
Data Structures with Randomness:  
Skip Lists



Flashback to Data Structures…
Recall the List interface 

• What are the List operations? 

• What concrete List implementations did we study? 

• What are the tradeoffs between arrays and linked lists? 

• Do those tradeoffs change when our lists are sorted? 

• How does this compare to a binary search tree?

Let’s develop a data structure with the strengths of a Binary 
Search Tree but the (relative) simplicity of a List



One Linked List
• Start from simplest data structure: (sorted) linked list 

• Search cost? 

•  

• How can we improve it?

Θ(n)
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Two Linked Lists
• Suppose you instead had two sorted linked lists 

• Each list can contain a subset of the total elements 

• Elements can appear in one or both lists 

• Class exercise.  How can you use two lists to speed up searches?
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NYC Subway System
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Two Linked Lists
• Idea: we have both express and local subways  

• Express lines connect a few main stations (and skip a bunch) 

• Local lines connect all stations but are slow 

• All express stops are also local stops so you can switch
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Two Linked Lists

• Search( ): 

• Walk right in top linked list  until going right would be too far 

• Walk down to bottom linked list  

• Walk right in  until  is found or reach end (report not found)

x

L1

L2

L2 x
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Two Linked Lists
• Search(66): 

• Walk right in top linked list  until going right would be too far 

• Walk down to bottom linked list  

• Walk right in  until  is found or reach end (report not found)

L1

L2

L2 x
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• How should we organize the two lists? 

• Which nodes go in ?    

• How much of gap to leave between  elements? 

• Best approach:  evenly space and promote elements

L1

L1

Two Linked Lists
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Two Linked Lists

• If gap between elements in top list is , then the number of 
elements traversed (search cost) is at most  

• Optimized by setting  

• So the search cost is at most 

g
g + n/g

g = n

2 n
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More Linked Lists

• Search cost with two linked list:    

• Search cost with three linked list:    

2 n

3n1/3
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 Linked Listsk
• Search cost with  linked lists:   

• Search cost with  linked lists:    

•  

k kn1/k

log n log n ⋅ n1/log n

log n ⋅ n1/log n = 2 log n
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Insertion Cost
• This is good, but how can we insert? 

• Every new element disrupts our spacing 

• Idea: use randomness!
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Implementing Skip Lists



 Linked Listsk
• Search cost with  linked lists:   

• Search cost with  linked lists:    

•  

k kn1/k

log n log n ⋅ n1/log n

log n ⋅ n1/log n = 2 log n
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Insertion Cost
• This is good, but how can we insert? 

• Every new element disrupts our spacing 

• Reconfiguring to “rebalance” would be expensive
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Skip List Details

• Big question: how should we implement Insert ? 

• Clearly  must be inserted into at least one list… so the first question 
is which list(s) should it be added to? 

• Recall our “local line” invariant: bottommost list contains all 
elements (just like the local subway line makes all stops). 

• We must search for 's position in bottommost list and insert it there 

• Any other lists? 

• Goal: we want half of the elements to go to next level, similar to a 
balanced binary tree

(x)

x

x



Skip List Details

• Big question: how should we implement Insert ? 

• Goal: we want half of the elements to go to next level, similar 
to a balanced binary tree  

• Idea: Insert  at level  (required), then flip a coin 

• If heads: element gets promoted to next level 

• If tails: element stays put at current level 

• Continue flipping until we get a tails 

• Does this achieve our goal (in expectation)?

(x)

x 1



Skip List Details
• On average: 

•  of the elements are exclusively on the bottom level (T) 

•  of the elements go up 1 level (HT) 

•  of the elements go up 2 levels (HHT) 

•  go up to  levels (HHHT) 

• etc. 

• Question: Does this randomness on insertion affect any other operations? 

