i)]$

Amir
Beth
Chris

Hash table

- Hash function h, array A
- Item i is stored in $A[h(i)]$

Amir
Beth
Chris

Hashtable Basics

- We said that even with $n<m$, we can't guarantee those n items their own dedicated locations because we don't know which particular n items from our universe U that we will be storing...
- So we say a collision occurs when two unique items hash to the same slot $\left(h\left(x_{1}\right)=h\left(x_{2}\right), x_{1} \neq x_{2}\right)$
- Practically, we need a way to manage collisions
- Recall any strategies from data structures?
- Theoretically, we need a way to analyze the impact of collisions on our data structure performance
- Our collision strategy needs to maintain our expected $O(1)$ performance (luckily, several do!)

Managing Collisions via Chaining

- Idea: store a linked list at each array entry (what kind?)
- When an item hashes to a slot, store it in the (possibly empty) linked list

Amir
Beth
Chris

Managing Collisions via Chaining

- Idea: store a linked list at each array entry (what kind?)
- When an item hashes to a slot, store it in the (possibly empty) linked list

Amir
Beth
Chris

Managing Collisions via Chaining

- Idea: store a linked list at each array entry (what kind?)
- When an item hashes to a slot, store it in the (possibly empty) linked list

Managing Collisions via Chaining

- Idea: store a linked list at each array entry (what kind?)
- When an item hashes to a slot, store it in the (possibly empty) linked list

Managing Collisions via Chaining

- Store a doubly linked list at each array entry
- When an item hashes to a slot, prepend it to the linked list

- How can we insert? (See above...)
- How can we lookup?
- How can we delete?
- (Harder) How much time do these operations take?

Managing Collisions via Chaining

- Store a doubly linked list at each array entry
- When an item hashes to a slot, prepend it to the linked list

Insert(k):
Prepend k at the head of the list $A[h(k)]$

- Runtime?
- $O(1)$ - exactly; not in expectation!
- Note, we assume k is not in hashtable
- If don't want that assumption, do a lookup first!

Managing Collisions via Chaining

- Store a doubly linked list at each array entry
- When an item hashes to a slot, prepend it to the linked list

Delete (k) :
Scan the list $A[h(k)]$, and delete the entry with key k

- Runtime?
- $O(L)$, where L is the length of the chain in slot $h(k)$
- What is L ?

Hashing and Chain Length

Worst-case delete time in a hash table with chaining: number of balls in a particular bin. Question: Expected number of balls in a particular bin b ?

- Let X_{i} denote indicator r.v. that item i hashes to bucket b
- Assuming uniform hashing, $\operatorname{Pr}\left(X_{i}=1\right)=\frac{1}{m}$
. Let $X=\sum_{i=1}^{n} X_{i}$ denote the number of items that hash to bucket b
- By linearity of expectation, $E[X]=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=\sum_{i=1}^{n} \frac{1}{m}=\frac{n}{m}$

Managing Collisions via Chaining

- Store a doubly linked list at each array entry
- When an item hashes to a slot, prepend it to the linked list

Delete (k) :
Scan the list $A[h(k)]$, and delete the entry with key k

- Runtime?
- $O(L)$, where L is the length of the chain in slot $h(k)$
- What is L ?
- $E[L]=\frac{n}{m}$. We'll also call this the hashtable's load factor

Managing Collisions via Chaining

- Store a doubly linked list at each array entry
- When an item hashes to a slot, prepend it to the linked list

Lookup (k):
Scan the list $A[h(k)]$; return the entry with key k if an entry exists

- Runtime?
- (Surprisingly?) Lookup behavior is different in two cases!
- "Successful" lookup vs. "unsuccessful"
- Why?

Hashing and Chain Length

Worst-case lookup time in a hash table with chaining: number of balls in a particular bin. Question: what's different about successful and unsuccessful cases?

