NP Hardness Reductions

Reminders/Check-in

- HW Clarifications
- We ask you to give a polynomial-time algorithm, so want to justify that your algorithm is polynomial time
- Rudimentary analysis is OK! But remember that cost of algorithm is cost of reduction + cost of solving/interpreting flow
- Ford Fulkerson: $\mathrm{O}(\mathrm{nmC})$ or $\mathrm{O}(\mathrm{mC})$?
- Textbook uses different definition of C than we did in our discussion...
- Probability review
- Readings accessible from on-campus only (or using proxy)

Big Picture

- "Does $\mathrm{P}=\mathrm{NP}$?" is an important question in CS
- Knowing the answer would be nice, but the debate around the question informs our thinking about "hard" problems
- So why are we covering it? What should your takeaways be?
- Be able to give an operation definition of and describe the P and the NP-complete problem classes
- Be able to complete and prove a problem reduction beyond the examples we cover together (i.e., apply the reduction framework)
- Be familiar with a handful of the "classic" NP-hard problems
- If you hear "Vertex Cover" at a party...

VERTEX-COVER \leq_{p} SET-COVER

Vertex-Cover

Given a graph $G=(V, E)$, a vertex cover is a subset of vertices $T \subseteq V$ such that for every edge $e=(u, v) \in E$, either $u \in T$ or $v \in T$.

- VERTEX-COVER decision Problem. Given a graph $G=(V, E)$ and an integer k, does G have a vertex cover of size at most k ?

If edges are hallways and vertices are security guards,
can we put eyes on every hallway with just k guards?

Set Cover

Set-Cover. Given a set U of elements, a collection \mathcal{S} of subsets of U and an integer k, is there some collection of at most k subsets S_{1}, \ldots, S_{k} whose union covers U, that is, $U \subseteq \cup_{i=1}^{k} S_{i}$

$$
\begin{aligned}
& U=\{1,2,3,4,5,6,7\} \\
& S_{a}=\{3,7\} \quad S_{b}=\{2,4\} \\
& S_{c}=\{3,4,5,6\} \quad S_{d}=\{5\} \\
& S_{e}=\{1\} \\
& k=2
\end{aligned} \quad S_{f}=\{1,2,6,7\},
$$

Set Cover

Set-Cover. Given a set U of elements, a collection \mathcal{S} of subsets of U and an integer k, is there some collection of at most k subsets S_{1}, \ldots, S_{k} whose union covers U, that is, $U \subseteq \cup_{i=1}^{k} S_{i}$

$$
\begin{array}{lc}
U=\{1,2,3,4,5,6,7\} \\
S_{a}=\{3,7\} & S_{b}=\{2,4\} \\
S_{c}=\{3,4,5,6\} & S_{d}=\{5\} \\
S_{e}=\{1\} & S_{f}=\{1,2,6,7\} \\
k=2 &
\end{array}
$$

Vertex Cover \leq_{p} Set Cover

- Theorem. VERTEX-COVER \leq_{p} SET-COVER
- Proof. Given instance $\langle G, k\rangle$ of vertex cover, construct an instance $\left\langle U, \mathcal{S}, k^{\prime}\right\rangle$ of set cover problem such that
- G has a vertex cover of size at most k if and only if $\left\langle U, \mathcal{S}, k^{\prime}\right\rangle$ has a set cover of size at most k.

Vertex Cover \leq_{p} Set Cover

- Theorem. VERTEX-COVER \leq_{p} SET-COVER
- Proof. Given instance $\langle G, k\rangle$ of vertex cover, construct an instance $\langle U, \mathcal{S}, k\rangle$ of set cover problem that has a set cover of size k iff G has a vertex cover of size k.
- Reduction. $U=E$. \mathcal{S} : for each node $v \in V$, let $S_{v}=\{e \in E \mid e$ incident to $v\}$

vertex cover instance
($k=2$)

$$
\begin{array}{ll}
U=\left\{e_{1}, e_{2}, \ldots, e_{7}\right\} \\
S_{a}=\left\{e_{3}, e_{7}\right\} & S_{b}=\left\{e_{2}, e_{4}\right\} \\
S_{c}=\left\{e_{3}, e_{4}, e_{5}, e_{6}\right\} & S_{d}=\left\{e_{5}\right\} \\
S_{e}=\left\{e_{1}\right\} & S_{f}=\left\{e_{1}, e_{2}, e_{6}, e_{7}\right\}
\end{array}
$$

