Wrapping Up Our NP Hardness Reductions

Grouping Problems

- The textbook does a good job grouping problems
- Packing problems (Independent set)
- Covering problems (Vertex cover, set cover)
- 8.5: Sequencing Problems (Hamiltonian cycle/path, traveling salesmen)
- 8.6 Partitioning Problems (3-dimensional matching)
- 8.7 Graph Coloring (3-coloring)
- 8.8 Numerical Problems (Subset sum, knapsack)
- If your problem seems to fit into one of these categories, it is a reasonable strategy to pick a problem from the same category as a reduction candidate

Today's Plan

- We are finishing our in-class exploration of reductions
- We'll show that subset sum is NP-complete
- *Didn't we say that subset sum had an $O(n W)$ dynamic programming algorithm, just like knapsack?*
- Yes, but $\mathrm{O}(\mathrm{nW})$ is not polynomial with respect to the input size (representation); W is a value!
- Steps to show subset sum is NP-complete?
- Show subset sum is in NP
- Reduce a known NP-complete problem to it (in poly-time)
- Prove yes instances map to yes instances (both ways)

SUBSET-SUM is NP Complete: Vertex-Cover \leq_{p} SUBSET-SUM

Subset Sum Problem

- SUBSET-SUM.

Given n positive integers a_{1}, \ldots, a_{n} and a target integer T, is there a subset of numbers that adds up to exactly T

- Step 1: show that SUBSET-SUM \in NP
- Certificate: a set of numbers
- Poly-time verifier: checks if the set is a subset of the input integers, and if so, that the set sums exactly to T
- Step 2: prove that SUBSET-SUM is NP hard by reducing a known NP-complete problem to it
- We'll reduce from vertex cover

Map the Problems

Vertex Cover

What is a possible solution?
Subset Sum
A selection of vertices to be in vertex cover C

$$
\text { A subset of integers } S \subseteq\left\{a_{1}, \ldots, a_{n}\right\}
$$

What is the requirement?

C must contain at most k vertices

$$
\text { numbers in } S \text { must sum to } T
$$

What are the restrictions?

If $(u, v) \in E$, then either u or v must be in S
S must be a subset of input integers

Vertex Cover to Subset Sum

- Theorem. VERTEX-COVER \leq_{p} SUBSET-SUM
- Proof. Given a graph G with n vertices and m edges and a number k, we construct a set of numbers a_{1}, \ldots, a_{t} and a target sum T such that G has a vertex cover of size k iff there is a subset of numbers that sum to T

Algorithm for Vertex Cover

Vertex Cover to Subset Sum

- Theorem. VERTEX-COVER \leq_{p} SUBSET-SUM
- Proof. Given a graph G with n vertices and m edges and a number k, we construct a set of numbers a_{1}, \ldots, a_{t} and a target sum T such that G has a vertex cover of size k iff there is a subset of numbers that sum to T
- In our reduction, we'll use two types of gadgets
- when reducing a problem X to a problem Y, a gadget is a small (partial) instance of problem Y that is used to "simulate" a feature of problem X
- Gadget 1: integers that represent vertices of G, and
- Gadget 2: integers that represent edges of G

Vertex Cover to Subset Sum

- Theorem. VERTEX-COVER \leq_{p} SUBSET-SUM
- Reduction (idea)
- We'll create a set of $n+m$ integers, where we have one integer for every vertex, and one integer for every edge $\left(A=\left\{a_{1}, \ldots, a_{n}, a_{n+1}, \ldots, a_{n+m}\right\}\right)$
- Goals when creating our vertex/edge gadgets:
- Must force the selection of k vertex integers: need to ensure that no other set of input integers can sum to T
- Must force an edge covering: for every edge (u, v), we need to ensure that our subset can't sum to T unless either u or v is picked

Vertex Cover to Subset Sum

- Theorem. VERTEX-COVER \leq_{p} SUBSET-SUM
- Reduction.

First, arbitrarily number the edges from 0 to $m-1$. Then, create set of $n+m$ integers and a target value T as follows:

- Vertex integer $a_{v}: m^{\text {th }}$ (most significant) bit is 1 and for $i<m$, the $i^{\text {th }}$ bit is 1 if $i^{\text {th }}$ edge is incident to vertex v
- Edge integer $b_{u v}: m^{\text {th }}$ digit is 0 and for $i<m$, the $i^{\text {th }}$ bit is 1 if this integer represents an edge $i=(u, v)$
- Target value $T=k \cdot 4^{m}+\sum_{i=0}^{m-1} 2 \cdot 4^{i}$

Vertex Cover to Subset Sum

- Example: consider the graph $G=(V, E)$ where $V=\{u, v, w, x\}$ and $E=\{(u, v),(u, w),(v, w),(v, x),(w, x)\}$

	$5^{\text {th }}$	$4^{\text {th }}:(\mathbf{w x})$	$3^{\text {rd }}:(\mathrm{vx})$	$2^{\text {nd }}:(\mathrm{vw})$	$1^{\mathrm{st}}:(\mathrm{uw})$	$0^{\text {th }}:(\mathrm{uv})$
a_{u}	1	0	0	0	1	1
a_{v}	1	0	1	1	0	1
a_{w}	1	1	0	1	1	0
a_{x}	1	1	1	0	0	0
$b_{u v}$	0	0	0	0	0	1
$b_{u w}$	0	0	0	0	1	0
$b_{v w}$	0	0	0	1	0	0
$b_{v x}$	0	0	1	0	0	0
$b_{w x}$	0	1	0	0	0	0

$$
\begin{aligned}
a_{u} & :=111000_{4}=1344 \\
a_{v} & :=110110_{4}=1300 \\
a_{w} & :=101101_{4}=1105 \\
a_{x} & :=100011_{4}=1029 \\
b_{u v} & :=010000_{4}=256 \\
b_{u w} & :=001000_{4}=64 \\
b_{v w} & :=000100_{4}=16
\end{aligned}
$$