- Unsuccessful lookup: must scan through entire chain
. Cost is $O(L)$, and we showed that $E[L]=\frac{n}{m}$
- Successful lookup stops once we find the target element. Analysis is tricky because we always insert at the front of the list!
- Expected cost to lookup item x when x is in the hashtable is the expected number of items that collided with x after x was inserted

Cost of Successful Lookup

- Assume that element x is equally likely to be any of table's n elements
- Number of elements checked is 1 plus number of elements that appear before x in list $A[h(x)]$
- Observation: all elements are placed at the front of the list, so this is precisely the number of elements that collided with x and were inserted after x was
- Let x_{i} be the $i^{\text {th }}$ element inserted into the list
- Let $X_{i j}$ be the indicator r.v. that equals 1 when $h\left(x_{i}\right)=h\left(x_{j}\right)$
- i.e., $X_{i j}$ is 1 when there is a collision between x_{i} and $x_{j}, 0$ otherwise
- Under uniform hashing assumption, $E\left[X_{i j}\right]=1 / \mathrm{m}$

Cost of Successful Lookup

Expected number of collisions with x that occur after x is inserted?

- Let x_{i} be the $i^{\text {th }}$ element inserted into the list
- In other words, we insert $x_{1}, x_{2}, \ldots, x_{n}$ into A
- Let $X_{i j}$ be the indicator r.v. that equals 1 when $h\left(x_{i}\right)=h\left(x_{j}\right)$
- Note: $X_{i j}$ is 1 when there is a collision between x_{i} and $x_{j}, 0$ otherwise
- Under our uniform hashing assumption, $E\left[X_{i j}\right]=1 / \mathrm{m}$
- With this, can we reason about the number of elements examined in a successful search?

Cost of Successful Lookup

The expected number of elements examined in a successful search is:

$$
E\left[\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} X_{i j}\right)\right]
$$

Since x may be any of the n elements we insert, we average the contribution of each of the n items
\# of comparisons to find x_{i} are 1 plus the expected number of collisions among all items inserted after x_{i}

Cost of Successful Lookup

$$
\begin{aligned}
E\left[\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} X_{i j}\right)\right] & =\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} E\left[X_{i j}\right]\right) \text { by Linearity of Expectation } \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} \frac{1}{m}\right)=\frac{1}{n} \sum_{i=1}^{n} 1+\frac{1}{m n} \sum_{j=i+1}^{n} 1 \\
& =1+\frac{1}{m n} \sum_{i=1}^{n}(n-i)=1+\frac{1}{m n}\left(\sum_{i=1}^{n} n-\sum_{i=1}^{n} i\right) \\
& =1+\frac{1}{m n}\left(n^{2}-\frac{n(n+1)}{2}\right)=1+\frac{1}{n m}\left(\frac{2 n^{2}-n^{2}-n}{2}\right) \\
& =1+\frac{n-1}{2 m}=1+\frac{\frac{n}{m}}{2}-\frac{\frac{n}{m}}{2 n}=O\left(1+\frac{n}{m}\right)
\end{aligned}
$$

Hashtable Summary

We can get close to $O(1)$ performance for insert, lookup, and delete operations $(O(1+n / m)$ in expectation, where n / m can be controlled by resizing)

- There are other strategies for resolving collisions, but analyzing their performance is tricky
- Linear probing: $h(k, i)=(h(k)+i) \bmod m$
- Quadratic probing: $h(k, i)=\left(h(k)+c_{1} i+c_{2} i^{2}\right) \bmod m$
- Double hashing: $h(k, i)=h(k \| i)$
- Power-of-two-choices: stored at $h_{1}(k)$ or $h_{2}(k)$, uses "cuckooing" Hashtables are a great data structure for many applications
- As long as you don't need to iterate or sort!

(Extra: Technique)
 Cuckoo Hashing

Techniques to Resolve Collisions

- Cuckoo Hashing

- Select 2 independent hash functions - A key can now land in 1 of 2 places
- Resolve collisions by "pushing" others out of our bin and placing them in the bin associated with their other hash
- The process may need to repeat
- What happens when we:
- $\operatorname{put}(\mathrm{X})$ where hash $\mathrm{H}_{1}(\mathrm{X})=0$?
- $\operatorname{put}(\mathrm{Y})$ where $^{\text {hash }_{1}(\mathrm{Y})}=7$?

