Data Structures with Randomness:
Skip Lists
Flashback to Data Structures…

Recall the `List` interface

• What are the `List` operations?
 • What concrete `List` implementations did we study?

• What are the tradeoffs between arrays and linked lists?

• Do those tradeoffs change when our lists are sorted?

• How does this compare to a binary search tree?

Let's develop a data structure with the strengths of a Binary Search Tree but the (relative) simplicity of a `List`
One Linked List

• Start from simplest data structure: (sorted) linked list
• Search cost?
 • $\Theta(n)$
• How can we improve it?
Two Linked Lists

• Suppose you instead had *two* sorted linked lists
 • Each list can contain a subset of the total elements
 • Elements can appear in one or both lists

• **Class exercise.** How can you use two lists to speed up searches?
NYC Subway System
Two Linked Lists

- **Idea**: we have both express and local subways
- Express lines connect a few main stations (and skip a bunch)
- Local lines connect all stations but are slow
- All express stops are also local stops so you can switch
Two Linked Lists

- **Search**(x):
 - Walk right in top linked list L_1 until going right would be too far
 - Walk down to bottom linked list L_2
 - Walk right in L_2 until x is found or reach end (report not found)
Two Linked Lists

- **Search**(66):
 - Walk right in top linked list L_1 until going right would be too far
 - Walk down to bottom linked list L_2
 - Walk right in L_2 until x is found or reach end (report not found)
Two Linked Lists

• How should we organize the two lists?
 • Which nodes go in L_1?
 • How much of gap to leave between L_1 elements?
 • **Best approach:** evenly space and promote elements
Two Linked Lists

- If gap between elements in top list is g, then the number of elements traversed (search cost) is at most $g + n/g$
- Optimized by setting $g = \sqrt{n}$
- So the search cost is at most $2\sqrt{n}$
More Linked Lists

- Search cost with two linked list: $2\sqrt{n}$
- Search cost with three linked list: $3n^{1/3}$
k Linked Lists

- Search cost with k linked lists: $kn^{1/k}$
- Search cost with $\log n$ linked lists: $\log n \cdot n^{1/\log n}$

$\log n \cdot n^{1/\log n} = 2 \log n$
Insertion Cost

• This is good, but how can we insert?
• Every new element disrupts our spacing
• Idea: use randomness!
Implementing Skip Lists
k Linked Lists

- Search cost with k linked lists: $kn^{1/k}$
- Search cost with $\log n$ linked lists: $\log n \cdot n^{1/\log n}$
 - $\log n \cdot n^{1/\log n} = 2 \log n$
Insertion Cost

• This is good, but how can we insert?
• Every new element disrupts our spacing
• Reconfiguring to “rebalance” would be expensive
Skip List Details

• Big question: how should we implement Insert(x)?

 • Clearly x must be inserted into at least one list… so the first question is which list(s) should it be added to?

 • Recall our “local line” invariant: bottommost list contains all elements (just like the local subway line makes all stops).

 • We must search for x's position in bottommost list and insert it there

 • Any other lists?

 • **Goal:** we want half of the elements to go to next level, similar to a balanced binary tree
Skip List Details

• Big question: how should we implement Insert(x)?

 • **Goal:** we want half of the elements to go to next level, similar to a balanced binary tree

 • **Idea:** Insert x at level 1 (required), then flip a coin
 • If heads: element gets promoted to next level
 • If tails: element stays put at current level
 • Continue flipping until we get a tails

 • Does this achieve our goal (in expectation)?
Skip List Details

• On average:
 • $1/2$ of the elements are exclusively on the bottom level (T)
 • $1/2$ of the elements go up 1 level (HT)
 • $1/4$ of the elements go up 2 levels (HHT)
 • $1/8$ go up to 3 levels (HHHT)
 • etc.

