NP Hardness Reductions
Overview So Far

- We have defined classes P and NP
- We have some notion of NP hardness and NP completeness
- We said a problem X is NP-hard \equiv if $X \in P$ then $P = NP$
 - Alternate definition: every problem in NP poly-time reduces to it
- A problem X is NP-complete if it is NP-hard and in NP

Focus on decision problems

We will define these reductions today
Overview

• We have defined classes \(P \) and \(NP \)
• We have some notion of \(NP \) hardness and \(NP \) completeness
• We said a problem \(X \) is \(NP \)-hard \(\equiv \) if \(X \in P \) then \(P = NP \)
 • Alternate definition: every problem in \(NP \) poly-time reduces to it
• A problem \(X \) is \(NP \)-complete if it is \(NP \)-hard and in \(NP \)
• (Cook-Levin). 3SAT/SAT is \(NP \) hard
• Today: Problem reductions!
 • Strategy to prove a problem is \(NP \) hard: Reduce a known \(NP \) hard problem to it
• Will do a bunch of reductions next few days
Relative Hardness

• How do we compare the relative hardness of problems?

• Recurring idea in this class: reductions!

• Informally, we say a problem X reduces to a problem Y, if can use an algorithm for Y to solve X

 • E.g., Bipartite matching reduces to max flow

Intuitively, if problem X reduces to problem Y, then solving X is no harder than solving $Y
[Karp] Reductions

Definition. Decision problem X polynomial-time (Karp) reduces to decision problem Y if given any instance x of X, we can construct an instance y of Y in polynomial time s.t. $x \in X$ if and only if $y \in Y$.

Notation. $X \leq_p Y$

- Solving X is no harder than solving Y: if we have an algorithm for Y, we can use it + a polynomial-time reduction to solve X.

![Diagram](attachment:image.png)
Reductions Quiz

Say $X \leq_p Y$. Which of the following can we infer?

- If X can be solved in polynomial time, then so can Y.
- X can be solved in poly time iff Y can be solved in poly time.
- If X cannot be solved in polynomial time, then neither can Y.
- If Y cannot be solved in polynomial time, then neither can X.
Reductions Quiz

Say $X \leq_p Y$. Which of the following can we infer?

- If X can be solved in polynomial time, then so can Y.
- X can be solved in poly time iff Y can be solved in poly time.
- \Box If X cannot be solved in polynomial time, then neither can Y.
- If Y cannot be solved in polynomial time, then neither can X.
Digging Deeper

- **Graph 2-Color** reduces to **Graph 3-color**
 - We'll see this soon

- **Graph 2-Color** can be solved in polynomial time
 - How?
 - Can decide if a graph is bipartite in $O(n + m)$ time using BFS

- **Graph 3-color** (we’ll show) is NP hard and unlikely to have a polynomial-time solution

Intuitively, if problem X reduces to problem Y, then solving X is no harder than solving Y
Use of Reductions: $X \leq_p Y$

Design algorithms:

- If Y can be solved in polynomial time, we know X can also be solved in polynomial time.

Establish intractability:

- If we know that X is known to be impossible/hard to solve in polynomial-time, then we can conclude the same about problem Y.

Establish Equivalence:

- If $X \leq_p Y$ and $Y \leq_p X$ then X can be solved in poly-time iff Y can be solved in poly time and we use the notation $X \equiv_p Y$.
NP hard: Operational Definition

- **New definition of NP hard using reductions.**
 - A problem Y is NP hard, if for any problem $X \in \text{NP}$, $X \leq_p Y$

- Recall we said Y is NP hard if $Y \in \text{P}$, then $\text{P} = \text{NP}$.

- Let's show that both definitions are equivalent:
 - (\Rightarrow) every problem in NP reduces to Y in poly-time, and if $Y \in \text{P}$, then $\text{P} = \text{NP}$
 - (\Leftarrow) Suppose $Y \in \text{P}$, then $\text{P} = \text{NP}$: which means every problem in $\text{NP}(= \text{P})$ reduces to Y
Proving NP Hardness

- To prove problem Y is NP-hard
 - Difficult to prove every problem in NP reduces to Y
 - Instead, we use a known-NP-hard problem Z
 - We know every problem X in NP, $X \leq_p Z$
 - Notice that \leq_p is transitive
 - Thus, enough to prove $Z \leq_p Y$

To prove that a problem Y is NP hard, reduce a known NP hard problem Z to Y
Known NP Hard Problems?

- For now: **3SAT** and **SAT** (Cook-Levin Theorem)

- We will prove a whole repertoire of NP hard and NP complete problems by using reductions

- Before reducing **3SAT** to other problems to prove them NP hard, let us practice some easier reductions first

To prove that a problem \(Y \) is NP hard, reduce a known NP hard problem \(Z \) to \(Y \)
VERTEX-COVER \equiv_p IND-SET
Given a graph $G = (V, E)$, an independent set is a subset of vertices $S \subseteq V$ such that no two of them are adjacent, that is, for any $x, y \in S$, $(x, y) \notin E$

- What is the decision version of the IND-SET problem?
- IND-SET decision Problem. Given a graph $G = (V, E)$ and an integer k, does G have an independent set of size at least k?
Vertex-Cover

Given a graph $G = (V, E)$, a vertex cover is a subset of vertices $T \subseteq V$ such that for every edge $e = (u, v) \in E$, either $u \in T$ or $v \in T$.

• What is the decision version of the VERTEX_COVER problem?

• VERTEX-COVER decision Problem. Given a graph $G = (V, E)$ and an integer k, does G have a vertex cover of size at most k?
Our First Reduction

- **VERTEX-COVER \(\leq_p \) IND-SET
 - Suppose we know how to solve independent set, can we use it to solve vertex cover?

- **Claim.** \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).

- **Proof.** (\(\Rightarrow \)) Consider an edge \(e = (u, v) \in E \)
 - \(S \) is independent: \(u, v \) both cannot be in \(S \)
 - At least one of \(u, v \in V - S \)
 - \(V - S \) covers \(e \)
 - ■
Our First Reduction

- **VERTEX-COVER \(\leq_p \) IND-SET**
 - Suppose we know how to solve independent set, can we use it to solve vertex cover?

- **Claim.** \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).

- **Proof.** \(\leftrightarrow \) Consider an edge \(e = (u, v) \in E \)
 - \(V - S \) is a vertex cover: at least one of \(u, v \) must be in \(V - S \)
 - Both \(u, v \) cannot be in \(S \)
 - Thus, \(S \) is an independent set. \(\blacksquare \)
Vertex Cover \equiv_p IND Set

- $\text{VERTEX-COVER} \leq_p \text{IND-SET}$

- **Reduction.** Let $G' = G$, $k' = n - k$.

 - (\Rightarrow) If G has a vertex cover of size at most k then G' has an independent set of size at least k'

 - (\Leftarrow) If G' has an independent set of size at least k' then G has a vertex cover of size at most k

- $\text{IND-SET} \leq_p \text{VERTEX-COVER}$

 - Same reduction works: $G' = G$, $k' = n - k$

- $\text{VERTEX-COVER} \equiv_p \text{IND-SET}$
Acknowledgments

• Some of the material in these slides are taken from

 • Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf)