Randomized Algorithm II Randomized QuickSort

Randomized Quicksort

- Recall deterministic Quicksort
- Depending on the choice pivot, could be $O\left(n^{2}\right)$
- What if we pick the pivot uniformly at random?
- We saw in randomized selection that this leads to good pivots half of the time

```
Quicksort(A):
If }|A|<3:Sort(A)\mathrm{ directly
Else: choose a pivot element p}\leftarrow
    A<p},\mp@subsup{A}{>p}{}\leftarrow\mathrm{ Partition around }
    Quicksort( }\mp@subsup{A}{<p}{}
    Quicksort( }\mp@subsup{A}{>p}{}
```


Randomized Quicksort

- Intuitively half the pivots will be good, half bad
- We will analyze quick sort using another accounting trick (see the textbook for example similar to selection's approach of analyzing "phases")
- Total work done can be split into to types:
- Work done making recursive calls (this is a lower order term, it turns out)
- Work partitioning the elements
- How many recursive calls in the worst case?
- Imagine worst pivot being chosen each time
- $O(n)$

Randomized Quicksort

- We thus need to bound the work partitioning elements
- Partitioning an array of size n around a pivot p takes exactly $n-1$ comparisons
- We won't look at partitions made in each recursive call, which depend on the choice of random pivot
- Idea: Instead, account for the total work done by the partition step by summing up the total number of comparisons made
- Two ways to count total comparisons:
- Look at the size of arrays across recursive calls and sum
- Look at all pairs of elements and count total \# of times they are compared (this is easier to do in this case)

Aside: Randomized Analysis

- Often multiple ways to determine a randomized algorithm's cost
- We can split into phases, or count the cost directly. We can calculate each probability, or use linearity of expectation
- Intrinsically some "cleverness" involved in choosing the way that gets you a clean answer
- We'll focus on problems where there's a clear path to finding the solution (either it follows directly from the question, or we'll revisit problems you've seen before). More complex problems abound if you look!
- That said, here's a very clever way to calculate Quicksort's running time

Counting Total Comparisons

- Just for analysis, let B denote the sorted version of input array A, that is, $B[i]$ is the $i^{\text {th }}$ smallest element in A
- Define random variable $X_{i j}$ as the number of times Quicksort compares $B[i]$ and $B[j]$
- Observation: $X_{i j}=0$ or $X_{i j}=1$, why?
- $B[i], B[j]$ only compared when one of them is the current pivot; pivots are excluded from future recursive calls
. Let $T=\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{i j}$ be the total number of comparisons made
by randomized Quicksort

Expected Running Time

. Goal: $E[T]=E\left[\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{i j}\right]=\sum_{i=1}^{n} \sum_{j=i+1}^{n} E\left[X_{i j}\right]$

- $E\left[X_{i j}\right]=\operatorname{Pr}\left[X_{i j}=1\right]$
- When is $X_{i j}=1$? That is, when are $B[i]$ and $B[j]$ compared?
- Consider a particular recursive call. Let rank of pivot p be r.
- Let's think about where $B[i], B[j]$ lie with respect to p

Expected Running Time

- Goal: $E[T]=E\left[\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{i j}\right]=\sum_{i=1}^{n} \sum_{j=i+1}^{n} E\left[X_{i j}\right]$
- $E\left[X_{i j}\right]=\operatorname{Pr}\left[X_{i j}=1\right]$
- When is $X_{i j}=1$? That is, when are $B[i]$ and $B[j]$ compared?
- Consider a particular recursive call. Let rank of pivot p be r.
- Case 1. One of them is the pivot: $r=i$ or $r=j$
- Case 2. Pivot is between them: $r>i$ and $r<j$
- Case 3. Both less than the pivot: $r>i, j$
- Case 4. Both greater than the pivot: $r<i, j$

Comparisons for Each Case

- Case 1. $r=i$ or $r=j$
- $B[i]$ and $B[j]$ are compared once and one of them is excluded from all future calls
- Case 2. $r>i$ and $r<j$
- $B[i]$ and $B[j]$ are both compared to the pivot but not to each other, after which they are in different recursive calls: will never be compared again
- Case 3. $r>i, j$ and Case 4. $r<i, j$
- $B[i]$ and $B[j]$ are not compared to each other, they are both in the same subarray and may be compared in the future
- Takeaway: $B[i], B[j]$ are compared for the 1 st time when one of them is chosen as pivot from $B[i], B[i+1], \ldots, B[j]$ \& never again

Expected Running Time

- $\operatorname{Pr}\left[X_{i j}=1\right]=\operatorname{Pr}($ one of them is picked as pivot from $B[i], B[i+1], \ldots, B[j]$
- $\operatorname{Pr}\left[X_{i j}=1\right]=\frac{2}{j-i+1}$
. $E[T]=\sum_{i=1}^{n} \sum_{j=i+1}^{n} E\left[X_{i j}\right]=2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{1}{j-i+1}$

Expected Running Time

- $B[i]$ and $B[j]$ are compared iff one of them is the first pivot chosen from the range $B[i], B[i+1], \ldots, B[j]$
- $\operatorname{Pr}\left[X_{i j}=1\right]=\frac{2}{j-i+1} \quad \begin{aligned} & \text { At each round, the probability that } X_{j i}=1 \text { conditioned } \\ & \text { on the event hat we ere in Case } 1 \text { of Case } 2 \text { ((In Cases } \\ & 3 \text { and } 4 \text {, we kick the can" until another round) }\end{aligned}$
- $E[T]=\sum_{i=1}^{n} \sum_{j=i+1}^{n} E\left[X_{i j}\right]=2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{1}{j-i+1}$
. For fixed i, inner sum is $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots \frac{1}{n-i+1} \leq \sum_{\ell=2}^{n} \frac{1}{\ell}=O(\log n)$
- Thus, expected number of comparisons is:

$$
E[T]=O(n \log n)
$$

Quick Sort Summary

- Las Vegas algorithms like Quicksort and Selection are always correct and their running time guarantees hold in expectation
- We can actually prove that the number of comparisons made by Quicksort is $O(n \log n)$ with high probability
- W.H.P. means that the the probability that the running time of quicksort is more than a constant c factor away from its expectation is very small (polynomially small: less than $1 / n^{c}$ for $c \geq 1$)
- Whp bounds are called concentration bounds
- Whp: ideal guarantees possible for a randomized algorithm

Acknowledgments

- Some of the material in these slides are taken from
- Shikha Singh
- Kleinberg Tardos Slides by Kevin Wayne (https:// www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/teaching/ algorithms/book/Algorithms-JeffE.pdf)

