
NP Hardness Reductions

Reminders/Check-in
• HW Clarifications

• We ask you to give a polynomial-time algorithm, so want to justify
that your algorithm is polynomial time

• Rudimentary analysis is OK! But remember that cost of
algorithm is cost of reduction + cost of solving/interpreting flow

• Ford Fulkerson: O(nmC) or O(mC)?

• Textbook uses different definition of C than we did in our
discussion…

• Probability review

• Readings accessible from on-campus only (or using proxy)

Big Picture
• “Does P = NP?” is an important question in CS

• Knowing the answer would be nice, but the debate around the
question informs our thinking about “hard” problems

• So why are we covering it? What should your takeaways be?

• Be able to give an operation definition of and describe the P and
the NP-complete problem classes

• Be able to complete and prove a problem reduction beyond the
examples we cover together (i.e., apply the reduction framework)

• Be familiar with a handful of the “classic” NP-hard problems

• If you hear “Vertex Cover” at a party…

VERTEX-COVER SET-COVER≤p

Vertex-Cover

Given a graph , a vertex cover is a subset of vertices
such that for every edge , either or .
• VERTEX-COVER decision Problem. Given a graph and an

integer , does have a vertex cover of size at most ?

G = (V, E) T ⊆ V
e = (u, v) ∈ E u ∈ T v ∈ T

G = (V, E)
k G k

vertex cover of size 4

independent set of size 6

If edges are hallways and
vertices are security guards,
can we put eyes on every
hallway with just k guards?

Set Cover
Set-Cover. Given a set of elements, a collection of subsets of and
an integer , is there some collection of at most subsets
whose union covers , that is,

U 𝒮 U
k k S1, …, Sk

U U ⊆ ∪k
i=1 Si

Set Cover
Set-Cover. Given a set of elements, a collection of subsets of and
an integer , is there some collection of at most subsets
whose union covers , that is,

U 𝒮 U
k k S1, …, Sk

U U ⊆ ∪k
i=1 Si

Vertex Cover Set Cover≤p

• Theorem. VERTEX-COVER SET-COVER

• Proof. Given instance of vertex cover, construct an instance
 of set cover problem such that

• has a vertex cover of size at most if and only if has a
set cover of size at most .

≤p

⟨G, k⟩
⟨U, 𝒮, k′ ⟩

G k ⟨U, 𝒮, k′ ⟩
k

Instance of
VertexCover ⟨G, k⟩

Instance of
SetCover ⟨G′ , k′ ⟩

Algorithm for SetCover

Yes

No

Yes

No
Poly time

Algorithm for VertexCover

• Theorem. VERTEX-COVER SET-COVER

• Proof. Given instance of vertex cover, construct an instance
 of set cover problem that has a set cover of size iff has

a vertex cover of size .

• Reduction. . : for each node , let

≤p

⟨G, k⟩
⟨U, 𝒮, k⟩ k G

k

U = E 𝒮 v ∈ V
Sv = {e ∈ E | e incident to v}

vertex cover instance
(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = { } Sb = { }

Sc = { } Sd = { }

Se = { } Sf = { }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

Vertex Cover Set Cover≤p

Correctness
• Claim. If has a vertex cover of size at most , then can be

covered using at most subsets.

• Proof. Let be a vertex cover in

• Then, is a set cover of of the same size

(⇒) G k U
k

X ⊆ V G

Y = {Sv | v ∈ X} U

vertex cover instance
(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = { } Sb = { }

Sc = { } Sd = { }

Se = { } Sf = { }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

cff

Correctness
• Claim. If can be covered using at most subsets then

has a vertex cover of size at most .

• Proof. Let be a set cover of size

• Then, is a vertex cover of size

(⇐) U k G
k

Y ⊆ 𝒮 k

X = {v | Sv ∈ Y} k

vertex cover instance
(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = { } Sb = { }

Sc = { } Sd = { }

Se = { } Sf = { }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

cff

Class Exercise
IND-SET Clique≤p

Clique

• A clique in an undirected graph is a subset of nodes such that every
two nodes are connected by an edge. A -clique is a clique that
contains nodes.

