Randomized Quicksort

Randomized Algorithms \& Data Structures

- Monte-Carlo algorithms
- Find the correct answer most of the time
- Can usually amplify probability of success with repetitions
- Example, Karger's min cut (in textbook)
- Las-Vegas algorithms
- Always find the correct answer, e.g. RandQuick sort (today!)
- But the worst-case running-time guarantees are not strong (they hold in expectation or with high probability, but their goodness depends on randomness)
- Randomized data structures: hashing, search trees, filters, etc.

Randomized Algorithm I Randomized Selection

Randomized Selection

Problem. Find the $k^{\text {th }}$ smallest/largest element in an unsorted array

- Recall our selection algorithm from back in our divide and conquer unit (lecture 15):

Select (A, k) :
If $|A|=1: \quad$ return $A[1]$

Else:

Choose a pivot $p \leftarrow A[1, \ldots, n]$; let r be the rank of p
$r, A_{<p}, A_{>p} \leftarrow \operatorname{Partition}((A, p)$
If $k==r: \quad$ return p
Else if $k<r$: $\quad \operatorname{Select}\left(A_{<p}, k\right)$
Else: $\quad \operatorname{Select}\left(A_{>p}, k-r\right)$

Selection with a Good Pivot

- Recall: pivot is "good" if it reduced the array size by at least a constant
- Gives a recurrence $T(n) \leq T(\alpha n)+O(n)$ for some constant $\alpha<1$
- Expands to a decreasing geometric series $T(n)=O(n)$
- In the deterministic algorithm, how did we find a good pivot?
- Split array into groups of 5
- And computed the median of group medians
- The pivot guaranteed that $n \rightarrow 7 n / 10$
- Here is a silly idea: What if we pick the pivot uniformly at random?
- Seems like the pivot is "usually" around the midpoint
- What is the expected running time?

Randomized Selection

- Problem. Find the $k^{\text {th }}$ smallest/largest element in an unsorted array
- Recall our selection algorithm

Select (A, k) :

If $|A|=1: \quad$ return $A[1]$

Else:

Choose a pivot $p \leftarrow A[1, \ldots, n]$ uniformly at random; let r be the rank of p
$r, A_{<p}, A_{>p} \leftarrow \operatorname{Partition}((A, p)$
If $k==r: \quad$ return p
Else if $k<r$: $\quad \operatorname{Select}\left(A_{<p}, k\right)$
Else: $\quad \operatorname{Select}\left(A_{>p}, k-r\right)$

Analyzing Randomized Selection

- Normally, we'd write a recurrence relation for a recursive function
- A bit complicated now-input sizes of later recursive calls depend on the random choices of pivots in earlier calls
- We will use a different accounting trick for running time
- Randomized selection makes at most one recursive call each time:
- Group multiple recursive call in "phases"
- Sum of work done by all calls is equal to the sum of the work done in all the phases

```
1 3 7

\section*{Analyzing in Phases}
- Idea: let a "phase" of the algorithm be the time it takes for the array size to drop by a constant factor (say \(n \rightarrow(3 / 4) \cdot n)\)
- If array shrinks by a constant factor in each phase and linear work is done in each phase, what would be the running time?
- \(T(n)=c\left(n+3 n / 4+(3 / 4)^{2} n+\ldots+1\right)=O(n)\)
- If we want a \(1 / 4\) th, \(3 / 4\) th split, what range should our pivot be in?
- Middle half of the array (if \(n\) size array, then pivot in \([n / 4,3 n / 4]\) )
- What is the probability of picking such a pivot?
- \(1 / 2\)
- Phase ends as soon as we pick a pivot in the middle half
- Expected \# of recursive calls until phase ends? 2

\section*{Expected Running Time}
- Let the algorithm be in phase \(j\) when the size of the array is
- At least \(n\left(\frac{3}{4}\right)^{j+1}\) but not greater that \(n\left(\frac{3}{4}\right)^{j}\)
- Expected number of iterations within a phase: 2
- Let \(X_{j}\) be the expected number of steps spent in phase \(j\)
- \(X=X_{0}+X_{1}+X_{2} \ldots\) be the total number of steps taken by the algorithm
- \(\mathrm{E}\left(X_{j}\right)=\mathrm{E}(\#\) recursive calls until \(j\) th phase ends \(\cdot \#\) steps in phase \(j\) )
- \(\mathrm{E}\left(X_{j}\right) \leq c n(3 / 4)^{j} \cdot \mathrm{E}(\#\) recursive calls until \(j\) th phase ends \()=2 c n(3 / 4)^{j}\)

\section*{Expected Running Time}
- Let \(X_{j}\) be the expected number of steps spent in phase \(j\)
- \(X=X_{0}+X_{1}+X_{2} \ldots\) be the total number of steps taken by the algorithm
- \(\mathrm{E}\left(X_{j}\right)=\mathrm{E}\) (\# of iterations until \(j\) th phase ends \(\cdot \#\) steps in phase \(j\) )
- \(\mathrm{E}\left(X_{j}\right) \leq n(3 / 4)^{j} \cdot \mathrm{E}(\#\) iterations until \(j\) th phase ends \()=2 c n(3 / 4)^{j}\)
- Now we can apply linearity of expectation:
. \(E[X]=\sum_{j} E\left[X_{j}\right] \leq \sum_{j} 2 c n\left(\frac{3}{4}\right)^{j}=2 c n \sum_{j}\left(\frac{3}{4}\right)^{j}\)
\[
=\Theta(n)
\]

\section*{Pivot Selection}
- Deterministic and random both take \(O(n)\) time
- What's the advantage of the deterministic algorithm?
- Worst-case guarantee-the random algorithm could be very slow sometimes
- What's the advantage of the random algorithm?
- Much much simpler and better constants hidden in \(O()\)
- Which should you use?
- Pretty much always random
- Question to ask yourself:
- how often is the randomized algorithm going to be much worse than \(O(n)\) ?

\section*{Acknowledgments}
- Some of the material in these slides are taken from
- Shikha Singh
- Kleinberg Tardos Slides by Kevin Wayne (https:// www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/teaching/ algorithms/book/Algorithms-JeffE.pdf)```

