
Randomized Quicksort

• Monte-Carlo algorithms

• Find the correct answer most of the time

• Can usually amplify probability of success with
repetitions

• Example, Karger’s min cut (in textbook)

• Las-Vegas algorithms

• Always find the correct answer, e.g. RandQuick sort
(today!)

• But the worst-case running-time guarantees are not
strong (they hold in expectation or with high probability,
but their goodness depends on randomness)

• Randomized data structures: hashing, search trees, filters, etc.

Randomized Algorithms & Data Structures

Randomized Algorithm I
Randomized Selection

Problem. Find the th smallest/largest element in an unsorted array

• Recall our selection algorithm from back in our divide and conquer unit (lecture 15):

Select :

 If : return

 Else:

Choose a pivot ; let be the rank of

Partition(

If : return

Else if : Select

Else: Select

k

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p
k < r (A<p, k)

(A>p, k − r)

Randomized Selection

• Recall: pivot is “good” if it reduced the array size by at least a constant

• Gives a recurrence for some constant

• Expands to a decreasing geometric series

• In the deterministic algorithm, how did we find a good pivot?

• Split array into groups of

• And computed the median of group medians

• The pivot guaranteed that

• Here is a silly idea: What if we pick the pivot uniformly at random?

• Seems like the pivot is “usually” around the midpoint

• What is the expected running time?

T(n) ≤ T(αn) + O(n) α < 1
T(n) = O(n)

5

n → 7n/10

Selection with a Good Pivot

• Problem. Find the th smallest/largest element in an unsorted array

• Recall our selection algorithm

Select :

 If : return

 Else:

Choose a pivot uniformly at random; let be the rank of

Partition(

If : return

Else if : Select

Else: Select

k

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p
k < r (A<p, k)

(A>p, k − r)

Randomized Selection

• Normally, we’d write a recurrence relation for a recursive function

• A bit complicated now—input sizes of later recursive calls depend on the
random choices of pivots in earlier calls

• We will use a different accounting trick for running time

• Randomized selection makes at most one recursive call each time:

• Group multiple recursive call in “phases”

• Sum of work done by all calls is equal to the sum of the work done in all the
phases

Analyzing Randomized Selection

• Idea: let a “phase” of the algorithm be the time it takes for the array size to drop by a
constant factor (say)

• If array shrinks by a constant factor in each phase and linear work is done in each
phase, what would be the running time?

•

• If we want a th, th split, what range should our pivot be in?

• Middle half of the array (if size array, then pivot in)

• What is the probability of picking such a pivot?

•

• Phase ends as soon as we pick a pivot in the middle half

• Expected # of recursive calls until phase ends?

n → (3/4) ⋅ n

T(n) = c(n + 3n/4 + (3/4)2n + … + 1) = O(n)

1/4 3/4

n [n/4,3n/4]

1/2

2

Analyzing in Phases

• Let the algorithm be in phase when the size of the array is

• At least but not greater that

• Expected number of iterations within a phase:

• Let be the expected number of steps spent in phase

• be the total number of steps taken by the algorithm

• recursive calls until th phase ends steps in phase

• recursive calls until th phase ends)

j

n (3
4)

j+1

n (3
4)

j

2

Xj j

X = X0 + X1 + X2…

E(Xj) = E(# j ⋅ # j)

E(Xj) ≤ cn(3/4)j ⋅ E(# j = 2cn(3/4)j

Expected Running Time

• Let be the expected number of steps spent in phase

• be the total number of steps taken by the algorithm

• of iterations until th phase ends steps in phase

• iterations until th phase ends)

• Now we can apply linearity of expectation:

•

Xj j

X = X0 + X1 + X2…

E(Xj) = E(# j ⋅ # j)

E(Xj) ≤ n(3/4)j ⋅ E(# j = 2cn(3/4)j

E[X] = ∑
j

E[Xj] ≤ ∑
j

2cn (3
4)

j

= 2cn∑
j

(3
4)

j

= Θ(n)

Expected Running Time

• Deterministic and random both take time

• What’s the advantage of the deterministic algorithm?

• Worst-case guarantee—the random algorithm could be very slow sometimes

• What’s the advantage of the random algorithm?

• Much much simpler and better constants hidden in

• Which should you use?

• Pretty much always random

• Question to ask yourself:

• how often is the randomized algorithm going to be much worse than ?

O(n)

O()

O(n)

Pivot Selection

Acknowledgments
• Some of the material in these slides are taken from

• Shikha Singh

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

