Algorithms: Introduction to reductions

Model 1: Independent sets

Definition 1. An independent set in an undirected graph $G=(V, E)$ is a subset of vertices $S \subseteq V$ such that no two vertices in S are adjacent.

Definition 2. A vertex cover in an undirected graph $G=(V, E)$ is a subset of vertices $C \subseteq V$ such that every edge $e \in E$ has at least one endpoint in (is "covered by") C.

Think of edges as hallways in an art
1 Which of the following are independent sets?
(a) $\{1,2\}$
(b) $\{1,5\}$
(c) $\{c, a\}$
(d) $\{e, a, i, g\}$
(e) $\{7\}$
(f) \varnothing

2 For each graph, list at least three other examples of independent sets.

3 Given an arbitrary graph G, does G always have at least one independent set? Why or why not?

4 Intuitively, which is harder: to find big independent sets, or small ones? Why?

5 Based on the previous observation, an interesting question to ask about a given graph G is to find the \qquad -

6 Try to answer your interesting question for the given example graphs (but don't spend more than a few minutes). How sure are you about your answer?

7 Describe a brute-force algorithm to answer this question. What is its big- Θ running time in terms of $|V|$ and $|E|$?

8 Guess the running time (in terms of $|V|$ and $|E|$) of the fastest known algorithm to solve this problem. (You do not have to come up with an algorithm; just guess how fast you think this problem can be solved.)

9 Which of the following are vertex covers?
(a) $\{3,4,5,6,7\}$
(b) $\{2,3,4,6,7\}$
(c) $\{b, d, e, f, g, h, i, j\}$
(d) $\{b, c, d, f, h, j\}$
(e) $\{1,2,3,4,5,6\}$
(f) $\{1,2,3,4,5,6,7\}$

10 For each graph, list at least three other examples of vertex covers.

11 Given an arbitrary graph G, does G always have at least one vertex cover? Why or why not?

12 Intuitively, which is harder: to find small vertex covers, or big ones? Why?

13 Based on the previous observation, an interesting question to ask about a given graph G is to find the \qquad .

14 Answer your interesting question for the given example graphs. How sure are you about your answer?

15 Describe a brute-force algorithm to answer this question. What is its big- Θ running time in terms of $|V|$ and $|E|$?

16 Compare your answers to questions 1 and 9 . What do you notice?

Make a conjecture based on your observations in the previous section:

Theorem 3. Let $G=(V, E)$ be an undirected graph, and $S \subseteq V$ a subset of its vertices. Then S is an independent set if and only if \qquad .
© 2022 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

Let's prove it!
Proof. (\Longrightarrow) Let S be an independent set. We must show
\qquad . So pick an arbitrary edge $e=(u, v) \in E$;
by definition we must show that at least one of u or v \qquad ,
that is, at least one of u or v is not \qquad .

Since S is an independent set and u and v are connected by an
edge, u and v can't both \qquad ,
and therefore \qquad .
(\Longleftarrow) (You fill in the proof for this direction!)

Write down what you get to assume and what you are trying to prove, and expand definitions.

