Flow Networks: Max Flow
Ford-Fulkerson Algorithm

- Start with $f(e) = 0$ for each edge $e \in E$
- Find a simple $s \leadsto t$ path P in the residual network G_f
- Augment flow along path P by bottleneck capacity b
- Repeat until you get stuck

```
FORD-FULKERSON(G)

FOREACH edge $e \in E : f(e) \leftarrow 0$.
$G_f \leftarrow$ residual network of $G$ with respect to flow $f$.
WHILE (there exists an $s \leadsto t$ path $P$ in $G_f$)
    $f \leftarrow$ AUGMENT($f$, $P$).
    Update $G_f$.
RETURN $f$.
```
Ford-Fulkerson Example

network G and flow f

residual network G_f
Ford-Fulkerson Example

network G and flow f

P in residual network G_f
Ford-Fulkerson Example

network G and flow f

residual network G_f
Ford-Fulkerson Example

network G and flow f

value of flow

P in residual network G_f
Ford-Fulkerson Example

network G and flow f

residual network G_f

value of flow $8 + 2 = 10$

flow $2/2$

capacity $0/6$

$8/8$

$2/9$

$10/10$

$0/4$

$0/10$

$0/10$

s

t

$10/10$

$0/10$

$10/10$

$10/10$

$2/2$

$0/10$

$0/10$
Ford-Fulkerson Example

network G and flow f

P in residual network G_f
Ford-Fulkerson Example

network G and flow f

residual network G_f

value of flow

$10 + 6 = 16$
Ford-Fulkerson Example

Network G and flow f

P in residual network G_f

Value of flow $= 16$

Flow fixes mistake from second augmenting path.
Ford-Fulkerson Example

network G and flow f

residual network G_f
Ford-Fulkerson Example

network G and flow f

P in residual network G_f
Ford-Fulkerson Example

network G and flow f

residual network G_f

No s-t path left!
Ford-Fulkerson Example

network G and flow f

residual network G_f

Capacity of cut?

Nodes reachable from s

No s-t path left!
Analysis: Ford-Fulkerson
Analysis Outline (Things to Prove)

- Feasibility and value of flow:
 - Show that each time we update the flow, we are routing a feasible $s-t$ flow through the network
 - And that value of this flow increases each time by that amount

- Optimality:
 - Final value of flow is the maximum possible

- Running time:
 - How long does it take for the algorithm to terminate?

- Space:
 - How much total space are we using?
Feasibility of Flow

- **Claim.** Let f be a feasible flow in G and let P be an augmenting path in G_f with bottleneck capacity b. Let $f' \leftarrow \text{AUGMENT}(f, P)$, then f' is a feasible flow.

- **Proof.** Note, we only need to verify constraints on the edges of P, since $f' = f$ for other edges. Let $e = (u, v) \in P$
 - If e is a forward edge: $f'(e) = f(e) + b$
 \[\leq f(e) + (c(e) - f(e)) = c(e) \]
 - If e is a backward edge: $f'(e) = f(e) - b$
 \[\geq f(e) - f(e) = 0 \]

- Conservation constraint hold on any node in $u \in P$:
 - $f_{in}(u) = f_{out}(u)$, therefore $f'_{in}(u) = f'_{out}(u)$ for both cases
Value of Flow: Making Progress

Claim. Let f be a feasible flow in G and let P be an augmenting path in G_f with bottleneck capacity b. Let $f' \leftarrow \text{AUGMENT}(f, P)$, then $v(f') = v(f) + b$.

• Proof.

 • First edge $e \in P$ must be out of s in G_f
 • Observe that P is simple, so it never visits s again
 • e must be a forward edge (P is a path from s to t)
 • Thus $f(e)$ increases by b, increasing $v(f)$ by b ■

• Note. Means the algorithm makes forward progress each time!

We’ll use this later to analyze the running time
Optimality
Ford-Fulkerson Optimality

- **Recall**: If f is any feasible s-t flow and (S, T) is any s-t cut then $v(f) \leq c(S, T)$.

- We will show that the Ford-Fulkerson algorithm terminates in a flow that achieves optimality, that is,

 - Ford-Fulkerson finds a flow f^*, and there exists a cut (S^*, T^*) such that, $v(f^*) = c(S^*, T^*)$

- Proving this shows that it finds the maximum flow (and the min cut)

- This also **proves the max-flow min-cut theorem**!
Ford-Fulkerson Optimality

Lemma. Let f be an s-t flow in G such that there is no augmenting path in the residual graph G_f, then there exists a cut (S^*, T^*) such that $v(f) = c(S^*, T^*)$.