• **Question:** Does this randomness on insertion affect any other operations?
Skip List Details

• Search(x):
 • Remains unchanged
 • Start at top list, walk right until just before value gets $> \text{target}$
 • Go down and repeat until:
 • find value $> \text{target}$ in bottom list (can’t go down any farther)
 • reach last element in bottom list (ran out of elements)
 • element is found (hooray!)
Skip List Search Example

- Example: Search for 72
Skip List Search Example

- **Example**: Search for 72
 * Level 1: 14 too small, 79 too big; go down 14
Skip List Search Example

- Example: Search for 72
 * Level 1: 14 too small, 79 too big; go down 14
 * Level 2: 14 too small, 50 too small, 79 too big; go down 50
Example: Search for 72

- Level 1: 14 too small, 79 too big; go down 14
- Level 2: 14 too small, 50 too small, 79 too big; go down 50
- Level 3: 50 too small, 66 too small, 79 too big; go down 66
Skip List Search Example

Example: Search for 72

* Level 1: 14 too small, 79 too big; go down 14
* Level 2: 14 too small, 50 too small, 79 too big; go down 50
* Level 3: 50 too small, 66 too small, 79 too big; go down 66
* Level 4: 66 too small, 72 spot on
Let L_k be the set of all items in level $k \geq 1$.

- Height of an element x: $\ell(x) = \max\{ k \mid x \in L_k \}$
- Height of entire skip list L: $h(L) = \max\{ \ell(x) \mid x \in L_0 \}$
• Expected height of a node?

• **Question**: in an experiment with probability p of success, what is the expected number of trials until success?
Skip List Analysis: Height

Let X denote the random variable equal to the number of flips performed until we reach a tails (stopping condition for promotion). What is $E[X]$?

- For $i > 0$, we have $Pr[X = i] = (1 - p)^{i-1}p$

$$E[X] = \sum_{i=0}^{\infty} i \cdot Pr[X = i] = \sum_{i=1}^{\infty} i(1 - p)^{i-1}p = \frac{p}{1-p} \sum_{i=1}^{\infty} i(1 - p)^i$$

$$= \frac{p}{1-p} \cdot \frac{1 - p}{p^2} = \frac{1}{p}$$

- If $p = \frac{1}{2}$, then $E[X] = 2$

See page 720 in the text (Section 13.3)
Useful for homework!
Skip List Analysis: Height

- **Expected** height of a node?

- Expected number of trials until success (tail): 2

- Worst-case height? $h(L) = \max\{\ell(x) \mid x \in L\}$
Claim. A skip list with n elements has height $O(\log n)$ levels with high probability.

Goal: show that the probability that it has more than $d \log n$ levels is at most $1/n^c$, where the constants c, d usually depend on each other.

Proof. For any $x \in L$, $k \geq 1$, the probability that height of x is k.

What is $\Pr[\mathcal{L}(x) = k]$?

$$= (1 - p)^{k-1}p = (1 - \frac{1}{2})^{k-1}\frac{1}{2} = \frac{1}{2^k}$$
Skip List Analysis: Height

- **Claim.** A skip list with n elements has height $O(\log n)$ levels with high probability.

- **Goal:** show that the probability that it has more than $d \log n$ levels is at most $1/n^c$, where the constants c, d usually depend on each other.

- **Proof.** For any $x \in L, k \geq 1$, the probability that height of x is k
 - What is $\Pr[\ell(x) = k] = \frac{1}{2^k}$
 - $\Pr[\ell(x) > k]$ is probability $\ell(x)$ is $k + 1, k + 2, \ldots$ the probability decreases by half each time, thus is at most $\frac{1}{2^k}$
Skip List Analysis: Height

- **Claim.** A skip list with \(n \) elements has height \(O(\log n) \) levels w.h.p.

- **Proof.** For any \(x \in L, \; k \geq 1 \), the probability that height of \(x \) is \(k \)

 \[
 \Pr[\ell(x) > k] = \sum_{i=k+1}^{\infty} \Pr[\ell(x) = i] = \sum_{i=k+1}^{\infty} \frac{1}{2^i} = \frac{1}{2^k}
 \]

 \[
 \Pr[h(L) > k] = \Pr[\bigcup_{x \in L} \ell(x) > k] \leq \sum_{x \in L} \Pr[\ell(x) > k] = \frac{n}{2^k} \quad \text{(Union bound)}
 \]

- \(\Pr[h(L) > c \log n] \leq \frac{1}{n^{c-1}} \) [pick any \(c > 2 \) for w.h.p.]

