Randomized Algorithm II Randomized QuickSort

Randomized Quicksort

- Recall *deterministic* Quicksort
- Depending on the choice pivot, could be $O(n^2)$
- What if we pick the pivot uniformly at random?
 - We saw in randomized selection that this leads to good pivots half of the time

Quicksort(
$$A$$
):
If $|A| < 3 : SetElse: choose a
 $A_{< p}, A_{> p} \in$
Quicksort(A)$

Sort(A) directly a pivot element $p \leftarrow A$ \leftarrow Partition around p $(A_{< p})$ $(A_{> p})$

Randomized Quicksort

- Intuitively half the pivots will be good, half bad
- We will analyze quick sort using another accounting trick (see the textbook for example similar to selection's approach of analyzing "phases")
- Total work done can be split into to types:
 - Work done making recursive calls (this is a lower order term, it turns out)
 - Work partitioning the elements
- How many recursive calls in the worst case?
 - Imagine worst pivot being chosen each time
 - *O*(*n*)

Randomized Quicksort

- We thus need to bound the work partitioning elements
- Partitioning an array of size n around a pivot p takes exactly n-1 comparisons
- We won't look at partitions made in each recursive call, which depend on the choice of random pivot
- Idea: Instead, account for the total work done by the partition step by summing up the total number of comparisons made
- Two ways to count total comparisons:
 - Look at the size of arrays across recursive calls and sum •
 - Look at all pairs of elements and count total # of times they are compared (this is easier to do in this case)

Aside: Randomized Analysis

- Often multiple ways to determine a randomized algorithm's cost
- We can split into phases, or count the cost directly. We can calculate each probability, or use linearity of expectation
- Intrinsically some "cleverness" involved in choosing the way that gets you a clean answer
- We'll focus on problems where there's a clear path to finding the solution (either it follows directly from the question, or we'll revisit problems you've seen before). More complex problems abound if you look!
- That said, here's a very clever way to calculate Quicksort's running time

Counting Total Comparisons

- Just for analysis, let B denote the sorted version of input array A, that is, B[i] is the i^{th} smallest element in A
- Define random variable X_{ij} as the number of times Quicksort compares B[i] and B[j]

• Observation: $X_{ii} = 0$ or $X_{ii} = 1$, why?

• B[i], B[j] only compared when one of them is the current pivot; pivots are excluded from future recursive calls

Let
$$T = \sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij}$$
 be the total num

by randomized Quicksort

nber of comparisons made

- $E[X_{ii}] = \Pr[X_{ii} = 1]$
- When is $X_{ii} = 1$? That is, when are B[i] and B[j] compared?
- Consider a particular recursive call. Let rank of pivot p be r.
 - Let's think about where B[i], B[j] lie with respect to p

- Goal: $E[T] = E \left| \sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij} \right| = \sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij}$
- $E[X_{ii}] = \Pr[X_{ii} = 1]$
- When is $X_{ii} = 1$? That is, when are B[i] and B[j] compared?
- Consider a particular recursive call. Let rank of pivot p be r.
 - Case 1. One of them is the pivot: r = i or r = j
 - Case 2. Pivot is between them: r > i and r < j
 - Case 3. Both less than the pivot: r > i, j
 - Case 4. Both greater than the pivot: r < i, j

$$\sum_{i=i+1}^{n} E[X_{ij}]$$

Comparisons for Each Case

• **Case 1**. r = i or r = j

- B[i] and B[j] are compared once and one of them is excluded from all future calls
- **Case 2**. r > i and r < j
 - *B*[*i*] and *B*[*j*] are both compared to the pivot but not to each other, after which they are in different recursive calls: will never be compared again
- **Case 3**. r > i, j and **Case 4**. r < i, j
 - *B*[*i*] and *B*[*j*] are not compared to each other, they are both in the same subarray and may be compared in the future
- Takeaway: B[i], B[j] are compared for the 1st time when one of them is chosen as pivot from B[i], B[i + 1], ..., B[j] & never again

•
$$\Pr[X_{ij} = 1] = \frac{2}{j - i + 1}$$

$$E[T] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] = 2 \sum_{i=1}^{n} \sum_{j=i-1}^{n} \sum_{j=i-1}^{n} \sum_{j=i-1}^{$$

• $\Pr[X_{ij} = 1] = \Pr(\text{one of them is picked as pivot from } B[i], B[i + 1], ..., B[j])$

- range B[i], B[i + 1], ..., B[j]
- $\Pr[X_{ij} = 1] = \frac{2}{j i + 1}$
- $E[T] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] = 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] = 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{j=i+1}^{n} \sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum$
- For fixed i, inner sum is $\frac{1}{2} + \frac{1}{3} + \frac{1}{4}$
- Thus, expected number of comparisons is: \bullet $E[T] = O(n \log n)$

• B[i] and B[j] are compared iff one of them is the first pivot chosen from the

At each round, the probability that $X_{ii} = 1$ conditioned on the event that we are in Case 1 or Case 2. (In Cases) 3 and 4, we "kick the can" until another round)

$$\sum_{i=1}^{n} \frac{1}{j-i+1} + \dots + \frac{1}{n-i+1} \le \sum_{\ell=2}^{n} \frac{1}{\ell} = O(\log n)$$

Quick Sort Summary

- Las Vegas algorithms like Quicksort and Selection are always correct and their running time guarantees hold *in expectation*
- We can actually prove that the number of comparisons made by Quicksort is $O(n \log n)$ with high probability
 - W.H.P. means that the the probability that the running time of quicksort is more than a constant c factor away from its expectation is very small (polynomially small: less than $1/n^c$ for $c \geq 1$)
 - Whp bounds are called **concentration bounds**
 - Whp: ideal guarantees possible for a randomized algorithm

Acknowledgments

- Some of the material in these slides are taken from lacksquare
 - Shikha Singh
 - Kleinberg Tardos Slides by Kevin Wayne (<u>https://</u> \bullet www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsI.pdf)
 - \bullet algorithms/book/Algorithms-JeffE.pdf)

Jeff Erickson's Algorithms Book (<u>http://jeffe.cs.illinois.edu/teaching/</u>