
Wrapping Up Our
NP Hardness Reductions



Grouping Problems
• The textbook does a good job grouping problems 

• Packing problems (Independent set) 

• Covering problems (Vertex cover, set cover) 

• 8.5: Sequencing Problems (Hamiltonian cycle/path, 
traveling salesmen) 

• 8.6 Partitioning Problems (3-dimensional matching) 

• 8.7 Graph Coloring (3-coloring) 

• 8.8 Numerical Problems (Subset sum, knapsack) 

• If your problem seems to fit into one of these categories, it is a 
reasonable strategy to pick a problem from the same category 
as a reduction candidate 



Today’s Plan
• We are finishing our in-class exploration of reductions 

• We’ll show that subset sum is NP-complete 

• *Didn’t we say that subset sum had an O(nW) dynamic 
programming algorithm, just like knapsack?* 

• Yes, but O(nW) is not polynomial with respect to the input 
size (representation); W is a value! 

• Steps to show subset sum is NP-complete? 

• Show subset sum is in NP 

• Reduce a known NP-complete problem to it (in poly-time) 

• Prove yes instances map to yes instances (both ways)  



SUBSET-SUM is NP Complete: 
Vertex-Cover    SUBSET-SUM≤p



Subset Sum Problem
• SUBSET-SUM.  

Given  positive integers  and a target integer , is 
there a subset of numbers that adds up to exactly  

• Step 1: show that SUBSET-SUM  

• Certificate: a set of numbers 

• Poly-time verifier: checks if the set is a subset of the input 
integers, and if so, that the set sums exactly to  

• Step 2: prove that SUBSET-SUM is NP hard by reducing a known 
NP-complete problem to it 

• We’ll reduce from vertex cover

n a1, …, an T
T
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Map the Problems

What is a possible solution?

A selection of vertices to be in vertex  
cover C A subset of integers S ⊆ {a1, …, an}

What is the requirement?

Vertex Cover Subset Sum

 must contain at most  verticesC k numbers in  must sum to S T

What are the restrictions?

If , then either  or   
must be in 

(u, v) ∈ E u v
S  must be a subset of input integersS



Vertex Cover to Subset Sum
• Theorem.  VERTEX-COVER  SUBSET-SUM 

• Proof.  Given a graph  with  vertices and  edges and a 
number , we construct a set of numbers  and a target 
sum  such that  has a vertex cover of size  iff there is a 
subset of numbers that sum to 
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Vertex Cover to Subset Sum
• Theorem.  VERTEX-COVER  SUBSET-SUM 

• Proof.  Given a graph  with  vertices and  edges and a 
number , we construct a set of numbers  and a target 
sum  such that  has a vertex cover of size  iff there is a 
subset of numbers that sum to  

• In our reduction, we’ll use two types of gadgets 

• when reducing a problem X to a problem Y, a gadget 
is a small (partial) instance of problem Y that is used to 
"simulate" a feature of problem X 

• Gadget 1: integers that represent vertices of , and 

• Gadget 2: integers that represent edges of 

≤p
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Vertex Cover to Subset Sum
• Theorem.  VERTEX-COVER  SUBSET-SUM 

• Reduction (idea) 

• We'll create a set of  integers, where we have one 
integer for every vertex, and one integer for every edge 
( ) 

• Goals when creating our vertex/edge gadgets: 

• Must force the selection of  vertex integers: need to 
ensure that no other set of input integers can sum to   

• Must force an edge covering:  for every edge , 
we need to ensure that our subset can't sum to  
unless either  or  is picked

≤p

n + m

A = {a1, …, an, an+1, …, an+m}

k
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Vertex Cover to Subset Sum
• Theorem.  VERTEX-COVER  SUBSET-SUM 

• Reduction. 
First, arbitrarily number the edges from  to . Then, create 
set of  integers and a target value  as follows: 

• Vertex integer  : th (most significant) bit is  and for , 
the th bit is 1 if th edge is incident to vertex  

• Edge integer  : th digit is  and for , the th bit is 1 if 
this integer represents an edge   

•
Target value   

≤p

0 m − 1
n + m T

av m 1 i < m
i i v

buv m 0 i < m i
i = (u, v)