1/2

1/2

1/4

1/8 3



Skip List Details

• Search :  

• Remains unchanged 

• Start at top list, walk right until just before value gets  target 

• Go down and repeat until: 

• find value  target in bottom list (can’t go down any farther)  

• reach last element in bottom list (ran out of elements) 

• element is found (hooray!)

(x)

>

>



Skip List Search Example



Skip List Search Example
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Skip List Search Example



Skip List Search Example



Skip List Analysis:  Height

Let  be the set of all items in level .  

• Height of an element :    

• Height of entire skip list :     

Lk k ≥ 1
x ℓ(x) = max{k | x ∈ Lk}

L h(L) = max{ℓ(x) | x ∈ L0}

Maximum level that an 
element appears in

Maximum height among all 
elements in the list



• Expected height of a node? 

• Question: in an experiment with probability  of success, what is 
the expected number of trials until success? 

p

Skip List Analysis:  Height



Let  denote the random variable equal to the number of flips performed 
until we reach a tails (stopping condition for promotion). What is ? 

• For , we have  

•
     

 

• If , then 

X
E[X]

i > 0 Pr[X = i] = (1 − p)i−1p

E[X] =
∞

∑
i=0

i ⋅ Pr[X = i] =
∞

∑
i=1

i(1 − p)i−1p =
p

1 − p

∞

∑
i=1

i(1 − p)i

=
p

1 − p
⋅

1 − p
p2

=
1
p

p =
1
2

E[X] = 2

Skip List Analysis:  Height

 failures, then first successi − 1

See page 720 in the text (Section 13.3) 
Useful for homework!



• Expected height of a node? 

• Expected number of trials until success (tail):   

• Worst-case height?   

2

h(L) = max{ℓ(x) | x ∈ L}

Skip List Analysis:  Height



• Claim.  A skip list with  elements has height  levels with high 
probability 

• Goal:  show that the probability that it has more than  levels is at 
most , where the constants  usually depend on each other 

• Proof. For any ,  , the probability that height of  is  

• What is   ? 

 

n O(log n)

d log n
1/nc c, d

x ∈ L k ≥ 1 x k

Pr[ℓ(x) = k]

= (1 − p)k−1p = (1 −
1
2

)k−1 1
2

=
1
2k

Skip List Analysis:  Height



• Claim.  A skip list with  elements has height  levels with high 
probability 

• Goal:  show that the probability that it has more than  levels is at 
most , where the constants  usually depend on each other 

• Proof. For any ,  , the probability that height of  is  

• What is  

•  is probability  is , , ... the probability 

decreases by half each time, thus is at most 

n O(log n)

d log n
1/nc c, d

x ∈ L k ≥ 1 x k

Pr[ℓ(x) = k] =
1
2k

Pr[ℓ(x) > k] ℓ(x) k + 1 k + 2
1
2k

Skip List Analysis:  Height



• Claim.  A skip list with  elements has height  levels w.h.p. 

• Proof. For any ,  , the probability that height of  is  

•
     

•
 

•    [pick any  for w.h.p.] 

• Thus, height of skip is   with high probability

n O(log n)
x ∈ L k ≥ 1 x k

Pr[ℓ(x) > k] =
∞

∑
k+1

Pr[ℓ(x) = i] =
∞

∑
i=k+1

1
2i

=
1
2k

Pr[h(L) > k] = Pr[∪x∈Lℓ(x) > k] ≤ ∑
x∈L

Pr[ℓ(x) > k] =
n
2k

Pr[h(L) > c log n] ≤
1

nc−1
c > 2

O(log n)

Skip List Analysis:  Height

 P(A ∪ B) = P(A) + P(B) − P(A ∩ B)
P(A ∪ B) ≤ P(A) + P(B)

Union bound



Skip List Search Cost

• Claim.  Search cost in a skip list is  with high probability 

• Proof.   Idea think of the search path “backwards” 

• Starting at the target element, going left or up until you reach root or 
sentinel node 

O(log n)

(−∞)



• Backwards search path, when do go up versus left? 