- If $k=2$ then $T=222222_{4}=2730$

Correctness

- Claim. G has a vertex cover of size k if and only there is a subset X of corresponding integers that sums to value T
- (\Rightarrow) Let C be a vertex cover of size k in G, define X as $X:=\left\{a_{v} \mid v \in C\right\} \cup\left\{b_{i} \mid\right.$ edge i has exactly one endpoint in $\left.C\right\}$

	$5^{\text {th }}$	$4^{\text {th }}:(\mathrm{wx})$	$3^{\text {rd }}:(\mathrm{vx})$	$2^{\mathrm{nd}}:(\mathrm{vw})$	$1^{\mathrm{st}}:$ (uw)	$0^{\text {th: }}:(\mathrm{uv})$
a_{u}	1	0	0	0	1	1
a_{v}	1	0	1	1	0	1
a_{w}	1	1	0	1	1	0
a_{x}	1	1	1	0	0	0
$b_{u v}$	0	0	0	0	0	1
$b_{u w}$	0	0	0	0	1	0
$b_{v w}$	0	0	0	1	0	0
$b_{v x}$	0	0	1	0	0	0
$b_{w x}$	0	1	0	0	0	0

$$
\begin{gathered}
C=\{v, w\} \\
T=222222_{4}=2730 \\
T=k \cdot 4^{m}+\sum_{i=0}^{m-1} 2 \cdot 4^{i}
\end{gathered}
$$

Correctness

- Claim. G has a vertex cover of size k if and only there is a subset X of corresponding integers that sums to value T
- (\Rightarrow) Let C be a vertex cover of size k in G, define X as $X:=\left\{a_{v} \mid v \in C\right\} \cup\left\{b_{i} \mid\right.$ edge i has exactly one endpoint in $\left.C\right\}$

	$5^{\text {th }}$	$4^{\text {th }}$: (wx)	$3{ }^{\text {rd }}$: (vx)	$2^{\text {nd }}$: (vw)	$1^{\text {st }}$: (uw)	$\mathrm{O}^{\text {th }}$ ((uv)
a_{v}	1	0	1	1	0	1
a_{w}	1	1	0	1	1	0
$b_{u v}$	0	0	0	0	0	1
$b_{u w}$	0	0	0	0	1	0
$b_{v x}$	0	0	1	0	0	0
$b_{w x}$	0	1	0	0	0	0

$$
C=\{v, w\}
$$

$$
\begin{gathered}
T=222222_{4}=2730 \\
T=k \cdot 4^{m}+\sum_{i=0}^{m-1} 2 \cdot 4^{i}
\end{gathered}
$$

Correctness

- Claim. G has a vertex cover of size k if and only there is a subset X of corresponding integers that sums to value T
- (\Rightarrow) Let C be a vertex cover of size k in G, define X as $X:=\left\{a_{v} \mid v \in C\right\} \cup\left\{b_{i} \mid\right.$ edge i has exactly one endpoint in $\left.C\right\}$
- Sum of the most significant bits of X is k
- Only vertex gadgets have MSB set, select k vertex integers
- All other bits must sum to 2 , why?
- Consider column for edge (u, v) :
- Either both endpoints are in C, then we get two 1 's from a_{v} and a_{u} and none from $b_{u v}$
- Exactly one endpoint is in C : get 1 bit from $b_{u v}$ and 1 bit from a_{u} or a_{v}
- Thus the elements of X sum to exactly T

Vertex covertosubus sumen

- Claim. G has a vertex cover of size k if and only there is a subset X of corresponding integers that sums to value T
- (\Leftarrow) Let X be the subset of numbers that sum to T
- That is, there is $V^{\prime} \subseteq V, E^{\prime} \subseteq E$ s.t.

$$
X:=\sum_{v \in V^{\prime}} a_{v}+\sum_{i \in E^{\prime}} b_{i}=T=k \cdot 4^{m}+\sum_{i=0}^{m-1} 2 \cdot 4^{i}
$$

- These numbers are base 4 and there are no carries
- Each b_{i} only contributes 1 to the $i^{\text {th }}$ digit, which is 2 in our target T
- Thus, for each edge i, at least one of its endpoints must be in V^{\prime}
- V^{\prime} is a vertex cover
- Size of V^{\prime} is k : only vertex-numbers have a 1 in the $m^{\text {th }}$ position

Subset Sum: Final Thoughts

- Polynomial time reduction?
- $O(n m)$ since we check vertex/edge incidence for each vertex/edge when creating $n+m$ numbers
- Does a $O(n T)$ subset-sum algorithm mean vertex cover can be solved in polynomial time?
- No! $T \approx 4^{m}$
- NP hard problems that have pseudo-polynomial algorithms are called weakly NP hard

Steps to Prove X is NP Complete

- Step 1. Show X is in NP
- Step 2. Pick a known NP hard problem Y from class
- Step 3. Show that $Y \leq_{p} X$
- Show both sides of reduction are correct: if and only if directions
- State that reduction runs in polynomial time in input size of problem Y

Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:// www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)

