
Introduction to Probability



Random Variable
An event either does or does not happen. But what if we want to capture the 
magnitude of a probabilistic event? 

• Suppose I flip  fair coins: the # of heads is a random variable 

• Number that comes up when we roll a fair die is a random variable  

• If an algorithm’s behavior is determined by “flipping some coins” then the 
running time of the algorithm is a random variable 

• Definition.  A random variable  is a function from a sample space  (with a 
probability measure) to some value set (e.g. real numbers, integers, etc.)
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Random Variable:  Example
• Suppose, for example, I flip a coin 10 times.  Let  be the number of heads 

•  

•  

•  ? 

•  

• A random variable that is  or  (indicating if something happens or not) is 
called an indicator random variable or Bernoulli random variable
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All 10 flips are the same

Many different combinations of H & T



Every time you do the experiment, the associated random 
variable can take a different value 

• How can we characterize the average behavior of a random 
variable? 

• Alternate Definition.  Expected value of a random 
variable  defined on a sample space  is   

                    

• Let  be the number that comes up when we roll a fair, six-sided 
die, then the expected value of  is  
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x ⋅ Pr(R = x)
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Expectation

To get the E to look good in latex, 
use \mathrm{E} 

(We won’t use  in the slides, but if you 
really want to, it’s \mathbb)

𝔼

Sum of values x probabilities 
that r.v. takes on those values



Definition.  If  is an arbitrary event with , the conditional expectation 
of  given  is  

                    

• (Law of total expectation) If  is a finite partition of the sample 
space: 

                  

A Pr[A] > 0
X A

E[X |A] := ∑
x

x ⋅ Pr[X = x |A]

{A1, A2, …}

E(X) = ∑
i

E(X |Ai) ⋅ Pr(Ai)

Conditional Expectation

Very useful !



The linearity of expectation (LoE) is an important tool in randomized algorithms 

• The expected value operator for random variables is linear in the sense that: 
    and, for any constant ,     

• Informally, the expectation of a sum is the sum of the expectations. 

• Formally, for any random variables  and any coefficients 
  

 

  

• Note.  Always true!  Linearity of expectation does not require independence of 
random variables.

E[X + Y] = E[X] + E[Y] α E[αX] = αE[X]

X1, X2, …, Xn
α1, α2, …, αn

E[
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∑
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(αi ⋅ Xi)] =
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∑
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(αi ⋅ E[Xi])

Linearity of Expectation

Very useful !



• Suppose you run an experiment with probability of success  and 
failure  

• Example, coin toss where head is success and  

• Let  be a Bernoulli or indicator random variable that is  if we 
succeed, and  otherwise. Then, 
 

 

          
           

• Remember this:  expectation of an indicator random variable is 
exactly the probability of success!

p
1 − p

Pr(H) = p

X 1
0

E[X] = ∑
x

x ⋅ Pr[X = x]

= 0 ⋅ Pr[X = 0] + 1 ⋅ Pr[X = 1]
= p

Bernoulli Distribution



• Consider  independent Bernoulli trials (with success probability ).  Let 
 denote the number of successes  

•  is said to follow a Binomial distribution

• We want to know expected number of successes  

• Can write  as a sum of indicator random variables 

•
         where  or  

•
Then 
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E[R] = E [∑
i

Ri]

Expected Success:  Bernoulli Trialsn

How can we simplify this by Linearity of Expectation?



• Consider  independent Bernoulli trials (with success probability ).  Let  
denote the number of successes  

•  is said to follow a Binomial distribution (we'll revisit this)

• We want to know expected number of successes  

• Can write  as a sum of indicator random variables 

•
         where  or  

•
Then  
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p = np

Expected Success:  Bernoulli Trialsn



With a uniform distribution, every outcome is equally likely 

• Let  be the random variable of the experiment and  be the sample space  

•   

•
 

• Example 

• fair coin toss: heads and tails are equally likely 

• fair die roll: all numbers are equally likely 
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Uniform Distribution



• To entertain your family you have them shuffle deck of  cards and 
then turn over one card at a time. Before each card is turned, you 
predict its identity. Assume you have no psychic abilities and your 
memory is terrible—you can’t remember cards that have been seen 

• Your strategy: guess uniformly at random 

• How many predictions do you expect to be correct? 

• Let  denote the random variable equal to the # of correct guesses 
and  denote the indicator variable that the th guess is correct 

•
Thus,   and   

•  

• Thus, 
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E[Xi] = 0 ⋅ Pr(Xi = 0) + 1 ⋅ Pr(Xi = 1) = Pr(Xi = 1) = 1/n

E[X] = 1

Card Guessing: Memoryless (K&T 13.3)



• Suppose we play the same game but now assume you have the 
ability to remember cards that have already been turned 

• Your strategy: guess uniformly at random from among the cards 
that have not yet been turned over 

• Let  denote the random variable equal to the # of correct guesses 
and  denote the indicator variable that the th guess is correct 

•
Thus,   and   

•   

•
Thus,  
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Card Guessing: Memoryfull

After we’ve seen  cards, we 
can rule out those  cards 
from our range of guesses

i
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(K&T 13.3)



• The th harmonic number, denoted  is defined as 

 

• Theorem.   

• Proof Idea (we won’t show in full). Upper and lower bound 
area under the curve 
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Hn = Θ(log n)

Harmonic Numbers



• Suppose we play the same game but now assume you have the 
ability to remember cards that have already been turned 

• Your strategy: guess uniformly at random among cards that 
have not been turned over 

• Let  denote the r.v. equal to the number of correct predictions 
and  denote the indicator variable that the th guess is correct 

•
Thus,   and   

•   

•
Thus,  
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Card Guessing: Memoryfull (K&T 13.3)
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