NP Hardness Reductions
Reminders/Check-in

- HW Clarifications
 - We ask you to give a polynomial-time algorithm, so want to justify that your algorithm is polynomial time
 - Rudimentary analysis is OK! But remember that cost of algorithm is cost of reduction + cost of solving/interpreting flow
 - Ford Fulkerson: \(O(nmC)\) or \(O(mC)\)?
 - Textbook uses different definition of \(C\) than we did in our discussion…
- Probability review
 - Readings accessible from on-campus only (or using proxy)
Big Picture

• “Does P = NP?” is an important question in CS
 • Knowing the answer would be nice, but the debate around the question informs our thinking about “hard” problems

• So why are we covering it? What should your takeaways be?
 • Be able to give an operation definition of and describe the P and the NP-complete problem classes
 • Be able to complete and prove a problem reduction beyond the examples we cover together (i.e., apply the reduction framework)
 • Be familiar with a handful of the “classic” NP-hard problems
 • If you hear “Vertex Cover” at a party…
VERTEX-COVER \leq_p SET-COVER
Vertex-Cover

Given a graph $G = (V, E)$, a vertex cover is a subset of vertices $T \subseteq V$ such that for every edge $e = (u, v) \in E$, either $u \in T$ or $v \in T$.

- **VERTEX-COVER decision Problem.** Given a graph $G = (V, E)$ and an integer k, does G have a vertex cover of size at most k?
Set Cover

Set-Cover. Given a set U of elements, a collection \mathcal{S} of subsets of U and an integer k, is there some collection of at most k subsets S_1, \ldots, S_k whose union covers U, that is, $U \subseteq \bigcup_{i=1}^{k} S_i$

\[
U = \{ 1, 2, 3, 4, 5, 6, 7 \} \\
S_a = \{ 3, 7 \} \quad \quad \quad S_b = \{ 2, 4 \} \\
S_c = \{ 3, 4, 5, 6 \} \quad \quad \quad S_d = \{ 5 \} \\
S_e = \{ 1 \} \quad \quad \quad S_f = \{ 1, 2, 6, 7 \} \\
k = 2
\]

a set cover instance
Set Cover

Set-Cover. Given a set U of elements, a collection \mathcal{S} of subsets of U and an integer k, is there some collection of at most k subsets S_1, \ldots, S_k whose union covers U, that is, $U \subseteq \bigcup_{i=1}^{k} S_i$

$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$

$S_a = \{ 3, 7 \}$
$S_b = \{ 2, 4 \}$

$S_c = \{ 3, 4, 5, 6 \}$
$S_d = \{ 5 \}$

$S_e = \{ 1 \}$
$S_f = \{ 1, 2, 6, 7 \}$

$k = 2$

a set cover instance
Vertex Cover \(\leq_p \) Set Cover

- **Theorem.** VERTEX-COVER \(\leq_p \) SET-COVER

- **Proof.** Given instance \(\langle G, k \rangle \) of vertex cover, construct an instance \(\langle U, \mathcal{S}, k' \rangle \) of set cover problem such that

- \(G \) has a vertex cover of size at most \(k \) if and only if \(\langle U, \mathcal{S}, k' \rangle \) has a set cover of size at most \(k \).

![Diagram showing the relationship between Vertex Cover and Set Cover problems](image-url)
Vertex Cover \(\leq_p \) Set Cover

- **Theorem.** \(\text{VERTEX-COVER} \leq_p \text{SET-COVER} \)

- **Proof.** Given instance \(\langle G, k \rangle \) of vertex cover, construct an instance \(\langle U, S, k \rangle \) of set cover problem that has a set cover of size \(k \) iff \(G \) has a vertex cover of size \(k \).

- **Reduction.** \(U = E \). \(S \): for each node \(v \in V \), let \(S_v = \{ e \in E \mid e \text{ incident to } v \} \)

\[\begin{array}{c}
\text{vertex cover instance} \\
(k = 2)
\end{array}\]

\[\begin{array}{c}
\text{set cover instance} \\
(k = 2)
\end{array}\]

\[U = \{ e_1, e_2, \ldots, e_7 \} \]
\[S_a = \{ e_3, e_7 \} \quad S_b = \{ e_2, e_4 \} \]
\[S_c = \{ e_3, e_4, e_5, e_6 \} \quad S_d = \{ e_5 \} \]
\[S_e = \{ e_1 \} \quad S_f = \{ e_1, e_2, e_6, e_7 \} \]
Correctness

• **Claim.** \((\Rightarrow) \) If \(G \) has a vertex cover of size at most \(k \), then \(U \) can be covered using at most \(k \) subsets.