• If node wasn’t promoted (got tails here), then we go [came from] left 

• If node was promoted (got heads here), then we go [came from] top

Skip List Search Cost



• How many consecutive tails in a row? (left moves on a level)  

• Same analysis as the height!  

•  length overall—but we claimed  earlier

O(log n)

O(log2 n) O(log n)

Skip List Search Cost

We are about to get very deep into 
notation. The point of showing this is 

simply to convince you we aren’t 
cheating/hiding something.



• Search path is a sequence of  

• How many "up" moves ( ) before we are done?   

• Height:    with high probability

HHHTTTHHTT . . .

H

c log n

Skip List Search Cost



• Search ends when we reach top list:   have seen at least  heads 

• Search cost:  Can we bound the number of times do we need to flip a 
coin until we see  heads with high probability?

c log n

c log n

Skip List Search Cost



• Claim.  Number of flips until  heads is  with high 
probability, that is, with probability   

• Note.   Constant in  will depend on  

• Proof.   Say we flip  coins  

•

  

•  

c log n Θ(log n)
1 − 1/nc

Θ(log n) c

10c log n

Pr[exactly c log n heads]

= (10c log n
c log n ) ⋅ ( 1

2 )
c log n

⋅ ( 1
2 )

9c log n

Pr[at most c log n heads] ≤ (10c log n
c log n ) ⋅ ( 1

2 )
9c log n

Coin Flipping



• Claim.  Number of flips until  heads is  with high 
probability, that is, with probability   

• Proof.    

                                                 

                                             

                                              
                                            

c log n Θ(log n)
1 − 1/nc

Pr[at most c log n heads] ≤ ( e ⋅ 10c log n
c log n )

c log n

⋅ ( 1
2 )

9c log n

= (10e)c log n ⋅ ( 1
2 )

9c log n

= 2log(10e)⋅c log n ⋅ ( 1
2 )

9c log n

= 2(log(10e)−9)⋅c log n = 2−d log n

= 1/nd

Coin Flipping

Applied “Deathbed formula”



• Claim.  Number of flips until  heads is  with high 
probability, that is, with probability   

• Proof.    

                                             

                                             

                                              
                                            

c log n Θ(log n)
1 − 1/nc

Pr[at most c log n heads] ≤ ( e ⋅ 10c log n
c log n )

c log n

⋅ ( 1
2 )

9c log n

= (10e)c log n ⋅ ( 1
2 )

9c log n

= 2log(10e)⋅c log n ⋅ ( 1
2 )

9c log n

= 2(log(10e)−9)⋅c log n = 2−d log n

= 1/nd

Coin Flipping



Let  be the number of coin flips we make, with  being the probability of 
success, and  being the probability of failure. Then the: 

• mean , and variance  

• The central limit theorem says that, for a sequence of independent and identically 
distributed random variables drawn from a distribution with expected value  and 
a finite variance , the sample averages converge to  as . 
 
 
 
 
 
 

• Although not a proof, hopefully this helps to further illustrate the unlikelihood of a 
very tall skiplist!

n p = 1/2
q = 1/2

μ = np = n/2 σ2 = npq = n/4

μ
σ2 μ n → ∞

Aside: Coin Flipping and CLT



Skip Lists

• Using  linked lists, achieve same performance as 
binary search tree 

• No stored information about balance, no tricky balancing rules! 

• Just flip coins when inserting new elements to decide which lists 
they reside in

O(log n)

Source: Wikipedia



Summary: Skip Lists (Randomized Search Trees)

• Invented around 1990 by Bill Pugh 

• Motivation: binary search trees are a pain to implement 

• Skip lists balance randomly; no rules to remember, no rebalancing 

• Build out of simple structure: sorted linked lists  

• Inserts, deletes, search, predecessor, successor are all  with 
high probability 

• No rebalancing makes them useful in concurrent programming 

• E.g, lock-free data structures

O(log n)
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