• CLIQUE. Given a graph and a number , does contain a
-clique?

k
k

G k G k

Clique

• A clique in an undirected graph is a subset of nodes such that every
two nodes are connected by an edge. A -clique is a clique that
contains nodes.

• CLIQUE. Given a graph and a number , does contain a
-clique?

• CLIQUE

• Certificate: a subset of vertices

• Poly-time verifier: check is each pair of vertices have an edge
between them and if size of subset is

k
k

G k G k

∈ 𝖭𝖯

k

IND-SET to CLIQUE

• Theorem. IND-SET CLIQUE.

• In class exercise. Reduce IND-SET to Clique. Given instance of
independent set, construct an instance of clique such that

• has independent set of size iff has clique of size .

≤p

⟨G, k⟩
⟨G′ , k′ ⟩

G k G′ k′

Instance of
IND-SET ⟨G, k⟩

Instance of
CLIQUE ⟨G′ , k′ ⟩

Algorithm for CLIQUE

Yes

No

Yes

No
Poly time

Algorithm for IND-SET

Recall: IND-SET

Given a graph , an independent set is a subset of vertices
 such that no two of them are adjacent, that is, for any ,

• IND-SET decision Problem. Given a graph and an integer

, does have an independent set of size at least ?

G = (V, E)
S ⊆ V x, y ∈ S
(x, y) ∉ E

G = (V, E)
k G k

independent set of size 6

IND-SET to CLIQUE

• Theorem. IND-SET CLIQUE.

• In class exercise. Reduce IND-SET to Clique. Given instance of
independent set, construct an instance of clique such that

• has independent set of size iff has clique of size .

≤p

⟨G, k⟩
⟨G′ , k′ ⟩

G k G′ k′

Instance of
IND-SET ⟨G, k⟩

Instance of
CLIQUE ⟨G′ , k′ ⟩

Algorithm for CLIQUE

Yes

No

Yes

No
Poly time

Algorithm for IND-SET

• Theorem. IND-SET CLIQUE.

• Proof. Given instance of independent set, we construct
an instance of clique such that has independent set
of size iff has clique of size

• Reduction.

• Let , where iff and

• has an independent set of size , then is a
clique in

• has a clique of size , then is an independent
set in

≤p

⟨G, k⟩
⟨G′ , k′ ⟩ G

k G′ k′

G′ = (V, E) e = (u, v) ∈ E e ∉ E k′ = k

(⇒) G S k S
G′

(⇐) G′ Q k Q
G

IND-SET to CLIQUE

Reductions: General Pattern
• Describe a polynomial-time algorithm to transform an arbitrary

instance of Problem into a special instance of Problem

• Prove that:

• If is a “yes” instance of , then is a “yes” instance of

• If is a “yes” instance of , then is a “yes” instance of

x X y Y

x X y Y

y Y x X

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X

Reductions: General Pattern
• Describe a polynomial-time algorithm to transform an arbitrary

instance of Problem into a special instance of Problem

• Notice that correctness of reductions are not symmetric:

• the “if” proof needs to handle arbitrary instances of

• the “only if” needs to handle the special instance of

x X y Y

X

Y

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X

IND-SET is NP Complete:
3SAT IND-SET≤p

Problem Definition: 3-SAT
• Literal. A Boolean variable or its negation or

• Clause. A disjunction of literals

• Conjunctive normal form (CNF). A boolean formula that is a
conjunction of clauses

• SAT. Given a CNF formula , does it have a satisfying truth assignment?

