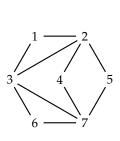
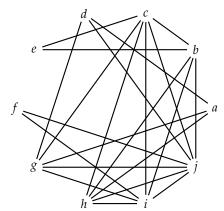
Algorithms: Introduction to reductions

Model 1: Independent sets

Definition 1. An *independent set* in an undirected graph G = (V, E) is a subset of vertices $S \subseteq V$ such that no two vertices in S are adjacent.

Definition 2. A *vertex cover* in an undirected graph G = (V, E) is a subset of vertices $C \subseteq V$ such that every edge $e \in E$ has at least one endpoint in (is "covered by") C.





1 Which of the following are independent sets?

- (a) $\{1,2\}$
- (b) {1,5}
- (c) $\{c, a\}$
- (d) $\{e, a, i, g\}$
- (e) {7}
- (f) Ø

Think of edges as hallways in an art museum and *C* as the set of locations where we are going to put some guards. Then an independent set means no two guards can see each other; a vertex cover means every hallway is watched by at least one guard.

2 For each graph, list at least three other examples of independent sets.

3 Given an arbitrary graph *G*, does *G* always have at least one independent set? Why or why not?

4 Intuitively, which is harder: to find big independent sets, or small ones? Why?

5 Based on the previous observation, an interesting question to ask

about a given graph *G* is to find the . .

6 Try to answer your interesting question for the given example graphs (but don't spend more than a few minutes). How sure are you about your answer?

7 Describe a brute-force algorithm to answer this question. What is its big- Θ running time in terms of |V| and |E|?

8 Guess the running time (in terms of |V| and |E|) of the fastest known algorithm to solve this problem. (You do not have to come up with an algorithm; just guess how fast you think this problem can be solved.)

9 Which of the following are vertex covers?

- (a) $\{3,4,5,6,7\}$
- (b) $\{2,3,4,6,7\}$
- (c) $\{b, d, e, f, g, h, i, j\}$
- (d) $\{b, c, d, f, h, j\}$
- (e) $\{1, 2, 3, 4, 5, 6\}$
- (f) $\{1,2,3,4,5,6,7\}$

10 For each graph, list at least three other examples of vertex covers.

- 11 Given an arbitrary graph *G*, does *G* always have at least one vertex cover? Why or why not?
- 12 Intuitively, which is harder: to find small vertex covers, or big ones? Why?
- 13 Based on the previous observation, an interesting question to ask about a given graph *G* is to find the . .
- 14 Answer your interesting question for the given example graphs. How sure are you about your answer?
- 15 Describe a brute-force algorithm to answer this question. What is its big- Θ running time in terms of |V| and |E|?
- 16 Compare your answers to questions 1 and 9. What do you notice?

Make a conjecture based on your observations in the previous section:

Theorem 3. Let G = (V, E) be an undirected graph, and $S \subseteq V$ a subset of

its vertices. Then S is an independent set if and only if _____.

Let's prove it!		
<i>Proof.</i> (\Longrightarrow) Let <i>S</i> be an independent set. We must show		
So pick an arbitrary edge $e = (u, v)$	$v) \in E;$	
by definition we must show that at least one of u or v		
that is, at least one of u or v is not Since S is an independent set and u and v are connected by a	 nn	
edge, u and v can't both		
and therefore	<u>.</u>	
(\longleftarrow) (You fill in the proof for this direction!)		Write down what you get to assume and what you are trying to prove, and