- **Proof.**
 - Let $S^* = \{ v \mid v \text{ is reachable from } s \text{ in } G_f \}$, $T^* = V - S^*$
 - Is this an s-t cut?
 - Yes! $s \in S$, $t \in T$, $S \cup T = V$ and $S \cap T = \emptyset$
 - Consider an edge $e = u \rightarrow v$ with $u \in S^*$, $v \in T^*$, then what can we say about $f(e)$?
Recall: Ford-Fulkerson Example

network G and flow f

residual network G_f

Capacity of cut? 10 / 10

nodes reachable from s

No s-t path left!
Ford-Fulkerson Optimality

• **Lemma.** Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_f, then there exists a cut (S^*, T^*) such that $v(f) = c(S^*, T^*)$.

• **Proof.**

 • Let $S^* = \{v \mid v$ is reachable from s in $G_f\}$, $T^* = V - S^*$

 • Is this an s-t cut?

 • $s \in S$, $t \in T$, $S \cup T = V$ and $S \cap T = \emptyset$

 • Consider an edge $e = u \rightarrow v$ with $u \in S^*$, $v \in T^*$, then what can we say about $f(e)$?

 • $f(e) = c(e)$
Ford-Fulkerson Optimality

- **Lemma.** Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_f, then there exists a cut (S^*, T^*) such that $\nu(f) = c(S^*, T^*)$.

- **Proof.** (Cont.)
 - Let $S^* = \{v \mid v$ is reachable from s in $G_f\}$, $T^* = V - S^*$
 - Is this an s-t cut?
 - $s \in S$, $t \in T$, $S \cup T = V$ and $S \cap T = \emptyset$
 - Consider an edge $e = w \rightarrow v$ with $v \in S^*$, $w \in T^*$, then what can we say about $f(e)$?
Recall: Ford-Fulkerson Example

Network G and flow f

Residual network G_f

No s-t path left!
Ford-Fulkerson Optimality

- **Lemma.** Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_f, then there exists a cut (S^*, T^*) such that $v(f) = c(S^*, T^*)$.

- **Proof.** (Cont.)
 - Let $S^* = \{ v \mid v \text{ is reachable from } s \text{ in } G_f \}$, $T^* = V - S^*$
 - Is this an s-t cut?
 - $s \in S$, $t \in T$, $S \cup T = V$ and $S \cap T = \emptyset$
 - Consider an edge $e = w \rightarrow v$ with $v \in S^*$, $w \in T^*$, then what can we say about $f(e)$?
 - $f(e) = 0$

 Otherwise, there would have been a backwards edge in the residual graph.
Ford-Fulkerson Optimality

• **Lemma.** Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_f, then there exists a cut (S^*, T^*) such that $v(f) = c(S^*, T^*)$.

• **Proof.** (Cont.)

 - Let $S^* = \{v \mid v$ is reachable from s in $G_f\}$, $T^* = V - S^*$

 - Thus, all edges leaving S^* are completely saturated and all edges entering S^* have zero flow

 - $v(f) = f_{out}(S^*) - f_{in}(S^*) = f_{out}(S^*) = c(S^*, T^*)$ □

Corollary. Ford-Fulkerson returns the maximum flow.
Ford-Fulkerson Algorithm

Running Time
Ford-Fulkerson Performance

Performance Questions:

- Does the while loop terminate?
- If it terminates, can we bound the number of iterations?
- What is the Big-O running time of the whole algorithm?

```
FORD–FULKERSON(G)

FOREACH edge e ∈ E : f(e) ← 0.

G_f ← residual network of G with respect to flow f.

WHILE (there exists an s⇝t path P in G_f)

  f ← AUGMENT(f, P).

  Update G_f.

RETURN f.
```
Ford-Fulkerson Running Time

Recall we proved that with each call to AUGMENT, we increase the value of the \(s-t \) flow by \(b = \) bottleneck\((G_f, P)\)

- **Assumption.** We assumed all capacities \(c(e) \) are integers.
- **Integrality invariant.** Throughout Ford–Fulkerson, every edge flow \(f(e) \) and corresponding residual capacity is an integer. Thus \(b \geq 1 \).

 - Let \(C = \max u c(s \rightarrow u) \) be the maximum capacity among edges \(u \) leaving the source \(s \).
 - It must be that \(v(f) \leq nC \)
 - Since, \(v(f) \) increases by \(b \geq 1 \) in each iteration, it follows that FF algorithm terminates in at most \(v(f) = O(nC) \) iterations.
Ford-Fulkerson Performance

We know there are $O(nC)$ iterations. How many operations per iteration?

- Cost to find an augmenting path in G_f?
- Cost to augment flow on path?
- Cost to update G_f?
Ford-Fulkerson Running Time

- **Claim.** Ford-Fulkerson can be implemented to run in time $O(nmC)$, where $m = |E| \geq n - 1$ and $C = \max_u c(s \rightarrow u)$.

