
P versus NP, NP hard and
NP complete

Admin
• Assignment 7 notes:

• 3 Problems on Flow Networks

• Increasing order of difficulty

• Two ask for “an efficient algorithm to solve…”

• Describe how you would construct a flow network (define all
vertices, edges, capacities)

• Describe how you would use your flow network to answer
the actual question (e.g., Given a network G constructed as
described above, we would use FF to calculate the max flow
of G. If the max flow is less than g, then the Angels are
eliminated from contention.)

• Give/analyze the run time (otherwise, how would you justify
your claim that it is an efficient algorithm?)

Today: Overview and
Classes P and NP

Some Algorithms/Problems So Far

• Single source shortest paths—can find shortest path from vertex
to all other vertices using Dijkstra’s algorithm. We improved the
runtime to with the union-find data structure.

• Weighted interval scheduling—can try all combinations in
, but can solve in using Dynamic programming

• Network flow seems very difficult to solve, but we saw how to
solve it in (and noted it possible to solve in)

O(m log n)

O(2n) O(n2)

O(nmC) O(n2m)

We’ve explored techniques to
analyze algorithms and make

algorithms faster!

Shifting Focus
Most of the class has been tools to efficiently solve problems
(and prove the efficiency/correctness of solutions)

• Now we’re going to shift to higher-level questions:

• What problems can a computer solve efficiently?

• What problems can’t* a computer solve efficiently?

Efficiency: Polynomial time

When we say efficient, what we really mean
is polynomial in the size of the input.
So our questions from before become:

• What problems can a computer solve in
polynomial time?

• What problems can’t* a computer solve
in polynomial time?

(*probably cant)

Technical Setup
We will focus on decision problems — problems with a yes
or no answer. Examples include:

• Does this directed graph have a topological order?

• Is this graph bipartite?

• Do these two strings have an Edit Distance less than 10?

• Does this graph have a perfect matching?

Technical Setup
With care, we can craft a decision analog to most problems

• Instead of “Find the flow of this network”, we can ask:

• Does this network have a valid flow of at least ?”

• “Find the optimal schedule of these intervals” becomes:

• “Can we schedule at least intervals?”

• These are (essentially) the same! Why?

• We can always binary search for the optimal value!

k

k

Technical Setup
Decision problem means that every solution is “yes” or “no”

• Yes instances can represented as a set of inputs

• means that the solution to is “yes”

• means that the solution to is “no”

• So can have (for example): is the set of all flow networks which
permit flow at least

• Or can have: is the set of all pairs of strings where the edit
distance between and is at most

• If we define to be the encoding of the problem input as a string, we
can ask: does belong to the set ? (We’ll revisit this later)

A

x ∈ A x

x ∉ A x

A
k

A (a, b)
a b k

s
s A

Class P

Class P
P: the class of problems that can be solved in polynomial
time

• Edit distance is in P

• Max flow is in P

• Bipartite matching is in P

• Knapsack?

• The dynamic programming algorithm we saw is
pseudo-polynomial! So we don’t know yet…

Class NP

Class NP—Intuition
NP is the class of problems that can be verified in
polynomial time

• What do we mean by verify?

• If I give you helpful information, say a proposed
solution, you can easily check that it is correct

• Note, verifying a solution is very different than finding a
solution!

Sudoku is easy if I give you information (e.g.,
giving you the solution). So sudoku is in NP

Class NP—Intuition

Class NP—Intuition

Knapsack is easy if I give you information (e.g.,
giving you the solution). So knapsack is in NP

• Example (Knapsack capacity C = 11)

• {3, 4} has value $40 (and weight 11)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg

i vi wi

1 $1 1 kg

2 $6 2 kg

3 $18 5 kg

4 $22 6 kg

5 $28 7 kg

knapsack instance
(weight limit W = 11)

Class NP: Formally
Let be the input to a problem encoded as a binary string, and let be
the length of that string.

We will define a decision problem with the set of strings for which the
answer is “yes”.

Verifiers. Algorithm is a verifier for problem if, for every input string
, there exists a certificate , such that yes iff .

Definition. = the set of decision problems for which there exists a
polynomial-time verifier. That is,

• is a polynomial time algorithm

• Certificate is of polynomial size:

• for some polynomial

s |s |

X

V(s, c)
s ∈ X c V(s, c) = s ∈ X

𝖭𝖯

V(s, c)

c

|c | ≤ p(|s |) p(.)

Graph-Coloring ∈ 𝖭𝖯
Graph-Coloring. Given a graph , is it possible to color the
vertices of using only three colors, such that no edge has both end
points colored with the same color?

• Graph-Coloring

• Input: a set of vertices, colors, and edges

• Certificate: assignment of colors to vertices

• Poly-time verifier: check for each edge if ends points same color or
not, and check that at most 3 colors used

G = (V, E)
G

∈ 𝖭𝖯

A 3-colorable graph

• Given a graph , an independent set is a subset of
vertices such that no two of them are adjacent, that is, for
any ,

• IND-SET Problem.
Given a graph and an integer , does have an
independent set of size at least ?

G = (V, E)
S ⊆ V

x, y ∈ S (x, y) ∉ E

G = (V, E) k G
k

independent set of size 6

Independent Set

• Given a graph , an independent set is a subset of
vertices such that no two of them are adjacent, that is, for
any ,

• IND-SET Problem. Given a graph and an integer ,
does have an independent set of size at least ?

• IND-SET .

