
NP Hardness Reductions



Reminders/Check-in
• HW Clarifications 

• We ask you to give a polynomial-time algorithm, so want to justify 
that your algorithm is polynomial time 

• Rudimentary analysis is OK! But remember that cost of 
algorithm is cost of reduction + cost of solving/interpreting flow 

• Ford Fulkerson: O(nmC) or O(mC)? 

• Textbook uses different definition of C than we did in our 
discussion… 

• Probability review 

• Readings accessible from on-campus only (or using proxy)



Big Picture
• “Does P = NP?” is an important question in CS 

• Knowing the answer would be nice, but the debate around the 
question informs our thinking about “hard” problems 

• So why are we covering it? What should your takeaways be? 

• Be able to give an operation definition of and describe the P and 
the NP-complete problem classes 

• Be able to complete and prove a problem reduction beyond the 
examples we cover together (i.e., apply the reduction framework) 

• Be familiar with a handful of the “classic” NP-hard problems 

• If you hear “Vertex Cover” at a party…



VERTEX-COVER    SET-COVER≤p



Vertex-Cover

Given a graph , a vertex cover is a subset of vertices  
such that for every edge , either  or . 
• VERTEX-COVER decision Problem.  Given a graph  and an 

integer , does  have a vertex cover of size at most ?

G = (V, E) T ⊆ V
e = (u, v) ∈ E u ∈ T v ∈ T

G = (V, E)
k G k

vertex cover of size 4

independent set of size 6

If edges are hallways and 
vertices are security guards, 
can we put eyes on every 
hallway with just k guards?



Set Cover
Set-Cover. Given a set  of elements, a collection  of subsets of  and 
an integer , is there some collection of at most  subsets  
whose union covers , that is,  

U 𝒮 U
k k S1, …, Sk

U U ⊆ ∪k
i=1 Si



Set Cover
Set-Cover. Given a set  of elements, a collection  of subsets of  and 
an integer , is there some collection of at most  subsets  
whose union covers , that is,  

U 𝒮 U
k k S1, …, Sk

U U ⊆ ∪k
i=1 Si



Vertex Cover  Set Cover≤p

• Theorem.  VERTEX-COVER    SET-COVER 

• Proof.   Given instance  of vertex cover, construct an instance 
 of set cover problem such that  

•  has a vertex cover of size at most  if and only if  has a 
set cover of size at most .

≤p

⟨G, k⟩
⟨U, 𝒮, k′ ⟩

G k ⟨U, 𝒮, k′ ⟩
k

Instance of  
VertexCover ⟨G, k⟩

Instance of  
SetCover ⟨G′ , k′ ⟩

Algorithm for SetCover

Yes

No

Yes

No
Poly time

Algorithm for VertexCover



• Theorem.  VERTEX-COVER    SET-COVER 

• Proof.   Given instance  of vertex cover, construct an instance 
 of set cover problem that has a set cover of size  iff  has 

a vertex cover of size .  

• Reduction.   . : for each node , let
 

≤p

⟨G, k⟩
⟨U, 𝒮, k⟩ k G

k

U = E 𝒮 v ∈ V
Sv = {e ∈ E | e incident to v}

vertex cover instance 
(k = 2)

e1 

e2 e3 

e5 

e4 

e6 

e7 

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = {  }   Sb = { }

Sc = { }  Sd = {  } 

Se = {  }   Sf  =  {  }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

Vertex Cover  Set Cover≤p



Correctness
• Claim.   If  has a vertex cover of size at most , then  can be 

covered using at most  subsets. 

• Proof. Let  be a vertex cover in  

• Then,  is a set cover of  of the same size  

( ⇒ ) G k U
k

X ⊆ V G

Y = {Sv | v ∈ X} U

vertex cover instance 
(k = 2)

e1 

e2 e3 

e5 

e4 

e6 

e7 

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = {  }   Sb = { }

Sc = { }  Sd = {  } 

Se = {  }   Sf  =  {  }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

cff



Correctness
• Claim.   If  can be covered using at most  subsets then  

has a vertex cover of size at most . 

