
Data Structures with Randomness:
Skip Lists

Flashback to Data Structures…
Recall the List interface

• What are the List operations?

• What concrete List implementations did we study?

• What are the tradeoffs between arrays and linked lists?

• Do those tradeoffs change when our lists are sorted?

• How does this compare to a binary search tree?

Let’s develop a data structure with the strengths of a Binary
Search Tree but the (relative) simplicity of a List

One Linked List
• Start from simplest data structure: (sorted) linked list

• Search cost?

•

• How can we improve it?

Θ(n)

Copyright © 2001-8 by Leiserson et al

Two Linked Lists
• Suppose you instead had two sorted linked lists

• Each list can contain a subset of the total elements

• Elements can appear in one or both lists

• Class exercise. How can you use two lists to speed up searches?

Copyright © 2001-8 by Leiserson et al

NYC Subway System

Copyright © 2001-8 by Leiserson et al

Two Linked Lists
• Idea: we have both express and local subways

• Express lines connect a few main stations (and skip a bunch)

• Local lines connect all stations but are slow

• All express stops are also local stops so you can switch

Copyright © 2001-8 by Leiserson et al

Two Linked Lists

• Search():

• Walk right in top linked list until going right would be too far

• Walk down to bottom linked list

• Walk right in until is found or reach end (report not found)

x

L1

L2

L2 x

Copyright © 2001-8 by Leiserson et al

L1

L2

Two Linked Lists
• Search(66):

• Walk right in top linked list until going right would be too far

• Walk down to bottom linked list

• Walk right in until is found or reach end (report not found)

L1

L2

L2 x

Copyright © 2001-8 by Leiserson et al

L1

L2

• How should we organize the two lists?

• Which nodes go in ?

• How much of gap to leave between elements?

• Best approach: evenly space and promote elements

L1

L1

Two Linked Lists

Copyright © 2001-8 by Leiserson et al

L1

L2

Two Linked Lists

• If gap between elements in top list is , then the number of
elements traversed (search cost) is at most

• Optimized by setting

• So the search cost is at most

g
g + n/g

g = n

2 n

Copyright © 2001-8 by Leiserson et al

More Linked Lists

• Search cost with two linked list:

• Search cost with three linked list:

2 n

3n1/3

Copyright © 2001-8 by Leiserson et al

 Linked Listsk
• Search cost with linked lists:

• Search cost with linked lists:

•

k kn1/k

log n log n ⋅ n1/log n

log n ⋅ n1/log n = 2 log n

Copyright © 2001-8 by Leiserson et al

Insertion Cost
• This is good, but how can we insert?

• Every new element disrupts our spacing

• Idea: use randomness!

Copyright © 2001-8 by Leiserson et al

Implementing Skip Lists

 Linked Listsk
• Search cost with linked lists:

• Search cost with linked lists:

•

k kn1/k

log n log n ⋅ n1/log n

log n ⋅ n1/log n = 2 log n

Copyright © 2001-8 by Leiserson et al

Insertion Cost
• This is good, but how can we insert?

• Every new element disrupts our spacing

• Reconfiguring to “rebalance” would be expensive

Copyright © 2001-8 by Leiserson et al

Skip List Details

• Big question: how should we implement Insert ?

• Clearly must be inserted into at least one list… so the first question
is which list(s) should it be added to?

• Recall our “local line” invariant: bottommost list contains all
elements (just like the local subway line makes all stops).

• We must search for 's position in bottommost list and insert it there

• Any other lists?

• Goal: we want half of the elements to go to next level, similar to a
balanced binary tree

(x)

x

x

Skip List Details

• Big question: how should we implement Insert ?

• Goal: we want half of the elements to go to next level, similar
to a balanced binary tree

• Idea: Insert at level (required), then flip a coin

• If heads: element gets promoted to next level

• If tails: element stays put at current level

• Continue flipping until we get a tails

• Does this achieve our goal (in expectation)?

