Data Structures with Randomness: Skip Lists

Flashback to Data Structures...

Recall the List interface

- What are the List operations?
- What concrete List implementations did we study?
- What are the tradeoffs between arrays and linked lists?
- Do those tradeoffs change when our lists are sorted?
- How does this compare to a binary search tree?

Let's develop a data structure with the strengths of a Binary Search Tree but the (relative) simplicity of a List

One Linked List

- Start from simplest data structure: (sorted) linked list
- Search cost?

• $\Theta(n)$

• How can we improve it?

$$14 \rightarrow 23 \rightarrow 34 \rightarrow 42 \rightarrow 0$$

- Suppose you instead had two sorted linked lists
 - Each list can contain a subset of the total elements
 - Elements can appear in one or both lists
- Class exercise. How can you use two lists to speed up searches?

$$14 \mapsto 23 \mapsto 34 \mapsto 42 \mapsto 50 \mapsto 59 \mapsto 66 \mapsto 72 \mapsto 79 \mapsto$$

NYC Subway System

- Idea: we have both express and local subways
- Express lines connect a few main stations (and skip a bunch)
- Local lines connect all stations but are slow
- All express stops are also local stops so you can switch

- Search(x):
 - Walk right in top linked list L_1 until going right would be too far • Walk down to bottom linked list L_2

 - Walk right in L_2 until x is found or reach end (report not found)

- **Search**(66):
 - Walk right in top linked list L_1 until going right would be too far
 - Walk down to bottom linked list L_2
 - Walk right in L_2 until x is found or reach end (report not found)

- How should we organize the two lists?
 - Which nodes go in L_1 ?
 - How much of gap to leave between L_1 elements?
 - Best approach: evenly space and promote elements

- If gap between elements in top list is g, then the number of elements traversed (search cost) is at most g + n/g
- Optimized by setting $g = \sqrt{n}$
- So the search cost is at most $2\sqrt{n}$

More Linked Lists

- Search cost with two linked list: $2\sqrt{n}$
- Search cost with three linked list: $3n^{1/3}$

Copyright © 2001-8 by Leiserson et al

k Linked Lists

- Search cost with k linked lists: $kn^{1/k}$
- Search cost with $\log n$ linked lists: $\log n \cdot n^{1/\log n}$
 - $\log n \cdot n^{1/\log n} = 2\log n$

Copyright © 2001-8 by Leiserson et al

Insertion Cost

- This is good, but how can we insert?
- Every new element disrupts our spacing
- Idea: use randomness!

Copyright © 2001-8 by Leiserson et al

Implementing Skip Lists

k Linked Lists

- Search cost with k linked lists: $kn^{1/k}$
- Search cost with $\log n$ linked lists: $\log n \cdot n^{1/\log n}$
 - $\log n \cdot n^{1/\log n} = 2\log n$

Copyright © 2001-8 by Leiserson et al

Insertion Cost

- This is good, but how can we insert?
- Every new element disrupts our spacing
- Reconfiguring to "rebalance" would be expensive

Copyright © 2001-8 by Leiserson et al

- Big question: how should we implement lnsert(x)?
 - Clearly *x* must be inserted into at least one list... so the first question is which list(s) should it be added to?
 - Recall our "local line" **invariant**: bottommost list contains all elements (just like the local subway line makes all stops).
 - We must search for x's position in bottommost list and insert it there
 - Any other lists?
 - Goal: we want half of the elements to go to next level, similar to a balanced binary tree

- Big question: how should we implement lnsert(x)?
 - Goal: we want half of the elements to go to next level, similar to a balanced binary tree
 - Idea: Insert x at level 1 (required), then flip a coin
 - If heads: element gets promoted to next level
 - If tails: element stays put at current level
 - Continue flipping until we get a tails
 - Does this achieve our goal (in expectation)?

- On average:
 - 1/2 of the elements are exclusively on the bottom level (T)
 - 1/2 of the elements go up 1 level (HT)
 - 1/4 of the elements go up 2 levels (HHT)
 - 1/8 go up to 3 levels (HHHT)
 - etc.

Question: Does this randomness on insertion affect any other operations?

- Search(x):
 - Remains unchanged
 - Start at top list, walk right until just before value gets > target
 - Go down and repeat until:

 - find value > target in bottom list (can't go down any farther) reach last element in bottom list (ran out of elements)
 - element is found (hooray!)