$$
(k=2)
$$

correctnese

- Claim. (\Rightarrow) If G has a vertex cover of size at most k, then U can be covered using at most k subsets.
- Proof. Let $X \subseteq V$ be a vertex cover in G
- Then, $Y=\left\{S_{v} \mid v \in X\right\}$ is a set cover of U of the same size

vertex cover instance
($k=2$)

$$
\begin{array}{ll}
U=\left\{e_{1}, e_{2}, \ldots, e_{7}\right\} & \\
S_{a}=\left\{e_{3}, e_{7}\right\} & S_{b}=\left\{e_{2}, e_{4}\right\} \\
S_{c}=\left\{e_{3}, e_{4}, e_{5}, e_{6}\right\} & S_{d}=\left\{e_{5}\right\} \\
S_{e}=\left\{e_{1}\right\} & S_{f}=\left\{e_{1}, e_{2}, e_{6}, e_{7}\right\}
\end{array}
$$

set cover instance
(k = 2)

correctnese

- Claim. (\Leftarrow) If U can be covered using at most k subsets then G has a vertex cover of size at most k.
- Proof. Let $Y \subseteq \mathcal{S}$ be a set cover of size k
- Then, $X=\left\{v \mid S_{v} \in Y\right\}$ is a vertex cover of size k

vertex cover instance
($k=2$)

$$
\begin{array}{ll}
U=\left\{e_{1}, e_{2}, \ldots, e_{7}\right\} & \\
S_{a}=\left\{e_{3}, e_{7}\right\} & S_{b}=\left\{e_{2}, e_{4}\right\} \\
S_{c}=\left\{e_{3}, e_{4}, e_{5}, e_{6}\right\} & S_{d}=\left\{e_{5}\right\} \\
S_{e}=\left\{e_{1}\right\} & S_{f}=\left\{e_{1}, e_{2}, e_{6}, e_{7}\right\}
\end{array}
$$

set cover instance
($k=2$)

Class Exercise

IND-SET \leq_{p} Clique

Clique

- A clique in an undirected graph is a subset of nodes such that every two nodes are connected by an edge. A k-clique is a clique that contains k nodes.
- CLIQUE. Given a graph G and a number k, does G contain a k -clique?

Clique

- A clique in an undirected graph is a subset of nodes such that every two nodes are connected by an edge. A k-clique is a clique that contains k nodes.
- CLIQUE. Given a graph G and a number k, does G contain a k -clique?
- CLIQUE \in NP
- Certificate: a subset of vertices
- Poly-time verifier: check is each pair of vertices have an edge between them and if size of subset is k

IND-SET to CLIQUE

- Theorem. IND-SET \leq_{p} CLIQUE.
- In class exercise. Reduce IND-SET to Clique. Given instance $\langle G, k\rangle$ of independent set, construct an instance $\left\langle G^{\prime}, k^{\prime}\right\rangle$ of clique such that
- G has independent set of size k iff G^{\prime} has clique of size k^{\prime}.

Recall:IND-SET

Given a graph $G=(V, E)$, an independent set is a subset of vertices $S \subseteq V$ such that no two of them are adjacent, that is, for any $x, y \in S$, $(x, y) \notin E$

- IND-SET decision Problem. Given a graph $G=(V, E)$ and an integer k, does G have an independent set of size at least k ?

IND-SET to CLIQUE

- Theorem. IND-SET \leq_{p} CLIQUE.
- In class exercise. Reduce IND-SET to Clique. Given instance $\langle G, k\rangle$ of independent set, construct an instance $\left\langle G^{\prime}, k^{\prime}\right\rangle$ of clique such that
- G has independent set of size k iff G^{\prime} has clique of size k^{\prime}.

IND-SET to CLIQUE

- Theorem. IND-SET \leq_{p} CLIQUE.
- Proof. Given instance $\langle G, k\rangle$ of independent set, we construct an instance $\left\langle G^{\prime}, k^{\prime}\right\rangle$ of clique such that G has independent set of size k iff G^{\prime} has clique of size k^{\prime}
- Reduction.
- Let $G^{\prime}=(V, \bar{E})$, where $e=(u, v) \in \bar{E}$ iff $e \notin E$ and $k^{\prime}=k$
- $(\Rightarrow) G$ has an independent set S of size k, then S is a clique in G^{\prime}
- $(\Leftarrow) G^{\prime}$ has a clique Q of size k, then Q is an independent set in G

Reductions: General Pattern

- Describe a polynomial-time algorithm to transform an arbitrary instance x of Problem X into a special instance y of Problem Y
- Prove that:
- If x is a "yes" instance of X, then y is a "yes" instance of Y
- If y is a "yes" instance of Y, then x is a "yes" instance of X