(x)

x 1

Skip List Details
• On average:

• of the elements are exclusively on the bottom level (T)

• of the elements go up 1 level (HT)

• of the elements go up 2 levels (HHT)

• go up to levels (HHHT)

• etc.

• Question: Does this randomness on insertion affect any other operations?

1/2

1/2

1/4

1/8 3

Skip List Details

• Search :

• Remains unchanged

• Start at top list, walk right until just before value gets target

• Go down and repeat until:

• find value target in bottom list (can’t go down any farther)

• reach last element in bottom list (ran out of elements)

• element is found (hooray!)

(x)

>

>

Skip List Search Example

Skip List Search Example

Skip List Search Example

Skip List Search Example

Skip List Search Example

Skip List Analysis: Height

Let be the set of all items in level .

• Height of an element :

• Height of entire skip list :

Lk k ≥ 1
x ℓ(x) = max{k | x ∈ Lk}

L h(L) = max{ℓ(x) | x ∈ L0}

Maximum level that an
element appears in

Maximum height among all
elements in the list

• Expected height of a node?

• Question: in an experiment with probability of success, what is
the expected number of trials until success?

p

Skip List Analysis: Height

Let denote the random variable equal to the number of flips performed
until we reach a tails (stopping condition for promotion). What is ?

• For , we have

•

• If , then

X
E[X]

i > 0 Pr[X = i] = (1 − p)i−1p

E[X] =
∞

∑
i=0

i ⋅ Pr[X = i] =
∞

∑
i=1

i(1 − p)i−1p =
p

1 − p

∞

∑
i=1

i(1 − p)i

=
p

1 − p
⋅

1 − p
p2

=
1
p

p =
1
2

E[X] = 2

Skip List Analysis: Height

 failures, then first successi − 1

See page 720 in the text (Section 13.3)
Useful for homework!

• Expected height of a node?

• Expected number of trials until success (tail):

• Worst-case height?

2

h(L) = max{ℓ(x) | x ∈ L}

Skip List Analysis: Height

• Claim. A skip list with elements has height levels with high
probability

• Goal: show that the probability that it has more than levels is at
most , where the constants usually depend on each other

• Proof. For any , , the probability that height of is

• What is ?

n O(log n)

d log n
1/nc c, d

x ∈ L k ≥ 1 x k

Pr[ℓ(x) = k]

= (1 − p)k−1p = (1 −
1
2

)k−1 1
2

=
1
2k

Skip List Analysis: Height

• Claim. A skip list with elements has height levels with high
probability

• Goal: show that the probability that it has more than levels is at
most , where the constants usually depend on each other

• Proof. For any , , the probability that height of is

• What is

• is probability is , , ... the probability

decreases by half each time, thus is at most

n O(log n)

d log n
1/nc c, d

x ∈ L k ≥ 1 x k

Pr[ℓ(x) = k] =
1
2k

Pr[ℓ(x) > k] ℓ(x) k + 1 k + 2
1
2k

Skip List Analysis: Height

• Claim. A skip list with elements has height levels w.h.p.

• Proof. For any , , the probability that height of is

•

•

• [pick any for w.h.p.]

• Thus, height of skip is with high probability

n O(log n)
x ∈ L k ≥ 1 x k

Pr[ℓ(x) > k] =
∞

∑
k+1

Pr[ℓ(x) = i] =
∞

∑
i=k+1

1
2i

=
1
2k

Pr[h(L) > k] = Pr[∪x∈Lℓ(x) > k] ≤ ∑
x∈L

Pr[ℓ(x) > k] =
n
2k

Pr[h(L) > c log n] ≤
1

nc−1
c > 2

O(log n)

Skip List Analysis: Height

 P(A ∪ B) = P(A) + P(B) − P(A ∩ B)
P(A ∪ B) ≤ P(A) + P(B)

Union bound

Skip List Search Cost

• Claim. Search cost in a skip list is with high probability

• Proof. Idea think of the search path “backwards”

• Starting at the target element, going left or up until you reach root or
sentinel node

O(log n)

(−∞)

• Backwards search path, when do go up versus left?