- **Proof.** Time taken by each iteration:
 - Finding an augmenting path in G_f
 - G_f has at most $2m$ edges, using BFS/DFS takes $O(m + n) = O(m)$ time
 - Augmenting flow in P takes $O(n)$ time
 - Given new flow, we can build new residual graph in $O(m)$ time
 - Overall, $O(m)$ time per iteration \blacksquare
Question: Does the Ford-Fulkerson algorithm run in time polynomial \textit{in the input size}?

- Running time is $O(nmC)$, where $C = \max_u c(s \to u)$

- What is the input size?
 - n vertices, m edges, m capacities
 - C represents the \textit{magnitude} of the maximum capacity leaving the source node
 - How many bits to represent C?
 - $\log_2 C$

- Let us look at an example
Question. Does the Ford-Fulkerson algorithm run in polynomial-time in the size of the input?

Answer. No. If max capacity is \(C \), the algorithm can take \(\geq C \) iterations. Consider the following example.

Each augmenting path sends only 1 unit of flow
(# augmenting paths = 2C)

\[\text{Digging Deeper] Polynomial time?} \]
[Digger Deeper] Pseudo-Polynomial

- Input graph has n nodes and $m = O(n^2)$ edges, each with capacity c_e

- $C = \max_{e \in E} c(e)$, then $c(e)$ takes $O(\log C)$ bits to represent

- Input size: $\Omega(n \log n + m \log n + m \log C)$ bits

- Running time: $O(nmC) = O(nm2^{\log_2 C})$
 - Exponential in the size of representing C

- Recall that such algorithms are called pseudo-polynomial
 - If the running time is polynomial in the magnitude but not size of an input parameter.
 - We saw this for knapsack as well!
Non-Integral Capacities?

Recall: our runtime analyst relied on integral capacities. What happens if they aren’t?

• If the capacities are rational, can just multiply to obtain a large integer
 • Increases running time, but Ford-Fulkerson analysis unchanged
• If capacities are irrational, Ford-Fulkerson can run infinitely!
 • Improvement at each step can be arbitrarily small
 • We can create bad instances where it doesn't terminate in finite steps
Applications of Network Flow:

Solving Problems by Reduction to Network Flows
Max-Flow Min-Cut Applications

- Data mining
- Bipartite matching
- Network reliability
- Image segmentation
- Baseball elimination
- Network connectivity
- Markov random fields
- Distributed computing
- Network intrusion detection
- Many, many, more.

Liver and hepatic vascularization segmentation using a Min-cut/Max-flow algorithm (S. Esneault, T. Pham, K. Torres)
Reductions

• We will solve these problems by reducing them to a network flow problem

• We'll focus on the concept of problem reductions
Anatomy of Problem Reductions

At a high level, a problem X reduces to a problem Y if an algorithm for Y can be used to solve X

- **Reduction.** Convert an arbitrary instance x of X to a special instance y of Y such that there is a 1-1 correspondence between them.
Anatomy of Problem Reductions

- **Claim.** \(x \) satisfies a property iff \(y \) satisfies a corresponding property
- Proving a reduction is correct: prove both directions
- \(x \) has a property (e.g. has matching of size \(k \)) \(\implies \) \(y \) has a corresponding property (e.g. has a flow of value \(k \))
- \(x \) does not have a property (e.g. does not have matching of size \(k \)) \(\implies \) \(y \) does not have a corresponding property (e.g. does not have a flow of value \(k \))
- Or equivalently (and this is often easier to prove):
 - \(y \) has a property (e.g. has flow of value \(k \)) \(\implies \) \(x \) has a corresponding property (e.g. has a matching of value \(k \))
Remaining Plan

We will explore one application of network flow in detail today

• Matching in bipartite graphs
• Matchings are super practical with many applications
• We have already seen one, can you remember?

Next meeting: another application reducible to network flow (baseball elimination)

• More practice with reductions
• (Reductions will come in handy on our next topic too!)
Bipartite Matching
Definition. Given an undirected graph \(G = (V, E) \), a matching \(M \subseteq E \) of \(G \) is a subset of edges such that no two edges in \(M \) are incident on the same vertex.

- Said differently, a node appears in at most one edge in \(M \).
Review: Matching in Graphs

A perfect matching matches all nodes in G

- Max matching problem. Find a matching of maximum cardinality for a given graph
 - That is, a matching with maximum number of edges
- Observation: If it exists, a perfect matching is maximum!
A graph is **bipartite** if its vertices can be partitioned into two subsets \(X, Y \) such that every edge \(e = (u, v) \) connects \(u \in X \) and \(v \in Y \).

- **Bipartite matching problem.** Given a bipartite graph \(G = (X \cup Y, E) \) find a maximum matching.
Acknowledgments

• Some of the material in these slides are taken from
 • Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf)