
Introduction to Probability



Why Randomness
• Randomization.  We allow a fair coin flip in unit time. 

• Why randomize?   

• Deterministic algorithms offer little flexibility 

• Randomness often enables to surprisingly simple & fast algorithms 

• Very important in computer science: 

• Symmetry-breaking protocols, memory management, learning algorithms, 
contention resolution, hashing, load balancing, cryptographic, AI, game 
theory 

• Gives insight in “real world” issues  

• Polling, risk assessment, scientific testing, gambling, etc.



Probability Review
• Before we design/analyze randomized algorithms, we need a foundation in probability 

• Plan: we’ll start with some things you’ve likely seen before 

• Will be a “review" of probability from Discrete Math 

• Since each Math 200 differs, ensure everyone has same background 

• Will move on to randomized algorithms and data structures: 

• Hashing 

• Skip lists 

• Fingerprinting 

• etc.



“Deathbed” Formulas
• You should remember these even on your deathbed [MAB] 

• Extremely useful in probability 

•    for large enough   

• More precisely:  
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Discrete Probability Review
Sample Space

•  A discrete probability space consists of a non-empty, countable set , 
called the sample space, and a probability mass function  s.t. 

•
 ,    and      

• Idea: the sample space consists of all possible outcomes 

• When flipping a coin, the sample space is  

• When rolling a six-sided die,   

• If you’re stuck on a probability question, sometimes it may help to list 
all possible outcomes!

Ω
Pr : Ω → ℝ

Pr[ω] ≥ 0 ∀ω ∈ Ω ∑
ω∈Ω

Pr[ω] = 1

Ω = {heads, tails}

Ω = {1,2,3,4,5,6}



Discrete Probability Review
An event is a set of outcomes 

• E.g.  Seeing a heads when we toss a fair coin 

• E.g.  Seeing a six when we roll a fair die 

• Probability of an event is the weight of all outcomes satisfying that event 

• A fair coin:    

• A fair six-sided die:  

Pr[heads] = Pr[tails] = 1/2

Pr[ω] = 1/6 ∀ω ∈ Ω

(You can assume coins/dice are 
fair unless told otherwise…)



Use the Four Step Method

• Step 1.  Identify the sample space  
• Step 2.  Define the events of interest 
• Step 3.  Determine outcome probabilities 
• Step 4.  Determine event probabilities

When it comes to probability: 

Intuition:   Bad

Formalism:    Good



Example:  Baby Sex Likelihood 
• Let’s say every baby born is a girl or a boy with probability  each 

• If someone has four children, is it more likely that they have two girls 
and two boys?  Or three of one, and one of the other? 

• First: what is the sample space/how many outcomes do we have
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Example:  Baby Sex Likelihood 
• Let’s say every baby born is a girl or a boy with probability  each 

• If someone has four children, is it more likely that they have two girls 
and two boys?  Or three of one, and one of the other? 

• First: what is the sample space/how many outcomes do we have
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Example
• If someone has four children, is it more likely that they have two girls and two 

boys?  Or three of one, and one of the other?
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Pr[three same sex out of four] = 8/16 = 1/2



• If someone has four children, is it more likely that they have two girls and two 
boys?  Or three of one, and one of the other?

Example
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Pr[two boys and two girls] = 6/16 = 3/8 < 1/2



Same Example: Let's Do the Math
• Let’s say every baby is a girl or a boy with probability  each 

• If someone has four children, is it more likely that they have two girls and two 
boys?  Or three of one, and one of the other? 

•  outcomes, each outcome occurs with equal probability:  

• .   ways to have one girl;  ways to have one boy; total =  

•  ways to have two girls and two boys; total =  

1/2

24 1/24 = 1/16

(4
1) = 4 4 4 8/16

(4
2) = 6 6/16



Independence
• Intuition: two events are independent if they do not affect each other 

• Example: let’s say I flip two coins:  the event that the first is a head, and the 
event that the second is a head, are independent. 

• Not-independent example:  Say I flip a coin 10 times, then let: 

• Event 1: Flips 1, 2, and 3 are all heads 

• Event 2: Flips 2, 3, and 4 are all heads 

• These are not independent.  If Event 1 is true, Event 2 is more likely.  If Event 1 
is false, Event 2 is less likely.



Independent Probabilities
• Definition of independence:  

•  and  are independent events if and only if:     
 

• Here  and  (events are just subsets of the outcome space)  

• Probability of flipping 10 heads in a row is  

• Probability of flipping a heads, and then rolling a 1 on a die, is 

A B
Pr[A and B] = Pr[A] ⋅ Pr[B]

A B = A ∩ B

1/210

1/12



• What is the probability that it will rain this afternoon, given 
that it is cloudy this morning?

• Conditional probability is the probability that one 
event happens, given that some other event 
definitely happens or has already happened 

• Notation.  denotes the probability that 
event  happens given that event  happens 

•  is the fraction of  that is red 

•  captures weight of  that is purple 

(overlaps with B) normalized over 

Pr(A |B)
A B

Pr[A] S

Pr[A | B] A

B

Conditional Probability

Conditional Probability (Def): 

Pr[A |B] =
Pr[A and B]

Pr[B]
=

Pr[A ∩ B]
Pr[B]

S

A

B



Conditional Probability
• Definition of conditional probability: 

 

• (Product rule).  This means that   
  

• We know for independent events  and  that 
 

• Means that  and  are independent if and only if 

Pr[A | B] =
Pr[A and B]

Pr[B]

Pr[A and B] = Pr[A | B] ⋅ Pr[B]

A B
Pr[A and B] = Pr[A] ⋅ Pr[B]

A B
Pr[A | B] = Pr[A]
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Monty Hall Problem
• "Suppose you’re on a game show, and you’re given the choice of three doors. Behind one door is 

a car, behind the others, goats. You pick a door, say number 1, and the host, who knows what’s 
behind the doors, opens another door, say number 3, which has a goat. He says to you, ”Do you 
want to pick door number 2?” Is it to your advantage to switch your choice of doors?" 