• **Proof.** Let \(X \subseteq V \) be a vertex cover in \(G \)

 • Then, \(Y = \{ S_v \mid v \in X \} \) is a set cover of \(U \) of the same size

\[
U = \{ e_1, e_2, \ldots, e_7 \} \\
S_a = \{ e_3, e_7 \} \quad S_b = \{ e_2, e_4 \} \\
S_c = \{ e_3, e_4, e_5, e_6 \} \quad S_d = \{ e_5 \} \\
S_e = \{ e_1 \} \quad S_f = \{ e_1, e_2, e_6, e_7 \}
\]

vertex cover instance
\((k = 2)\)

set cover instance
\((k = 2)\)
Correctness

- **Claim.** (\(\iff\)) If \(U\) can be covered using at most \(k\) subsets then \(G\) has a vertex cover of size at most \(k\).

- **Proof.** Let \(Y \subseteq \mathcal{S}\) be a set cover of size \(k\)
 - Then, \(X = \{v \mid S_v \in Y\}\) is a vertex cover of size \(k\)

![Vertex Cover Instance](image1)

![Set Cover Instance](image2)

\[
U = \{ e_1, e_2, \ldots, e_7 \}
\]

\[
S_a = \{ e_3, e_7 \} \\
S_b = \{ e_2, e_4 \} \\
S_c = \{ e_3, e_4, e_5, e_6 \} \\
S_d = \{ e_5 \} \\
S_e = \{ e_1 \} \\
S_f = \{ e_1, e_2, e_6, e_7 \}
\]
Class Exercise

IND-SET \leq_p \text{ Clique}
Clique

- A **clique** in an undirected graph is a subset of nodes such that every two nodes are connected by an edge. A k-clique is a clique that contains k nodes.

- **CLIQUE.** Given a graph G and a number k, does G contain a k-clique?
Clique

• A **clique** in an undirected graph is a subset of nodes such that every two nodes are connected by an edge. A k-clique is a clique that contains k nodes.

• **CLIQUE.** Given a graph G and a number k, does G contain a k-clique?

• **CLIQUE \in NP**

 • Certificate: a subset of vertices

 • Poly-time verifier: check is each pair of vertices have an edge between them and if size of subset is k
IND-SET to CLIQUE

- **Theorem.** IND-SET \leq_p CLIQUE.

- **In class exercise.** Reduce IND-SET to Clique. Given instance $\langle G, k \rangle$ of independent set, construct an instance $\langle G', k' \rangle$ of clique such that
 - G has independent set of size k iff G' has clique of size k'.

![Algorithm for IND-SET](algorithm-diagram.png)

![Algorithm for CLIQUE](algorithm-diagram.png)
Recall: IND-SET

Given a graph $G = (V, E)$, an independent set is a subset of vertices $S \subseteq V$ such that no two of them are adjacent, that is, for any $x, y \in S$, $(x, y) \notin E$

- **IND-SET decision Problem.** Given a graph $G = (V, E)$ and an integer k, does G have an independent set of size at least k?
IND-SET to CLIQUE

- **Theorem.** $\text{IND-SET} \leq_p \text{CLIQUE}$.

- **In class exercise.** Reduce IND-SET to Clique. Given instance $\langle G, k \rangle$ of independent set, construct an instance $\langle G', k' \rangle$ of clique such that
 - G has independent set of size k iff G' has clique of size k'.

![Diagram showing the reduction from IND-SET to CLIQUE](image)
Theorem. \(\text{IND-SET} \leq_p \text{CLIQUE} \).

Proof. Given instance \(\langle G, k \rangle \) of independent set, we construct an instance \(\langle G', k' \rangle \) of clique such that \(G \) has independent set of size \(k \) iff \(G' \) has clique of size \(k' \).

Reduction.

- Let \(G' = (V, \overline{E}) \), where \(e = (u, v) \in \overline{E} \) iff \(e \not\in E \) and \(k' = k \).
- \((\Rightarrow) \) \(G \) has an independent set \(S \) of size \(k \), then \(S \) is a clique in \(G' \).
- \((\Leftarrow) \) \(G' \) has a clique \(Q \) of size \(k \), then \(Q \) is an independent set in \(G \).
Reductions: General Pattern

• Describe a polynomial-time algorithm to transform an arbitrary instance x of Problem X into a special instance y of Problem Y

• Prove that:
 • If x is a “yes” instance of X, then y is a “yes” instance of Y
 • If y is a “yes” instance of Y, then x is a “yes” instance of X
Reductions: General Pattern

- Describe a polynomial-time algorithm to transform an arbitrary instance x of Problem X into a special instance y of Problem Y.

- Notice that correctness of reductions are not symmetric:
 - the “if” proof needs to handle arbitrary instances of X.
 - the “only if” needs to handle the special instance of Y.