• Proof. Let  be a set cover of size   

• Then,  is a vertex cover of size  

( ⇐ ) U k G
k

Y ⊆ 𝒮 k

X = {v | Sv ∈ Y} k

vertex cover instance 
(k = 2)

e1 

e2 e3 

e5 

e4 

e6 

e7 

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = {  }   Sb = { }

Sc = { }  Sd = {  } 

Se = {  }   Sf  =  {  }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

cff



Class Exercise 
IND-SET    Clique≤p



Clique

• A clique in an undirected graph is a subset of nodes such that every 
two nodes are connected by an edge. A -clique is a clique that 
contains  nodes. 

• CLIQUE.  Given a graph  and a number , does  contain a 
-clique?

k
k

G k G k



Clique

• A clique in an undirected graph is a subset of nodes such that every 
two nodes are connected by an edge. A -clique is a clique that 
contains  nodes. 

• CLIQUE.  Given a graph  and a number , does  contain a 
-clique? 

• CLIQUE  

• Certificate: a subset of vertices  

• Poly-time verifier: check is each pair of vertices have an edge 
between them and if size of subset is 

k
k

G k G k

∈ 𝖭𝖯

k



IND-SET to CLIQUE

• Theorem.  IND-SET  CLIQUE. 

• In class exercise.  Reduce IND-SET to Clique. Given instance  of 
independent set, construct an instance  of clique such that  

•  has independent set of size  iff  has clique of size .

≤p

⟨G, k⟩
⟨G′ , k′ ⟩

G k G′ k′ 

Instance of  
IND-SET ⟨G, k⟩

Instance of  
CLIQUE ⟨G′ , k′ ⟩

Algorithm for CLIQUE

Yes

No

Yes

No
Poly time

Algorithm for IND-SET



Recall: IND-SET

Given a graph , an independent set is a subset of vertices 
 such that no two of them are adjacent, that is, for any ,  

 
• IND-SET decision Problem.  Given a graph  and an integer 

, does  have an independent set of size at least ?

G = (V, E)
S ⊆ V x, y ∈ S
(x, y) ∉ E

G = (V, E)
k G k

independent set of size 6



IND-SET to CLIQUE

• Theorem.  IND-SET  CLIQUE. 

• In class exercise.  Reduce IND-SET to Clique. Given instance  of 
independent set, construct an instance  of clique such that  

•  has independent set of size  iff  has clique of size .

≤p

⟨G, k⟩
⟨G′ , k′ ⟩

G k G′ k′ 

Instance of  
IND-SET ⟨G, k⟩

Instance of  
CLIQUE ⟨G′ , k′ ⟩

Algorithm for CLIQUE

Yes

No

Yes

No
Poly time

Algorithm for IND-SET



• Theorem.  IND-SET  CLIQUE. 

• Proof. Given instance  of independent set, we construct 
an instance  of clique such that  has independent set 
of size  iff  has clique of size  

• Reduction.  

• Let , where  iff  and  

•   has an independent set  of size , then   is a 
clique in  

•   has a clique  of size , then  is an independent 
set in 

≤p

⟨G, k⟩
⟨G′ , k′ ⟩ G

k G′ k′ 

G′ = (V, E) e = (u, v) ∈ E e ∉ E k′ = k

( ⇒ ) G S k S
G′ 

( ⇐ ) G′ Q k Q
G

IND-SET to CLIQUE



Reductions: General Pattern
• Describe a polynomial-time algorithm to transform an arbitrary 

instance  of Problem  into a special instance  of Problem  

• Prove that: 

• If  is a “yes” instance of , then  is a “yes” instance of  

• If  is a “yes” instance of , then  is a “yes” instance of  

x X y Y

x X y Y

y Y x X

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X



Reductions: General Pattern
• Describe a polynomial-time algorithm to transform an arbitrary 

instance  of Problem  into a special instance  of Problem  

• Notice that correctness of reductions are not symmetric:  

• the “if” proof needs to handle arbitrary instances of  

• the “only if” needs to handle the special instance of 

x X y Y

X

Y

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X



IND-SET is NP Complete: 
3SAT    IND-SET≤p



Problem Definition: 3-SAT
• Literal.  A Boolean variable or its negation           or   

• Clause.  A disjunction of literals           

• Conjunctive normal form (CNF).  A boolean formula  that is a 
conjunction of clauses    

• SAT.  Given a CNF formula , does it have a satisfying truth assignment?  