T = k ⋅ 4m +
m−1

∑
i=0

2 ⋅ 4i

Note: Each integer is a -bit number in base four*m + 1



Vertex Cover to Subset Sum
• Example: consider the graph   where  

and  
 
 
 
 
 
 
 
 
 

• If  then 

G = (V, E) V = {u, v, w, x}
E = {(u, v), (u, w), (v, w), (v, x), (w, x)}

k = 2 T = 2222224 = 2730

u v

w x

5th 4th  : (wx) 3rd  : (vx) 2nd : (vw) 1st : (uw) 0th: (uv)

1 0 0 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

1 1 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

au

av

aw

ax

buv

bvw

bvx

bwx

buw

4

321

0



Correctness
• Claim.   has a vertex cover of size  if and only there is a subset  of 

corresponding integers that sums to value  

•  Let  be a vertex cover of size  in , define  as  
 

G k X
T

( ⇒ ) C k G X
X := {av | v ∈ C} ∪ {bi | edge i has exactly one endpoint in C}

T = k ⋅ 4m +
m−1

∑
i=0

2 ⋅ 4i

C = {v, w}

T = 2222224 = 2730

u v

w x

5th 4th  : (wx) 3rd  : (vx) 2nd : (vw) 1st : (uw) 0th: (uv)
1 0 0 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0

au

av

aw

ax

buv

bvw

bvx

bwx

buw



Correctness
• Claim.   has a vertex cover of size  if and only there is a subset  of 

corresponding integers that sums to value  

•  Let  be a vertex cover of size  in , define  as  
 

G k X
T

( ⇒ ) C k G X
X := {av | v ∈ C} ∪ {bi | edge i has exactly one endpoint in C}

T = k ⋅ 4m +
m−1

∑
i=0

2 ⋅ 4i

C = {v, w}

T = 2222224 = 2730

u v

w x

5th 4th  : (wx) 3rd  : (vx) 2nd : (vw) 1st : (uw) 0th: (uv)
1 0 0 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0

au

av

aw

ax

buv

bvw

bvx

bwx

buw



Correctness
• Claim.   has a vertex cover of size  if and only there is a subset  of 

corresponding integers that sums to value  

•  Let  be a vertex cover of size  in , define  as  
  

• Sum of the most significant bits of  is   

• Only vertex gadgets have MSB set, select  vertex integers 

• All other bits must sum to , why? 

• Consider column for edge : 

• Either both endpoints are in , then we get two 's from  and  and 
none from  

• Exactly one endpoint is in :  get  bit from  and  bit from  or  

• Thus the elements of  sum to exactly 

G k X
T

( ⇒ ) C k G X
X := {av | v ∈ C} ∪ {bi | edge i has exactly one endpoint in C}

X k

k

2

(u, v)

C 1 av au
buv

C 1 buv 1 au av

X T



Vertex Cover to Subset Sum
• Claim.   has a vertex cover of size  if and only there is a subset  

of corresponding integers that sums to value  

•  Let  be the subset of numbers that sum to   

• That is, there is  s.t.

  

• These numbers are base 4 and there are no carries  

• Each  only contributes  to the th digit, which is 2 in our target  

• Thus, for each edge , at least one of its endpoints must be in  

•  is a vertex cover 

• Size of  is : only vertex-numbers have a  in the th position

G k X
T

( ⇐ ) X T

V′ ⊆ V, E′ ⊆ E

X := ∑
v∈V′ 

av + ∑
i∈E′ 

bi = T = k ⋅ 4m +
m−1

∑
i=0

2 ⋅ 4i

bi 1 i T

i V′ 

V′ 

V′ k 1 m



Subset Sum:  Final Thoughts
• Polynomial time reduction? 

•  since we check vertex/edge incidence for each 
vertex/edge when creating  numbers 

• Does a  subset-sum algorithm mean vertex cover can be 
solved in polynomial time? 

• No!   

• NP hard problems that have pseudo-polynomial algorithms are 
called weakly NP hard

O(nm)
n + m

O(nT )

T ≈ 4m



Steps to Prove  is NP CompleteX
• Step 1.  Show  is in NP 

• Step 2.  Pick a known NP hard problem  from class 

• Step 3.  Show that  

• Show both sides of reduction are correct:  if and 
only if directions 

• State that reduction runs in polynomial time in input 
size of problem 

X

Y

Y ≤p X

Y
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