![Diagram showing the general pattern of reductions between X and Y.]
IND-SET is NP Complete:

$$3\text{SAT} \leq_p \text{IND-SET}$$
Problem Definition: 3-SAT

- **Literal.** A Boolean variable or its negation: x_i or $\overline{x_i}$

- **Clause.** A disjunction of literals: $C_j = x_1 \lor \overline{x_2} \lor x_3$

- **Conjunctive normal form (CNF).** A boolean formula ϕ that is a conjunction of clauses: $\Phi = C_1 \land C_2 \land C_3$

- **SAT.** Given a CNF formula Φ, does it have a satisfying truth assignment?

- **3SAT.** A SAT formula where each clause contains exactly 3 literals (corresponding to different variables)

 $\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$

- **SAT, 3SAT** are both NP complete

- We will use 3SAT to prove other problems are NP hard
IND-SET: NP Complete

• To show Independent set is NP complete
 • Show it is in NP (we’ve already done this)
 • Reduce a known NP complete problem to it
 • We will use 3-SAT
 • Looking ahead: once we have shown 3-SAT \leq_p IND-SET
 • Since IND-SET \leq_p Vertex Cover
 • And Vertex Cover \leq_p Set Cover
 • We can conclude they are also NP hard
 • As they are both in NP, they are also NP complete!
IND-SET: NP hard

- **Theorem.** 3-SAT \leq_p IND-SET

- Given an instance Φ of 3-SAT, we construct an instance $\langle G, k \rangle$ of IND-SET s.t. G has an independent set of size k iff ϕ is satisfiable.
Map the Problems

3SAT

What is a possible solution?

Ind-Set

A selection of vertices to be an IS S

What is the requirement?

Each clause must contain at least one literal that is True

S must contain at least k vertices

What are the restrictions?

x can be true iff \overline{x} is assigned false

If $(u, v) \in E$, then both u and v cannot be in S
3SAT \(\leq_p\) **IND-SET**

- **Reduction.** Let \(k\) be the number of clauses in \(\Phi\).
 - \(G\) has \(3k\) vertices, one for each literal in \(\Phi\)
 - *(Clause gadget)* For each clause, connect the three literals in a triangle
 - *(Variable gadget)* Each variable is connected to its negation

\[\Phi = (\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_4)\]
3SAT \leq_p IND-SET

- Observations.
 - Any independent set in G can contain at most 1 vertex from each clause triangle
 - Only one of x_i or $\overline{x_i}$ can be in an independent set (consistency)

\[\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4) \]
3SAT \(\leq_p \) **IND-SET**

- **Claim.** \(\Phi \) is satisfiable iff \(G \) has an independent set of size \(k \)

- \((\Rightarrow) \) Suppose \(\Phi \) is satisfiable, consider a satisfying assignment
 - There is at least one true literal in each clause
 - Select one true literal from each clause/triangle
 - This is an independent set of size \(k \)

\[
\Phi = (\bar{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor x_4)
\]
3SAT \leq_p IND-SET

- **Claim.** Φ is satisfiable iff G has an independent set of size k
- (\Leftarrow) Let S be in an independent set in G of size k
 - S must contain exactly one node in each triangle
 - Set the corresponding literals to *true*
 - Set remaining literals consistently
- All clauses are satisfied — Φ is satisfiable \blacksquare

$$\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$$
3SAT \leq_p IND-SET

- Our reduction is clearly polynomial time in the input
 - G has $3k$ nodes, where k is #clauses, and n edges (one for each variable in G)
- Since independent set is in NP (shown previously)
 - Independent set is NP complete

$\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$
Reduction Strategies

• Equivalence
 • $\text{VERTEX-COVER} \equiv_p \text{IND-SET}$

• Special case to general case
 • $\text{VERTEX-COVER} \leq_p \text{SET-COVER}$

• Encoding with gadgets
 • $\text{3-SAT} \leq_p \text{IND-SET}$

• Transitivity
 • $\text{3-SAT} \leq_p \text{IND-SET} \leq_p \text{VERTEX-COVER} \leq_p \text{SET-COVER}$

• Thus, IND-SET, VERTEX-COVER and SET-COVER are NP hard

• Since they are all in NP, also NP-complete
List of NPC Problems So Far

• 3-SAT
• INDEPENDENT SET
• VERTEX COVER
• SET COVER
• CLIQUE
• More to come:
 • Subset Sum
 • Knapsack
 • 3-COLOR
 • Hamiltonian cycle / path
 • TSP
Steps to Prove X is NP Complete

- Step 1. Show X is in NP
- Step 2. Pick a known NP hard problem Y from class
- Step 3. Show that $Y \leq_p X$
 - Show both sides of reduction are correct: if and only if directions
 - State that reduction runs in polynomial time in input size of problem Y
Acknowledgments

• Some of the material in these slides are taken from

 • Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf)