Wrapping Up Our NP Hardness Reductions

Grouping Problems

- The textbook does a good job grouping problems
 - Packing problems (Independent set)
 - Covering problems (Vertex cover, set cover)
 - 8.5: Sequencing Problems (Hamiltonian cycle/path, traveling salesmen)
 - 8.6 Partitioning Problems (3-dimensional matching)
 - 8.7 Graph Coloring (3-coloring)
 - 8.8 Numerical Problems (Subset sum, knapsack)
- If your problem seems to fit into one of these categories, it is a reasonable strategy to pick a problem from the same category as a reduction candidate

Today's Plan

- We are finishing our in-class exploration of reductions
 - We'll show that subset sum is NP-complete
- *Didn't we say that subset sum had an O(nW) dynamic programming algorithm, just like knapsack?*
 - Yes, but O(nW) is not polynomial with respect to the input size (representation); W is a value!
- Steps to show subset sum is NP-complete?
 - Show subset sum is in NP
 - Reduce a known NP-complete problem to it (in poly-time)
 - Prove yes instances map to yes instances (both ways)

SUBSET-SUM is NP Complete: Vertex-Cover \leq_p SUBSET-SUM

Subset Sum Problem

• SUBSET-SUM.

Given *n* positive integers a_1, \ldots, a_n and a target integer *T*, is there a subset of numbers that adds up to exactly *T*

- Step 1: show that **SUBSET-SUM** \in NP
 - Certificate: a set of numbers
 - Poly-time verifier: checks if the set is a subset of the input integers, and if so, that the set sums exactly to ${\cal T}$
- Step 2: prove that SUBSET-SUM is NP hard by reducing a known NP-complete problem to it
 - We'll reduce from vertex cover

Map the Problems

- Theorem. VERTEX-COVER \leq_p SUBSET-SUM
- **Proof**. Given a graph G with n vertices and m edges and a number k, we construct a set of numbers a_1, \ldots, a_t and a target sum T such that G has a vertex cover of size k iff there is a subset of numbers that sum to T

Algorithm for Vertex Cover

- Theorem. VERTEX-COVER \leq_p SUBSET-SUM
- **Proof**. Given a graph G with n vertices and m edges and a number k, we construct a set of numbers a_1, \ldots, a_t and a target sum T such that G has a vertex cover of size k iff there is a subset of numbers that sum to T
 - In our reduction, we'll use two types of **gadgets**
 - when reducing a problem X to a problem Y, a gadget is a small (partial) instance of problem Y that is used to "simulate" a feature of problem X
 - Gadget 1: integers that represent vertices of G, and
 - Gadget 2: integers that represent edges of G

- Theorem. VERTEX-COVER \leq_p SUBSET-SUM
- Reduction (idea)
 - We'll create a set of n + m integers, where we have one integer for every vertex, and one integer for every edge $(A = \{a_1, ..., a_n, a_{n+1}, ..., a_{n+m}\})$
 - **Goals** when creating our vertex/edge gadgets:
 - Must force the selection of k vertex integers: need to ensure that no other set of input integers can sum to T
 - Must force an edge covering: for every edge (u, v), we need to ensure that our subset can't sum to T unless either u or v is picked

• Theorem. VERTEX-COVER \leq_p SUBSET-SUM

• Reduction.

First, arbitrarily number the edges from 0 to m - 1. Then, create set of n + m integers and a target value T as follows:

- Vertex integer $a_v : m^{\text{th}}$ (most significant) bit is 1 and for i < m, the i^{th} bit is 1 if i^{th} edge is incident to vertex v
- Edge integer b_{uv} : m^{th} digit is 0 and for i < m, the i^{th} bit is 1 if this integer represents an edge i = (u, v)

Target value
$$T = k \cdot 4^m + \sum_{i=0}^{m-1} 2 \cdot 4^i$$

Note: Each integer is a m + 1-bit number in base four*

• Example: consider the graph G = (V, E) where $V = \{u, v, w, x\}$ and $E = \{(u, v), (u, w), (v, w), (v, x), (w, x)\}$

	5th	4 th : (wx)	3 rd : (vx)	2 nd : (vw)	1 st : (uw)	Oth: (uv)
a_u	1	0	0	0	1	1
a_v	1	0	1	1	0	1
a_w	1	1	0	1	1	0
a_x	1	1	1	0	0	0
b_{uv}	0	0	0	0	0	1
b _{uw}	0	0	0	0	1	0
b_{vw}	0	0	0	1	0	0
b_{vx}	0	0	1	0	0	0
b_{wx}	0	1	0	0	0	0

$$u$$
 v
 1 2 3
 w 4 x

 $a_u := 111000_4 = 1344$ $a_v := 110110_4 = 1300$ $a_w := 101101_4 = 1105$ $a_x := 100011_4 = 1029$

$$b_{uv} := 010000_4 = 256$$

$$b_{uw} := 001000_4 = 64$$

$$b_{vw} := 000100_4 = 16$$

$$b_{vx} := 000010_4 = 4$$

$$b_{wx} := 000001_4 = 1$$

• If k = 2 then $T = 222222_4 = 2730$

Correctness

- Claim. G has a vertex cover of size k if and only there is a subset X of corresponding integers that sums to value T
- (\Rightarrow) Let *C* be a vertex cover of size *k* in *G*, define *X* as $X := \{a_v \mid v \in C\} \cup \{b_i \mid \text{edge } i \text{ has exactly one endpoint in } C\}$

