Introduction to Probability



Random Variable

An event elther does or does not happen.

magnitude of a probabilistic event?

But what If we want to capture the

e Suppose | flip n fair coins: the # of heads is a random variable

 Number that comes up when we roll a fair die is a random variable

e [fan algorithm’s behavior is determined by “flipping some coins” then the

running time of the algorithm is a random variable

 Definition. A random variable X is a function from a sample space S (with a
probability measure) to some value set (e.g. real numbers, integers, etc.)



Random Variable: Example

« Suppose, for example, | flip a coin 10 times. Let X be the number of heads

. Pr[X=0]=1/2" |
All 10 tlips are the same
. Pr[X =10] = 1/2"

.« Pr[X =4]7 Many different combinations of |
10y 1 1 105
Pr(X = 4] = =
) 4 ) 2426 512

« A random variable that is O or 1 (indicating if something happens or not) is

called an indicator random variable or Bernoulli random variable

& |



Expectation

Every time you do the experiment, the associated random
variable can take a ditferent value

« How can we characterize the average behavior of a random
variable?

* Alternate Definition. Expected value of a random Sum of values x probabilities

variable R defined on a sample space S is that rv. takes on those values
E(R) = Zx . Pr(R = x)
N To get the E to look good In latex,
use \mathrm{E}

* Let R be the number that comes up when we roll a fair, six-sided

die, then the expected value of R is

(We won't use It In the slides, but if you

6
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Conditional Expectation

Definition. If A is an arbitrary event with Pr[A] > 0, the conditional expectation
of X given A is

E[X|A]:= ) x-Pr[X =x|A]

X

o (Law of total expectation) If {A, A,, ...} is a finite partition of the sample
space:

EX) = ) EX|A)-Pr(A)

Very useful |



Linearity of Expectation

The linearity of expectation (LoE) is an important tool in randomized algorithms

* The expected value operator for random variables is linear in the sense that:
E[X+ Y] =E[X]|+ E|Y]| and,foranyconstanta, E|laX]| = aE|X]

* |nformally, the expectation of a sum is the sum of the expectations.

 Formally, for any random variables X, X,, ..., X, and any coefficients

Ay, Ayy oeey O,

Very useful !

n

E| i (O(i ‘ Xi)] = Z (051' ‘ E[Xi])
=1

=1

 Note. Always true! Linearity of expectation does not require independence of
random variables.



Bernoulli Distribution

e SUPPOSE you run an experiment with probability of success p and
failure 1 — p

« Example, coin toss where head is success and Pr(H) = p

o Let X be aBernoulli or indicator random variable that is 1 if we
succeed, and 0O otherwise. Then,

E[X]= ) x-Pr[X=x]

=0-PrIX=0]4+1-PrlX=1]
=P
* Remember this: expectation of an indicator random variable is
exactly the probability of success!




Expected Success: n Bernoulli Trials

Consider n independent Bernoulli trials (with success probability p). Let
R denote the number of successes

« R is said to follow a Binomial distribution

We want to know expected number of successes E(R)

Can write R as a sum of indicator random variables

. R=2Rl- where R, =0or R, =1

Then E[R| = E 2 R, How can we simplify this by Linearity of Expectation?
i



Expected Success: n Bernoulli Trials

Consider n independent Bernoulli trials (with success probability p). Let R
denote the number of successes

R is said to follow a Binomial distribution (we'll revisit this)

We want to know expected number of successes E(R)

Can write R as a sum of indicator random variables

. R=2Ri where R, = 0or R, = 1

ThenE[R] =E | ) R| = ) E[R] = zn:p = np
l l =1



Uniform Distribution

With a uniform distribution, every outcome is equally likely

« Let X be the random variable of the experiment and S be the sample space

. PriX=x] =
| S]
1
E[X]=Zx-Pr(X=x)= -Zx
. xeS ‘S‘ xeS
e Example

e fair coin toss: heads and tails are equally likely

e fair die roll: all numbers are equally likely




Card Guessing: Memoryless

« [0 entertain your family you have them shuttle deck of n cards and
then turn over one card at a time. Before each card is turned, you
oredict its identity. Assume you have no psychic abilities and your
memory Is terrible—you can’'t remember cards that have been seen

e Your strategy: guess uniformly at random

« How many predictions do you expect to be correct?

« Let X denote the random variable equal to the # of correct guesses
and X, denote the indicator variable that the 1t guess is correct

Thus, X = iXi and E[X] = E[iXi] = i E[X;]
i=1 i=1 i=1

. Thus, E[X] =1

(K&T 13.3)




Card Guessing: Memoryfull (K&T 13.3)

* Suppose we play the same game but now assume you have the
ability to remember cards that have already been turned

* Your strategy: guess uniformly at random from among the cards
that have not yet been turned over

« Let X denote the random variable equal to the # of correct guesses
and X, denote the indicator variable that the 1th guess is correct

Thus, X = iXi and E[X] = E[iXi] = i E[X;]
=1 =1 =1

. BIX]=Pr(X,=1) = — , .
n—i+1 After we've seen 1 cards, we /
] 1] '
 Thus EX]= Y =2 can rule out those 1 cards
=1 PTETE a from our range of guesses

Qg



Harmonic Numbers

« The nt" harmonic number, denoted H, is defined as
n
1
H,= ) =
i=1

« Theorem. H, = O(log n)

* Proof Idea (we won't show in full). Upper and lower bound
area under the curve

N\ H s1+}
1

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8



Card Guessing: Memoryfull

e Suppose we play the same game but now assume you have the
ability to remember cards that have already been turned

* Your strategy: guess uniformly at random among cards that
have not been turned over

« Let X denote the r.v. equal to the number of correct predictions
and X; denote the indicator variable that the ith guess is correct

Thus, X = iXi and E[X]| = E[iX,-] = iE[Xi]
i=1 i=1 i=1

E[X;] = Pr(X;= 1) =

) n—i+1
Thus, E[X] i : i : Olog n)
us, p— : p— — =
’ = n—I + 1 — I

(K&T 13.3)



Acknowledgments

e Some of the material in these slides are taken from

» Shikha Singh

« Kleinberg Tardos Slides by Kevin Wayne (https://
Wwww.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsl. pdf)

« Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE . pdf)

 Hamiltonian cycle reduction images from Michael Sipser’s Theory of
Computation Book


https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