Reductions: General Pattern

- Describe a polynomial-time algorithm to transform an arbitrary instance x of Problem X into a special instance y of Problem Y
- Notice that correctness of reductions are not symmetric:
- the "if" proof needs to handle arbitrary instances of X
- the "only if" needs to handle the special instance of Y

IND-SET is NP Complete: 3 SAT \leq_{p} IND-SET

Problem Definition: 3-SAT

- Literal. A Boolean variable or its negation x_{i} or $\overline{x_{i}}$
- Clause. A disjunction of literals $\quad C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}$
- Conjunctive normal form (CNF). A boolean formula ϕ that is a conjunction of clauses $\Phi=C_{1} \wedge C_{2} \wedge C_{3}$
- SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?
- 3SAT. A SAT formula where each clause contains exactly 3 literals (corresponding to different variables)
- $\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)$
- SAT, 3SAT are both NP complete
- We will use 3SAT to prove other problems are NP hard

IND-SET: NP Complete

- To show Independent set is NP complete
- Show it is in NP (we've already done this)
- Reduce a known NP complete problem to it
- We will use 3-SAT
- Looking ahead: once we have shown $3-$ SAT \leq_{p} IND-SET
- Since IND-SET \leq_{p} Vertex Cover
- And Vertex Cover \leq_{p} Set Cover
- We can conclude they are also NP hard
- As they are both in NP, they are also NP complete!

IND-SET: NP hard

- Theorem. 3-SAT \leq_{p} IND-SET
- Given an instance Φ of 3-SAT, we construct an instance $\langle G, k\rangle$ of IND-SET s.t. G has an independent set of size k iff ϕ is satisfiable.

Map the Problems

3SAT
What is a possible solution?
Ind-Set

An assignment of T / F to variables
A selection of vertices to be an IS S

What is the requirement?

Each clause must contain at least one literal that is True

$$
S \text { must contain at least } k \text { vertices }
$$

x can be true iff \bar{x} is assigned false

If $(u, v) \in E$, then both u and v cannot be in S

$3 S A T \leq_{p}$ IND-SET

- Reduction. Let k be the number of clauses in Φ.
- G has $3 k$ vertices, one for each literal in Φ
- (Clause gadget) For each clause, connect the three literals in a triangle
- (Variable gadget) Each variable is connected to its negation

$3 S A T \leq_{p}$ IND-SET

- Observations.
- Any independent set in G can contain at most 1 vertex from each clause triangle
- Only one of x_{i} or $\overline{x_{i}}$ can be in an independent set (consistency)

$3 S A T \leq_{p}$ IND-SET

- Claim. Φ is satisfiable iff G has an independent set of size k
- (\Rightarrow) Suppose Φ is satisfiable, consider a satisfying assignment
- There is at least one true literal in each clause
- Select one true literal from each clause/triangle
- This is an independent set of size k

$3 S A T \leq{ }_{p}$ IND-SET

- Claim. Φ is satisfiable iff G has an independent set of size k
- (\Leftarrow) Let S be in an independent set in G of size k
- S must contain exactly one node in each triangle
- Set the corresponding literals to true
- Set remaining literals consistently
- All clauses are satisfied $-\Phi$ is satisfiable $\boldsymbol{\square}$

$3 S A T \leq_{p}$ IND-SET

- Our reduction is clearly polynomial time in the input
- G has $3 k$ nodes, where k is \#clauses, and n edges (one for each variable in G)
- Since independent set is in NP (shown previously)
- Independent set is NP complete

Reduction Strategies

- Equivalence
- VERTEX-COVER \equiv_{p} IND-SET
- Special case to general case
- VERTEX-COVER \leq_{p} SET-COVER
- Encoding with gadgets
- 3-SAT \leq_{p} IND-SET
- Transitivity
- 3-SAT \leq_{p} IND-SET \leq_{p} VERTEX-COVER \leq_{p} SET-COVER
- Thus, IND-SET, VERTEX-COVER and SET-COVER are NP hard
- Since they are all in NP, also NP - complete

List of NPC Problems So Far

- 3-SAT
- INDEPENDENT SET
- VERTEX COVER
- SET COVER
- CLIQUE
- More to come:
- Subset Sum
- Knapsack
- 3-COLOR
- Hamiltonian cycle / path
- TSP

Steps to Prove X is NP Complete

- Step 1. Show X is in NP
- Step 2. Pick a known NP hard problem Y from class
- Step 3. Show that $Y \leq_{p} X$
- Show both sides of reduction are correct: if and only if directions
- State that reduction runs in polynomial time in input size of problem Y

Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:// www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)