• 3SAT. A SAT formula where each clause contains exactly 3 literals
(corresponding to different variables)

•

• SAT, 3SAT are both NP complete

• We will use 3SAT to prove other problems are NP hard

xi xi

Cj = x1 ∨ x2 ∨ x3

ϕ
Φ = C1 ∧ C2 ∧ C3

Φ

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

IND-SET: NP Complete
• To show Independent set is NP complete

• Show it is in NP (we’ve already done this)

• Reduce a known NP complete problem to it

• We will use 3-SAT

• Looking ahead: once we have shown 3-SAT IND-SET

• Since IND-SET Vertex Cover

• And Vertex Cover Set Cover

• We can conclude they are also NP hard

• As they are both in NP, they are also NP complete!

≤p

≤p

≤p

IND-SET: NP hard
• Theorem. 3-SAT IND-SET

• Given an instance of 3-SAT, we construct an instance
of IND-SET s.t. has an independent set of size iff is
satisfiable.

≤p

Φ ⟨G, k⟩
G k ϕ

ϕ ⟨G, k⟩

 AlgorithmInd-Set

 has a IS
of size

G
k

 is
satisfiable

ϕ

Poly time
Reduction

Algorithm for 3SAT

 does not
have a IS of

size

G

k

 is
satisfiable

ϕ

 is not
satisfiable
ϕ

Map the Problems

What is a possible solution?

An assignment of T/F to variables A selection of vertices to be an IS S

What is the requirement?

3SAT Ind-Set

Each clause must contain at least
one literal that is True must contain at least verticesS k

What are the restrictions?

 can be true iff is assigned falsex x If , then both and
cannot be in

(u, v) ∈ E u v
S

3SAT IND-SET≤p

• Reduction. Let be the number of clauses in .

• has vertices, one for each literal in

• (Clause gadget) For each clause, connect the three literals in a
triangle

• (Variable gadget) Each variable is connected to its negation

k Φ

G 3k Φ

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

3SAT IND-SET≤p

• Observations.

• Any independent set in can contain at most 1 vertex from
each clause triangle

• Only one of or can be in an independent set
(consistency)

G

xi xi

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

3SAT IND-SET≤p

• Claim. is satisfiable iff has an independent set of size

• Suppose is satisfiable, consider a satisfying
assignment

• There is at least one true literal in each clause

• Select one true literal from each clause/triangle

• This is an independent set of size

Φ G k

(⇒) Φ

k

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

• Claim. is satisfiable iff has an independent set of size

• Let be in an independent set in of size

• must contain exactly one node in each triangle

• Set the corresponding literals to true

• Set remaining literals consistently

• All clauses are satisfied — is satisfiable

Φ G k
(⇐) S G k

S

Φ ∎

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

3SAT IND-SET≤p

• Our reduction is clearly polynomial time in the input

• has 3 nodes, where is #clauses, and edges (one
for each variable in)

• Since independent set is in NP (shown previously)

• Independent set is NP complete

G k k n
G

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

3SAT IND-SET≤p

Reduction Strategies
• Equivalence

• VERTEX-COVER IND-SET

• Special case to general case

• VERTEX-COVER SET-COVER

• Encoding with gadgets

• 3-SAT IND-SET

• Transitivity

• 3-SAT IND-SET VERTEX-COVER SET-COVER

• Thus, IND-SET, VERTEX-COVER and SET-COVER are NP hard

• Since they are all in NP, also NP - complete

≡p

≤p

≤p

≤p ≤p ≤p

List of NPC Problems So Far
• 3-SAT

• INDEPENDENT SET

• VERTEX COVER

• SET COVER

• CLIQUE

• More to come:

• Subset Sum

• Knapsack

• 3-COLOR

• Hamiltonian cycle / path

• TSP

Steps to Prove is NP CompleteX
• Step 1. Show is in NP

• Step 2. Pick a known NP hard problem from class

• Step 3. Show that

• Show both sides of reduction are correct: if and
only if directions

• State that reduction runs in polynomial time in input
size of problem

X

Y

Y ≤p X

Y

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