• 3SAT.  A SAT formula where each clause contains exactly 3 literals 
(corresponding to different variables) 

•   

• SAT, 3SAT are both NP complete 

• We will use 3SAT to prove other problems are NP hard

xi xi

Cj = x1 ∨ x2 ∨ x3

ϕ
Φ = C1 ∧ C2 ∧ C3

Φ

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)



IND-SET: NP Complete
• To show Independent set is NP complete 

• Show it is in NP (we’ve already done this) 

• Reduce a known NP complete problem to it 

• We will use 3-SAT 

• Looking ahead: once we have shown 3-SAT  IND-SET 

• Since IND-SET  Vertex Cover 

• And Vertex Cover  Set Cover 

• We can conclude they are also NP hard 

• As they are both in NP, they are also NP complete!

≤p

≤p

≤p



IND-SET: NP hard
• Theorem.  3-SAT  IND-SET 

• Given an instance  of 3-SAT, we construct an instance  
of IND-SET s.t.  has an independent set of size  iff  is 
satisfiable.

≤p

Φ ⟨G, k⟩
G k ϕ

ϕ ⟨G, k⟩

 AlgorithmInd-Set

 has a IS 
of size 

G
k

 is 
satisfiable

ϕ

Poly time 
Reduction

Algorithm for 3SAT

 does not 
have a IS of 

size 

G

k

 is 
satisfiable

ϕ

 is not 
satisfiable
ϕ



Map the Problems

What is a possible solution?

An assignment of  T/F  to variables A selection of vertices to be an IS S

What is the requirement?

3SAT Ind-Set

Each clause must contain at least 
one literal that is True  must contain at least  verticesS k

What are the restrictions?

 can be true iff  is assigned falsex x If , then both  and  
cannot be in 

(u, v) ∈ E u v
S



3SAT  IND-SET≤p

• Reduction.  Let  be the number of clauses in . 

•  has  vertices, one for each literal in  

• (Clause gadget) For each clause, connect the three literals in a 
triangle 

• (Variable gadget) Each variable is connected to its negation

k Φ

G 3k Φ

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )



3SAT  IND-SET≤p

• Observations.

• Any independent set in  can contain at most 1 vertex from 
each clause triangle 

• Only one of  or  can be in an independent set 
(consistency)

G

xi xi

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )



3SAT  IND-SET≤p

• Claim.   is satisfiable iff  has an independent set of size  

•  Suppose  is satisfiable, consider a satisfying 
assignment 

• There is at least one true literal in each clause 

• Select one true literal from each clause/triangle  

• This is an independent set of size   

Φ G k

( ⇒ ) Φ

k

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )



• Claim.   is satisfiable iff  has an independent set of size  

•  Let  be in an independent set in  of size  

•  must contain exactly one node in each triangle 

• Set the corresponding literals to true  

• Set remaining literals consistently  

• All clauses are satisfied —  is satisfiable 

Φ G k
( ⇐ ) S G k

S

Φ ∎

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )

3SAT  IND-SET≤p



• Our reduction is clearly polynomial time in the input 

•  has 3  nodes, where  is #clauses, and  edges (one 
for each variable in ) 

• Since independent set is in NP (shown previously) 

• Independent set is NP complete

G k k n
G

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )

3SAT  IND-SET≤p



Reduction Strategies
• Equivalence 

• VERTEX-COVER    IND-SET 

• Special case to general case 

• VERTEX-COVER    SET-COVER 

• Encoding with gadgets 

• 3-SAT  IND-SET 

• Transitivity 

•  3-SAT  IND-SET    VERTEX-COVER    SET-COVER 

• Thus, IND-SET, VERTEX-COVER and SET-COVER are NP hard 

• Since they are all in NP, also NP - complete

≡p

≤p

≤p

≤p ≤p ≤p



List of NPC Problems So Far
• 3-SAT 

• INDEPENDENT SET 

• VERTEX COVER 

• SET COVER 

• CLIQUE 

• More to come: 

• Subset Sum 

• Knapsack  

• 3-COLOR 

• Hamiltonian cycle / path 

• TSP



Steps to Prove  is NP CompleteX
• Step 1.  Show  is in NP 

• Step 2.  Pick a known NP hard problem  from class 

• Step 3.  Show that  

• Show both sides of reduction are correct:  if and 
only if directions 

• State that reduction runs in polynomial time in input 
size of problem 

X

Y

Y ≤p X

Y
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