
Randomized Quicksort



• Monte-Carlo algorithms

• Find the correct answer most of the time 

• Can usually amplify probability of success with 
repetitions 

• Example, Karger’s min cut (in textbook) 

• Las-Vegas algorithms

• Always find the correct answer, e.g. RandQuick sort 
(today!) 

• But the worst-case running-time guarantees are not 
strong (they hold in expectation or with high probability, 
but their goodness depends on randomness) 

• Randomized data structures: hashing, search trees, filters, etc.

Randomized Algorithms & Data Structures



Randomized Algorithm I 
Randomized Selection



Problem.  Find the th smallest/largest element in an unsorted array 

• Recall our selection algorithm from back in our divide and conquer unit (lecture 15): 

Select :

  If :      return  

  Else: 

Choose a pivot ; let  be the rank of  

Partition(  

If :       return  

Else if :      Select  

Else:       Select 

k

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p
k < r (A<p, k)

(A>p, k − r)

Randomized Selection



• Recall:   pivot is “good” if it reduced the array size by at least a constant  

• Gives a recurrence  for some constant  

• Expands to a decreasing geometric series  

• In the deterministic algorithm, how did we find a good pivot? 

• Split array into groups of  

• And computed the median of group medians  

• The pivot guaranteed that   

• Here is a silly idea: What if we pick the pivot uniformly at random? 

• Seems like the pivot is “usually” around the midpoint 

• What is the expected running time?

T(n) ≤ T(αn) + O(n) α < 1
T(n) = O(n)

5

n → 7n/10

Selection with a Good Pivot



• Problem.  Find the th smallest/largest element in an unsorted array 

• Recall our selection algorithm 

Select :

  If :      return  

  Else: 

Choose a pivot  uniformly at random; let  be the rank of  

Partition(  

If :       return  

Else if :      Select  

Else:       Select 

k

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p
k < r (A<p, k)

(A>p, k − r)

Randomized Selection



• Normally, we’d write a recurrence relation for a recursive function 

• A bit complicated now—input sizes of later recursive calls depend on the 
random choices of pivots in earlier calls 

• We will use a different accounting trick for running time 

• Randomized selection makes at most one recursive call each time: 

• Group multiple recursive call in “phases” 

• Sum of work done by all calls is equal to the sum of the work done in all the 
phases

Analyzing Randomized Selection



• Idea: let a “phase” of the algorithm be the time it takes for the array size to drop by a 
constant factor (say ) 

• If array shrinks by a constant factor in each phase and linear work is done in each 
phase, what would be the running time? 

•    

• If we want a th, th split, what range should our pivot be in? 

• Middle half of the array (if  size array, then pivot in )  

• What is the probability of picking such a pivot? 

•  

• Phase ends as soon as we pick a pivot in the middle half 

• Expected # of recursive calls until phase ends?  

n → (3/4) ⋅ n

T(n) = c(n + 3n/4 + (3/4)2n + … + 1) = O(n)

1/4 3/4

n [n/4,3n/4]

1/2

2

Analyzing in Phases



• Let the algorithm be in phase  when the size of the array is 

• At least  but not greater that  

• Expected number of iterations within a phase:  

• Let  be the expected number of steps spent in phase  

•  be the total number of steps taken by the algorithm 

•   recursive calls until th phase ends   steps in phase  

•  recursive calls until th phase ends)  

j

n ( 3
4 )

j+1

n ( 3
4 )

j

2

Xj j

X = X0 + X1 + X2…

E(Xj) = E(# j ⋅ # j)

E(Xj) ≤ cn(3/4)j ⋅ E(# j = 2cn(3/4)j

Expected Running Time



• Let  be the expected number of steps spent in phase  

•  be the total number of steps taken by the algorithm 

•   of iterations until th phase ends   steps in phase  

•  iterations until th phase ends)  

• Now we can apply linearity of expectation: 

•
 

 

Xj j

X = X0 + X1 + X2…

E(Xj) = E(# j ⋅ # j)

E(Xj) ≤ n(3/4)j ⋅ E(# j = 2cn(3/4)j

E[X] = ∑
j

E[Xj] ≤ ∑
j

2cn ( 3
4 )

j

= 2cn∑
j

( 3
4 )

j

= Θ(n)

Expected Running Time



• Deterministic and random both take  time 

• What’s the advantage of the deterministic algorithm? 

• Worst-case guarantee—the random algorithm could be very slow sometimes 

• What’s the advantage of the random algorithm? 

• Much much simpler and better constants hidden in  

• Which should you use? 

• Pretty much always random 

• Question to ask yourself:  

• how often is the randomized algorithm going to be much worse than ?

O(n)

O()

O(n)

Pivot Selection
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