	5 th	4^{th} : (wx)	3 rd : (vx)	2 nd : (vw)	1 st : (uw)	Oth: (uv)
a _u	1	0	0	0	1	1
a_v	1	0	1	1	0	1
a_w	1	1	0	1	1	0
a_x	1	1	1	0	0	0
b_{uv}	0	0	0	0	0	1
b_{uw}	0	0	0	0	1	0
b_{vw}	0	0	0	1	0	0
b_{vx}	0	0	1	0	0	0
b_{wx}	0	1	0	0	0	0

$$u$$
 v
 \int v
 w x

 $C = \{v, w\}$

$$T = 222222_4 = 2730$$
$$T = k \cdot 4^m + \sum_{i=0}^{m-1} 2 \cdot 4^i$$

Correctness

- Claim. G has a vertex cover of size k if and only there is a subset X of corresponding integers that sums to value T
- (\Rightarrow) Let *C* be a vertex cover of size *k* in *G*, define *X* as $X := \{a_v \mid v \in C\} \cup \{b_i \mid \text{edge } i \text{ has exactly one endpoint in } C\}$

	5 th	4 th : (wx)	3^{rd} : (vx)	2 nd : (vw)	1 st : (uw)	O th : (uv)
a_v	1	0	1	1	0	1
a_w	1	1	0	1	1	0
b _{uv}	0	0	0	0	0	1
b_{uw}	0	0	0	0	1	0
b_{vx}	0	0	1	0	0	0
b_{wx}	0	1	0	0	0	0

$$C = \{v, w\}$$

Correctness

- Claim. *G* has a vertex cover of size *k* if and only there is a subset *X* of corresponding integers that sums to value *T*
- (\Rightarrow) Let *C* be a vertex cover of size *k* in *G*, define *X* as $X := \{a_v \mid v \in C\} \cup \{b_i \mid \text{edge } i \text{ has exactly one endpoint in } C\}$
- Sum of the most significant bits of X is k
 - Only vertex gadgets have MSB set, select k vertex integers
- All other bits must sum to 2, why?
- Consider column for edge (*u*, *v*):
 - Either both endpoints are in C, then we get two 1's from $a_{\!_V}$ and $a_{\!_U}$ and none from $b_{\!_{\!\!\!UV}}$
 - Exactly one endpoint is in C: get 1 bit from b_{uv} and 1 bit from a_u or a_v
- Thus the elements of X sum to exactly T

- Claim. *G* has a vertex cover of size *k* if and only there is a subset *X* of corresponding integers that sums to value *T*
- (\Leftarrow) Let X be the subset of numbers that sum to T
- That is, there is $V' \subseteq V, E' \subseteq E$ s.t.

$$X := \sum_{v \in V'} a_v + \sum_{i \in E'} b_i = T = k \cdot 4^m + \sum_{i=0}^{m-1} 2 \cdot 4^i$$

- These numbers are base 4 and there are no carries
- Each b_i only contributes 1 to the $i^{\rm th}$ digit, which is 2 in our target T
- Thus, for each edge i, at least one of its endpoints must be in V'
 - V' is a vertex cover
- Size of V' is k: only vertex-numbers have a 1 in the m^{th} position

Subset Sum: Final Thoughts

- Polynomial time reduction?
 - O(nm) since we check vertex/edge incidence for each vertex/edge when creating n + m numbers
- Does a O(nT) subset-sum algorithm mean vertex cover can be solved in polynomial time?
 - No! $T \approx 4^m$
- NP hard problems that have pseudo-polynomial algorithms are called *weakly NP hard*

Steps to Prove X is NP Complete

- Step 1. Show X is in **NP**
- Step 2. Pick a known NP hard problem Y from class
- Step 3. Show that $Y \leq_p X$
 - Show both sides of reduction are correct: if and only if directions
 - State that reduction runs in polynomial time in input size of problem \boldsymbol{Y}

Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (<u>https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf</u>)
 - Jeff Erickson's Algorithms Book (<u>http://jeffe.cs.illinois.edu/</u> <u>teaching/algorithms/book/Algorithms-JeffE.pdf</u>)