                                                                  --- Craig. F. Whitaker Columbia, MD



Clarifying the Problem
• The car is equally likely to be hidden behind any of the 3 doors 
• The player is equally to pick any of the 3 doors, regardless of the car's location 
• After the player picks a door, the host must open a different door with a goat 

behind it and offer the choice to switch 
• If the host has a choice of which door to open, he is equally likely to select 

each of them



• Sample space: set of all possible outcomes 

• An outcome involves 3 things:   

• door concealing the car 

• door initially chosen by the player 

• door that host opens to reveal a goat 

• Every possible combination of this is an outcome 

• We can visualize these as a tree diagram

• Sample space  is then:S

Find the Sample Space



• Question.   What is the probability that ____ ?

• Model as an event (subset of the sample space) 

• Event that player wins by switching: 

•  

• Exactly half of the outcomes 

• Switching leads to win with probability half? 

• No!  

{(A, B, C), (A, C, B), (B, A, C), (B, C, A), (C, A, B), (C, B, A)}

Define Events of Interest



• Each outcome is not equally likely! 

• To determine probability, assign edge probabilities  

• Edge probabilities are conditional on previous parts of tree! 

•  

•  

• , etc.

Pr(A, B, C) =
1

18

Pr(A, A, C) =
1

18

Pr(A, B, C) =
1
9

1/3

1/3

1/3

1/3
1/3

1/3

1/3
1/3

1/3

1/3
1/3

1/3

1/2
1/2

1

1

1

1

1

1

1/2
1/2

1/2

1/2

1/18

1/18
1/9

1/9

1/9

1/9

1/9

1/9

1/18

1/18

1/18

1/18

Determine Outcome Probabilities



• We now have a probability of each outcome 

• Probability of an event is the sum of the probabilities of the 
outcomes it contains, i.e.,   

• (switching wins) =  

• It is better to switch! 

• Takeaway:  resist the intuitively appealing answer
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Compute Event Probabilities
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• Suppose that there are  students in a lecture hall 

• Assume for each student, any of the 365 possible days 
are equally likely as their birthday 

• Assume birthday are mutually independent  

• Question.  What is the likelihood that no two students have 
the same birthday? 

• Let  be the event that the th persons birthday is different 
from the previous  people 

•  (all  different birthdays)  

m

n =

Ai i
i − 1

Pr m

The Birthday Paradox

=  

= 

Pr(A1 ∩ A2 ∩ … ∩ Am)

Pr(A1) ⋅ Pr(A2 |A1) ⋅ Pr(A3 |A1 ∩ A2)…Pr(An |A1 ∩ … ∩ An−1)



 (all  different birthdays)  

         

         

•  for probability to be  

• For , we get   

• Thus, with around  people in this class, we have a % 
chance of two people having the same birthday
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n = 365 m = 22.49
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The Birthday Paradox

Important Inequality: 
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x ≤ 1



Source: Wikipedia



Random Variable
• An event either does or does not happen. But what if we want to capture the 
magnitude of a probabilistic event 

• Suppose I flip  fair coins: the # of heads is a random variable 

• Number that comes up when we roll a fair die is a random variable  

• If an algorithm’s behavior is determined by “flipping some coins” then the 
running time of the algorithm is a random variable 

• Definition.  A random variable  is a function from a sample space  (with a 
probability measure) to some value set (e.g. real numbers, integers, etc.)

n

X S



Random Variable:  Example
• Suppose, for example, I flip a coin 10 times.  Let  be the number of heads 

•  

•  

•  ? 

•  

• A random variable that is  or  (indicating if something happens or not) is 
called an indicator random variable or Bernoulli random variable

X

Pr[X = 0] = 1/210

Pr[X = 10] = 1/210

Pr[X = 4]

Pr[X = 4] = (10
4 ) 1

24

1
26

=
105
512

0 1

All 10 flips are the same

Many different combinations of H & T



• Every time you do the experiment, associated random 
variable can take a different value 

• How can we characterize the average behavior of a random 
variable? 

• Alternate Definition.  Expected value of a random 
variable  defined on a sample space  is   

                    

• Let  be the number that comes up when we roll a fair, six-sided 
die, then the expected value of  is  

        

R S

E(R) = ∑
x

x ⋅ Pr(R = x)

R
R

E(R) =
6

∑
i=1

i ⋅
1
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1
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(1 + 2 + 3 + 4 + 5 + 6) =
7
2

Expectation

To get the E to look good in latex, 
use \mathrm{E} 

(We won’t use  in the slides, but if you 
really want to, it’s \mathbb)

𝔼



• Definition.  If  is an arbitrary event with , the conditional 
expectation of  given  is  

                    

• (Law of total expectation) If  is a finite partition of the sample 
space: 

                  

A Pr[A] > 0
X A

E[X |A] := ∑
x

x ⋅ Pr[X = x |A]

{A1, A2, …}

E(X) = ∑
i

E(X |Ai) ⋅ Pr(Ai)

Conditional Expectation

Very useful !
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