• If node wasn’t promoted (got tails here), then we go [came from] left

• If node was promoted (got heads here), then we go [came from] top

Skip List Search Cost

• How many consecutive tails in a row? (left moves on a level)

• Same analysis as the height!

• length overall—but we claimed earlier

O(log n)

O(log2 n) O(log n)

Skip List Search Cost

We are about to get very deep into
notation. The point of showing this is

simply to convince you we aren’t
cheating/hiding something.

• Search path is a sequence of

• How many "up" moves () before we are done?

• Height: with high probability

HHHTTTHHTT . . .

H

c log n

Skip List Search Cost

• Search ends when we reach top list: have seen at least heads

• Search cost: Can we bound the number of times do we need to flip a
coin until we see heads with high probability?

c log n

c log n

Skip List Search Cost

• Claim. Number of flips until heads is with high
probability, that is, with probability

• Note. Constant in will depend on

• Proof. Say we flip coins

•

•

c log n Θ(log n)
1 − 1/nc

Θ(log n) c

10c log n

Pr[exactly c log n heads]

= (10c log n
c log n) ⋅ (1

2)
c log n

⋅ (1
2)

9c log n

Pr[at most c log n heads] ≤ (10c log n
c log n) ⋅ (1

2)
9c log n

Coin Flipping

• Claim. Number of flips until heads is with high
probability, that is, with probability

• Proof.

c log n Θ(log n)
1 − 1/nc

Pr[at most c log n heads] ≤ (e ⋅ 10c log n
c log n)

c log n

⋅ (1
2)

9c log n

= (10e)c log n ⋅ (1
2)

9c log n

= 2log(10e)⋅c log n ⋅ (1
2)

9c log n

= 2(log(10e)−9)⋅c log n = 2−d log n

= 1/nd

Coin Flipping

Applied “Deathbed formula”

• Claim. Number of flips until heads is with high
probability, that is, with probability

• Proof.

c log n Θ(log n)
1 − 1/nc

Pr[at most c log n heads] ≤ (e ⋅ 10c log n
c log n)

c log n

⋅ (1
2)

9c log n

= (10e)c log n ⋅ (1
2)

9c log n

= 2log(10e)⋅c log n ⋅ (1
2)

9c log n

= 2(log(10e)−9)⋅c log n = 2−d log n

= 1/nd

Coin Flipping

Let be the number of coin flips we make, with being the probability of
success, and being the probability of failure. Then the:

• mean , and variance

• The central limit theorem says that, for a sequence of independent and identically
distributed random variables drawn from a distribution with expected value and
a finite variance , the sample averages converge to as .

• Although not a proof, hopefully this helps to further illustrate the unlikelihood of a
very tall skiplist!

n p = 1/2
q = 1/2

μ = np = n/2 σ2 = npq = n/4

μ
σ2 μ n → ∞

Aside: Coin Flipping and CLT

Skip Lists

• Using linked lists, achieve same performance as
binary search tree

• No stored information about balance, no tricky balancing rules!

• Just flip coins when inserting new elements to decide which lists
they reside in

O(log n)

Source: Wikipedia

Summary: Skip Lists (Randomized Search Trees)

• Invented around 1990 by Bill Pugh

• Motivation: binary search trees are a pain to implement

• Skip lists balance randomly; no rules to remember, no rebalancing

• Build out of simple structure: sorted linked lists

• Inserts, deletes, search, predecessor, successor are all with
high probability

• No rebalancing makes them useful in concurrent programming

• E.g, lock-free data structures

O(log n)

Acknowledgments
• Some of the material in these slides are taken from

• Shikha Singh

• MIT slides: https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-046j-introduction-to-algorithms-sma-5503-
fall-2005/video-lectures/lecture-12-skip-lists/lec12.pdf

• Eric Demaine handout: https://courses.csail.mit.edu/6.046/spring04/
handouts/skiplists.pdf

https://courses.csail.mit.edu/6.046/spring04/handouts/skiplists.pdf
https://courses.csail.mit.edu/6.046/spring04/handouts/skiplists.pdf