Cuckoo Hashing

- For independent hash functions and low load factor, expected O(1)
- No runs like we have with linear probing
- No shifting "down the line" on inserts
- At most 2 checks per lookup

(Extra: Problem)
 Membership Queries

Memory Hierarchy

- Problem 1: Sometimes (almost always?) we have more data than fits in memory
- Solution: Store a subset of our data in a cache
- When we need something that isn't in cache, we kick out the least valuable things to make room for the thing we need

Memory Hierarchy

- Problem 2: Not all levels in our cache have the same cost

Memory Hierarchy

- Problem 2: Not all levels in our cache have the same cost

Memory Hierarchy

- Problem 3: Not all levels in our cache have the same speed

Memory Hierarchy

- Result: we have a lot of slow, cheap storage, less RAM, and very little CPU cache.
- We will focus on the interaction between RAM and disk

Scenario: Photo Storage

Suppose:

- We have a small RAM cache that holds 2 photos
- Our cache is initially empty
- We read from disk into cache, and evict the least recently used photo when we need space

Memory Hierarchy

Small, fast
RMOMAMAMA

Big, slow

Memory Hierarchy

get(cat)

Small, fast
mamamana
RAM ?

Big, slow

Memory Hierarchy

get(cat)

Small, fast
mamomomaR
RAM
000000000

Memory Hierarchy

get(cat) get(cow)

Small, fast

RAM

Memory Hierarchy

get(cat) get(cow)

Small, fast
mamomama,
noumouno

Memory Hierarchy

```
get(cat)
get(cow)
get(dog)
```


Small, fast
mamomama, RAM ?

Memory Hierarchy

```
get(cat)
get(cow)
get(dog)
```


Small, fast
mamomama,
RAM
nomonomor

Memory Hierarchy

```
get(cat)
get(cow)
get(dog)
get(goat)
```


Small, fast
mMMMMMA RAM ?

Memory Hierarchy

```
get(cat)
get(cow)
get(dog)
get(goat)
```


Small, fast
monomanos
RAM
toomounour

Big, slow

Memory Hierarchy

```
get(cat)
get(cow)
get(dog)
get(goat)
get(cat)
```


Small, fast
 RAM ?
กแแแแแแ

Big, slow

Memory Hierarchy

```
get(cat)
get(cow)
get(dog)
get(goat)
get(cat)
```


Small, fast
MMAMMOMAR
RAM
noumonom

Memory Hierarchy

Big, slow

Memory Hierarchy

Memory Hierarchy

- Problem: We paid an expensive cost just to find out the thing we were looking for didn't exist!!
- Idea: Cache a set of all the keys (names of all photos on disk)

1. Check the names set first *before* checking disk
2. Don't go to disk if we know the thing isn't there

Membership Queries

- How to implement our name set?
- If we want to look things up quickly, use a hash set
- If we want to avoid collisions:
- Make it big
- Use a large hash so to uniquely fingerprint each file ($\mathrm{P}($ collision) $==$ small)
- New problem: keys can be long, fingerprints are large. Now our set takes up a large portion of our cache

Membership Queries

- Insight: we don't need to be perfect.
- If we go to disk an extra time, no worse off
- False positives are not ideal, but they are OK
- If we don't go to disk when something exists, BAD (or sick)
- False negatives are correctness bugs, not OK
- We will build a structure that does approximate membership queries and is more efficient than a set.

Bloom Filter

- Answers with "possibly in set" or "definitely not in set"
- We save space by not explicitly storing hashes or keys
- How it works:
- Create a bit array of m bits
- Select k hash functions
- Hash each element k times and set all k bits
- An element is missing if any of its k bits is unset
- An element may be present if all of its k bits are set

Bloom Filters

Insert(key):

```
for hashFunctioni in hashFuncions i...k:
    bitmap[hashFunctioni(key) % m] = 1
```


Query(key):

```
for hashFunctioni in hashFuncions i...k:
    if (bitmap[hashFunctioni(key) % m] != 1):
        return "not in set"
return "maybe in set"
```


Bloom Filters

- Deleting keys?
- A key maps to k bits, and although setting any one of those k bits to zero would remove that key from the set, it will also remove every key that maps to one of those bits.
- Deleting would introduce false negatives!
- Resizing Bitmap?
- No way to grow array using just the bit values
- Although keys are not stored, they are often available
- When the false positive rate gets too high (overloaded, too many "deletes" still in bitmap), read keys from slower media and resize+rehash

Related DS: Quotient Filters

- A nifty idea with an even nifty-er paper name (Don't Thrash: How to Cache your Hash in Flash)
- Uses linear probing to support efficient deletes and merges
- "Write-optimized" data structure (my research area)
- Based on an end-of-chapter problem in an undergraduate data structures textbook
- Takeaway: You can publish a paper with the skills you already have!

Acknowledgments

- Some of the material in these slides are taken from
- Shikha Singh
- CLRS