Skip List Search Example

– Example: Search for 72

* Level 1: 14 too small, 79 too big; go down 14

* Level 1: 14 too small, 79 too big; go down 14 * Level 2: 14 too small, 50 too small, 79 too big; go down 50

- * Level 1: 14 too small, 79 too big; go down 14
- * Level 2: 14 too small, 50 too small, 79 too big; go down 50
- * Level 3: 50 too small, 66 too small, 79 too big; go down 66

- * Level 1: 14 too small, 79 too big; go down 14
- * Level 2: 14 too small, 50 too small, 79 too big; go down 50
- * Level 4: 66 too small, 72 spot on

* Level 3: 50 too small, 66 too small, 79 too big; go down 66

Let L_k be the set of all items in level $k \geq 1$.

- Height of an element x: $\ell(x) = \max\{k \mid x \in L_k\}$
- Height of entire skip list L: $h(L) = \max\{\ell(x) \mid x \in L_0\}$

Maximum level that an element appears in

Maximum height among all elements in the list

- Expected height of a node?
 - the expected number of trials until success?

• Question: in an experiment with probability p of success, what is

Let X denote the random variable equal to the number of flips performed until we reach a tails (stopping condition for promotion). What is E[X]? • For i > 0, we have Pr[X = i] = (1) $E[X] = \sum_{i=1}^{\infty} i \cdot \Pr[X = i] = \sum_{i=1}^{\infty} i($ i=0i=1 $= \frac{p}{1-p} \cdot \frac{1-p}{p^2} = \frac{1}{p}$ • If $p = \frac{1}{2}$, then E[X] = 2

$$(1-p)^{i-1}p = \frac{i-1 \text{ failures, then first success}}{(1-p)^{i-1}p} = \frac{p}{1-p} \sum_{i=1}^{\infty} i(1-p)^i$$

See page 720 in the text (Section 13.3) **Useful for homework!**

- Expected height of a node?
 - Expected number of trials until success (tail): 2
- Worst-case height? $h(L) = \max\{\ell(x) \mid x \in L\}$

$f(x) \mid x \in L$

- probability
- most $1/n^c$, where the constants c, d usually depend on each other
- **Proof**. For any $x \in L$, $k \ge 1$, the probability that height of x is k
- What is $\Pr[\ell(x) = k]$?

 $= (1-p)^{k-1}p = (1-\frac{1}{2})^{k-1}$

• Claim. A skip list with n elements has height $O(\log n)$ levels with high

• Goal: show that the probability that it has more than $d \log n$ levels is at

$$(-)^{k-1}\frac{1}{2} = \frac{1}{2^k}$$

- probability
- most $1/n^c$, where the constants c, d usually depend on each other
- **Proof**. For any $x \in L$, $k \ge 1$, the probability that height of x is k

• What is
$$\Pr[\ell(x) = k] = \frac{1}{2^k}$$

• $\Pr[\ell(x) > k]$ is probability $\ell(x)$ is k + 1, k + 2, ... the probability decreases by half each time, thus is at most $\frac{1}{2^k}$

• **Claim.** A skip list with n elements has height $O(\log n)$ levels with high

• Goal: show that the probability that it has more than $d \log n$ levels is at

- **Claim**. A skip list with *n* elements has height $O(\log n)$ levels w.h.p.
- **Proof**. For any $x \in L$, $k \ge 1$, the probability that height of x is k $\Pr[\ell(x) > k] = \sum_{i=1}^{\infty} \Pr[\ell(x) = i] =$ *k*+1
- $\Pr[h(L) > k] = \Pr[\bigcup_{x \in L} \ell(x) > k]$
- $\Pr[h(L) > c \log n] \le \frac{1}{n^{c-1}}$ [pick any c > 2 for w.h.p.] $P(A \cup B) = P(A) + P(B) P(A \cap B)$ $P(A \cup B) \le P(A) + P(B)$
- Thus, height of skip is $O(\log n)$ with high probability

$$=\sum_{\substack{i=k+1}}^{\infty} \frac{1}{2^i} = \frac{1}{2^k}$$

$$\leq \sum_{x \in L} \Pr[\ell(x) > k] = \frac{n}{2^k}$$
 Union bound

- **Claim.** Search cost in a skip list is $O(\log n)$ with high probability
- **Proof**. Idea think of the search path "backwards"
- Starting at the target element, going left or up until you reach root or sentinel node $(-\infty)$

- Backwards search path, when do go up versus left?
- If node wasn't promoted (got tails here), then we go [came from] left
- If node was promoted (got heads here), then we go [came from] top

- How many consecutive tails in a row? (left moves on a level)
 - Same analysis as the height! $O(\log n)$
 - $O(\log^2 n)$ length overall—but we claimed $O(\log n)$ earlier

We are about to get very deep into notation. The point of showing this is simply to convince you we aren't cheating/hiding something.