- Thus, height of skip is \(O(\log n) \) with high probability

\[
P(A \cup B) = P(A) + P(B) - P(A \cap B) \\
P(A \cup B) \leq P(A) + P(B)
\]
• **Claim.** Search cost in a skip list is $O(\log n)$ with high probability

• **Proof.** Idea think of the search path “backwards”

• Starting at the target element, going left or up until you reach root or sentinel node ($-\infty$)
Skip List Search Cost

- Backwards search path, when do go up versus left?
- If node wasn’t promoted (got tails here), then we go [came from] left
- If node was promoted (got heads here), then we go [came from] top
Skip List Search Cost

- How many consecutive tails in a row? (left moves on a level)
 - Same analysis as the height! $O(\log n)$
 - $O(\log^2 n)$ length overall—but we claimed $O(\log n)$ earlier

We are about to get very deep into notation. The point of showing this is simply to convince you we aren’t cheating/hiding something.
Skip List Search Cost

- Search path is a sequence of $HHHTTTHHTT \ldots$
- How many "up" moves (H) before we are done?
 - Height: $c \log n$ with high probability
Skip List Search Cost

- Search ends when we reach top list: have seen at least $c \log n$ heads.
- **Search cost**: Can we bound the number of times do we need to flip a coin until we see $c \log n$ heads with high probability?
Coin Flipping

- **Claim.** Number of flips until $c \log n$ heads is $\Theta(\log n)$ with high probability, that is, with probability $1 - 1/n^c$

 - **Note.** Constant in $\Theta(\log n)$ will depend on c

- **Proof.** Say we flip $10c \log n$ coins

 - $\Pr[\text{exactly } c \log n \text{ heads}]$

 \[
 = \binom{10c \log n}{c \log n} \cdot \left(\frac{1}{2}\right)^{c \log n} \cdot \left(\frac{1}{2}\right)^{9c \log n}
 \]

 - $\Pr[\text{at most } c \log n \text{ heads}] \leq \binom{10c \log n}{c \log n} \cdot \left(\frac{1}{2}\right)^{9c \log n}$
Coin Flipping

- **Claim.** Number of flips until $c \log n$ heads is $\Theta(\log n)$ with high probability, that is, with probability $1 - 1/n^c$.

- **Proof.** $\Pr[\text{at most } c \log n \text{ heads}] \leq \left(\frac{e \cdot 10c \log n}{c \log n} \right)^{c \log n} \cdot \left(\frac{1}{2} \right)^{9c \log n}$

 $$= (10e)^{c \log n} \cdot \left(\frac{1}{2} \right)^{9c \log n}$$

 Applied “Deathbed formula”
Coin Flipping

- **Claim.** Number of flips until $c \log n$ heads is $\Theta(\log n)$ with high probability, that is, with probability $1 - 1/n^c$

- **Proof.** $\Pr[\text{at most } c \log n \text{ heads}] \leq \left(\frac{e \cdot 10c \log n}{c \log n} \right)^{c \log n} \cdot \left(\frac{1}{2} \right)^{9c \log n}$

$$= (10e)^{c \log n} \cdot \left(\frac{1}{2} \right)^{9c \log n}$$

$$= 2^{\log(10e) \cdot c \log n} \cdot \left(\frac{1}{2} \right)^{9c \log n}$$

$$= 2^{(\log(10e) - 9) \cdot c \log n} = 2^{-d \log n}$$

$$= 1/n^d$$

\checkmark
Aside: Coin Flipping and CLT

Let n be the number of coin flips we make, with $p = 1/2$ being the probability of success, and $q = 1/2$ being the probability of failure. Then the:

- mean $\mu = np = n/2$, and variance $\sigma^2 = npq = n/4$

- The central limit theorem says that, for a sequence of independent and identically distributed random variables drawn from a distribution with expected value μ and a finite variance σ^2, the sample averages converge to μ as $n \to \infty$.

Although not a proof, hopefully this helps to further illustrate the unlikelihood of a very tall skiplist!
Skip Lists

- Using $O(\log n)$ linked lists, achieve same performance as binary search tree
- No stored information about balance, no tricky balancing rules!
- Just flip coins when inserting new elements to decide which lists they reside in

Summary: Skip Lists (Randomized Search Trees)

- Invented around 1990 by Bill Pugh
- Motivation: binary search trees are a pain to implement
- Skip lists balance randomly; no rules to remember, no rebalancing
- Build out of simple structure: sorted linked lists
- Inserts, deletes, search, predecessor, successor are all $O(\log n)$ with high probability
- No rebalancing makes them useful in concurrent programming
 - E.g, lock-free data structures
Acknowledgments

• Some of the material in these slides are taken from
 • Shikha Singh
 • Eric Demaine handout: https://courses.csail.mit.edu/6.046/spring04/handouts/skiplists.pdf