• Certificate: a subset of vertices

• Poly-time verifier: check if any two vertices are adjacent
and check if size is at least

G = (V, E)
S ⊆ V

x, y ∈ S (x, y) ∉ E

G = (V, E) k
G k

∈ 𝖭𝖯

k

IND-SET ∈ 𝖭𝖯

Quick Question
• Is ?

• If a problem is in P, does that mean that it is in NP?

• Yes! If a problem can be solved in polynomial time, it can
be verified in polynomial time.

• How?

• Just solve directly (Can just set ””)

𝖯 ⊆ 𝖭𝖯

c =

Satisfiability
• The next problem is the classic example used when

listing examples of problems in NP

• (and, as we’ll soon see, probably not in P)

• There are also many different small variations on the same
problem (we’ll see a couple)

• Idea: given a logical equation, can we assign “true” and
“false” to the variables to satisfy the equation?

SAT, 3SAT ∈ 𝖭𝖯
• SAT. Given a conjunctive normal form (CNF) formula , does it

have a satisfying truth assignment?

• 3SAT. A SAT formula where each clause contains exactly 3
literals (corresponding to different variables)

•

• Satisfying instance: , where
true, false

•

• Certificate: truth assignment to variables

• Poly-time verifier: check if assignment evaluates to true

ϕ

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

x1 = 1, x2 = 1, x3 = 0, x4 = 0 1 :
0 :

SAT, 3-SAT ∈ 𝖭𝖯

 P versus NP

P vs NP
• We know that every problem in P is also in NP

• If we can solve it in polynomial time, we can verify it

• What about the reverse? That is to say:

• If a problem can be efficiently verified, does that mean
it can be efficiently solved in the first place?

• Or, do there exist problems that can be verified quickly
that are impossible to solve quickly?

Why Do We Care?
• If , there are many consequences:

• Lots of important problems can be solved quickly!

• Can build things better, faster, more efficiently

• (Public key) cryptography does not exist 😱

• If :

• Many problems have no efficient solutions

• And we can stop trying to solve them faster!

Many very smart people believe that

𝖯 = 𝖭𝖯

𝖯 ≠ 𝖭𝖯

𝖯 ≠ 𝖭𝖯

Million Dollar Question:  
P vs NP

https://medium.com/@mpreziuso/

• The biggest open problem in computer science

• One of the biggest in math as well

• We are not even close to solving it!

• Every so often, a new proof will be proposed

• So far, all of these proofs have had flaws…

Million Dollar Question:  
P vs NP

NP-hard and
NP-Complete Problems

Cook-Levin Theorem
• If SAT can be solved in polynomial time, then any problem

in NP can be solved in polynomial time

• So if SAT can be solved in polynomial time, then P = NP

• How is this possible?

Cook-Levin Theorem
• Idea: any computer program can be represented by a

circuit.

• If we can solve SAT in poly time, we can figure out the
answer given by the circuit for an NP problem in poly time

You’ll see the
proof in CS 361

We will wave our
hands in CS 256…

NP-Hard Problems

• A problem is NP-hard if:

• If can be solved in polynomial time, then any problem
in NP can be solved in polynomial time

• That is, if can be solved in polynomial time, then P =
NP

X

X

X

NP-hard problems are at least as hard as every problem in NP

What Does This Mean?
• We think that, probably,

• So if a problem is NP-hard, then you probably cannot
obtain a polynomial-time algorithm for it

𝖯 ≠ 𝖭𝖯

Classifying Problems as Hard
• We are frustratingly unable to prove a lot of problems are

impossible to solve efficiently

• Instead, we say problem is likely very hard to solve by
saying, if a polynomial-time algorithm was found for , then
something we all believe is impossible will happen

• This is what we mean when we say is -hard: if ,
then

X
X

X 𝖭𝖯 X ∈ 𝖯
𝖯 = 𝖭𝖯

Classifying Problems as Hard
• Instead, we say problem is likely very hard to solve by saying,

if a polynomial-time algorithm was found for , then something
we all believe is impossible will happen

• This is what we mean when we say is -hard: if , then

• (Erickson) Calling a problem NP hard is like saying, “If I own a
dog, then it can speak fluent English”

• You (probably) don’t know whether or not I own a dog, but you
are supremely confident I don’t own a talking dog.

• Why though? You don’t have concrete evidence, other than
years of looking at other dogs that do not speak.

• So, if a problem is NP hard, no one should believe it can be
solved in polynomial time, even though we don’t have proof…

X
X

X 𝖭𝖯 X ∈ 𝖯
𝖯 = 𝖭𝖯

NP Completeness
• Definition. A problem is NP complete if is NP hard and

• SAT is NP complete

• SAT : given an assignment to input gates (certificate),
can verify whether output is one or zero in poly-time

• SAT is NP hard (Cook-Levin Theorem)

X X
X ∈ 𝖭𝖯

∈ 𝖭𝖯

𝖯

𝖭𝖯

𝖭𝖯 complete

hard𝖭𝖯

Polynomial-Time Reducibility
• (KT Definition): A problem is NP complete if is NP hard, and for all

,

• means that can be reduced to in polynomial
time

• Said differently, we can map (in polynomial time) a general
instance of a problem to a specific instance of a problem

, where a solution to yields a solution to

• Thus, NP-complete problems are the hardest problems in NP

X X
Y ∈ 𝖭𝖯 Y ≤p X

Y ≤p X Y X

Y
X X Y

𝖯

𝖭𝖯

𝖭𝖯 complete

hard𝖭𝖯

Acknowledgments
• Some of the material in these slides are taken from

• Shikha Singh

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