- Search path is a sequence of *HHHTTTHHTT*...
- How many "up" moves (H) before we are done?
 - Height: $c \log n$ with high probability

- Search cost: Can we bound the number of times do we need to flip a coin until we see $c \log n$ heads with high probability?

• Search ends when we reach top list: have seen at least $c \log n$ heads

- **Claim.** Number of flips until $c \log n$ heads is $\Theta(\log n)$ with high probability, that is, with probability $1 - 1/n^c$
 - Note. Constant in $\Theta(\log n)$ will depend on c
- **Proof**. Say we flip $10c \log n$ coins
 - Pr[exactly $c \log n$ heads] $= \left(\begin{array}{c} 10c\log n \\ c\log n \end{array} \right) \cdot \left(\begin{array}{c} 1 \\ \frac{1}{2} \end{array} \right)^{c\log n}$

• Pr[at most $c \log n$ heads] $\leq \left(\frac{10c \log n}{c \log n} \right) \cdot \left(\frac{1}{2} \right)^{9c \log n}$

Coin Flipping

$$\cdot \left(\frac{1}{2}\right)^{9c\log n}$$

- Claim. Number of flips until $c \log n$ heads is $\Theta(\log n)$ with high probability, that is, with probability $1 - 1/n^c$

Coin Flipping

- Claim. Number of flips until $c \log n$ heads is $\Theta(\log n)$ with high probability, that is, with probability $1 - 1/n^c$
- **Proof**. Pr[at most $c \log n$ heads] \leq

 $= (10e)^{6}$

- $= 2^{\log(1)}$
- $= 2^{(\log($ $= 1/n^d$

Coin Flipping

$$\leq \left(\frac{e \cdot 10c \log n}{c \log n}\right)^{c \log n} \cdot \left(\frac{1}{2}\right)^{9c \log n}$$
$$c \log n \cdot \left(\frac{1}{2}\right)^{9c \log n}$$
$$(0e) \cdot c \log n \cdot \left(\frac{1}{2}\right)^{9c \log n} = 2^{-d \log n}$$

Aside: Coin Flipping and CLT

Let n be the number of coin flips we make, with p = 1/2 being the probability of success, and q = 1/2 being the probability of failure. Then the:

• mean $\mu = np = n/2$, and variance $\sigma^2 = npq = n/4$

a finite variance σ^2 , the sample averages converge to μ as $n \to \infty$.

very tall skiplist!

• The central limit theorem says that, for a sequence of independent and identically distributed random variables drawn from a distribution with expected value μ and

• Although not a proof, hopefully this helps to further illustrate the unlikelihood of a

- Using $O(\log n)$ linked lists, achieve same performance as binary search tree
- No stored information about balance, no tricky balancing rules!
- Just flip coins when inserting new elements to decide which lists they reside in

Skip Lists

Summary: Skip Lists (Randomized Search Trees)

- Invented around 1990 by Bill Pugh
- Motivation: binary search trees are a pain to implement
- Skip lists balance randomly; no rules to remember, no rebalancing
- Build out of simple structure: sorted linked lists
- Inserts, deletes, search, predecessor, successor are all $O(\log n)$ with high probability
- No rebalancing makes them useful in concurrent programming
 - E.g, lock-free data structures

Acknowledgments

- Some of the material in these slides are taken from
 - Shikha Singh
 - MIT slides: https://ocw.mit.edu/courses/electrical-engineering-andcomputer-science/6-046j-introduction-to-algorithms-sma-5503fall-2005/video-lectures/lecture-12-skip-lists/lec12.pdf
 - Eric Demaine handout: <u>https://courses.csail.mit.edu/6.046/spring04/</u> <u>handouts/skiplists.pdf</u>