Introduction to Probability

Why Randomness

- Randomization. We allow a fair coin flip in unit time.
- Why randomize?
 - Deterministic algorithms offer little flexibility
 - Randomness often enables to surprisingly simple & fast algorithms
- Very important in computer science:
 - Symmetry-breaking protocols, memory management, learning algorithms, contention resolution, hashing, load balancing, cryptographic, AI, game theory
- Gives insight in "real world" issues
 - Polling, risk assessment, scientific testing, gambling, etc.

Probability Review

- Before we design/analyze randomized algorithms, we need a foundation in probability
- Plan: we'll start with some things you've likely seen before
 - Will be a "review" of probability from Discrete Math
 - Since each Math 200 differs, ensure everyone has same background
- Will move on to randomized algorithms and data structures:
 - Hashing
 - Skip lists
 - Fingerprinting
 - etc.

"Deathbed" Formulas

- You should remember these even on your deathbed [MAB]
- Extremely useful in probability

•
$$\left(1+\frac{1}{n}\right)^n \approx e$$
 $\left(1-\frac{1}{n}\right)^n \approx \frac{1}{e}$ for large enough n (gets close quite quickly)

• More precisely:
$$\left(1+\frac{1}{n}\right)^n \le e$$
 $\left(1-\frac{1}{n}\right)^n \le \frac{1}{e}$

$$\left(\frac{x}{y}\right)^y \le \left(\frac{x}{y}\right) \le \left(\frac{ex}{y}\right)^y$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{x!}{y!(x-y)!}$$
 is the number of

y-sized subsets of x items

Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf)
 - Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf)
 - Hamiltonian cycle reduction images from Michael Sipser's Theory of Computation Book