
Flow Networks:
Max Flow = Min Cut



Admin
• No pending problem set 

• I will hand out an activity that I encourage you use for practice 

• (Most) TA hours will still be held this weekend 

• Ask TAs any questions about the course 

• Ask TAs about the activity (Ford-Fulkerson Algorithm) 

• Questions about pre-registration? 

• Lab usage?



Relationship between  
Flows and Cuts



Recall: Cut Capacity
Recall. A cut  in a graph is a partition of vertices such that 

 ,  and  are non-empty. 

• Definition. An -cut is a cut  s.t.  and . 

• Capacity of a -cut  is the sum of the capacities of 
edges leaving : 

(S, T )
S ∪ T = V S ∩ T = ∅ S, T

(s, t) (S, T ) s ∈ S t ∈ T

(s, t) (S, T )
S

c(S, T ) = ∑
v∈S,w∈T

c(v → w)



Recall: Flows and Cuts
• Cuts represent "bottlenecks" in a flow network 

• For any -cut, all flow needs to “exit”  to get to  
 
 
 
 
 
 

• We will now formalize this intuition

(s, t) S t

s t



Claim.  Let  be any  flow and  be any  cut then 
  

• There are two  cuts for which this is easy to see (which ones?)

f s-t (S, T ) s-t
v( f ) ≤ c(S, T )

s-t
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To prove this for any cut, we first relate the flow value in a 
network to the net flow leaving a cut  

• Lemma.  For any feasible -flow  on  and 
any -cut , , where 

•
 (sum of flow ‘leaving’ ) 

•
 (sum of flow ‘entering’ ) 

• Note:     and  

(s, t) f G = (V, E)
(s, t) v( f ) = fout(S) − fin(S)

fout(S) = ∑
v∈S,w∈T

f(v → w) S

fin(S) = ∑
v∈S,w∈T

f(w → v) S

fout(S) = fin(T ) fin(S) = fout(T )

Flows and Cuts



Proof.    

=        [by definition] 

fout(S) − fin(S)

∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

= ∑
v,w∈S

f(v → w) − ∑
v,u∈S

f(u → v) + ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

ts

Flows and Cuts

These are the same sum: 
they sum the flow of all edges 

with both vertices in S

Adding zero terms



Proof.    

 

 

 

 

    

fout(S) − fin(S)
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v,w∈S

f(v → w) − ∑
v,u∈S

f(u → v) + ∑
v∈S,w∈T
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v∈S,u∈T
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f(u → v))
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v∈S

fout(v) − fin(v)

= fout(s) = v( f ) ∎

ts

Flows and Cuts
Rearranging terms

Cancels out for all except ,
which has no 

s
fin



Flows and Cuts
• We use this result to prove that the value of a flow cannot exceed 

the capacity of any cut in the network. 

• Claim.  Let  be any  flow and  be any  cut then 

 

• Proof.   

 

f s-t (S, T ) s-t
v( f ) ≤ c(S, T )

v( f ) = fout(S) − fin(S)

≤ fout(S) = ∑
v∈S,w∈T

f(v → w)

≤ ∑
v∈S,w∈T

c(v, w) = c(S, T )

When is v( f ) = c(S, T )?

fin(S) = 0, fout(S) = c(S, T )

Sum of capacities leaving S 



• Suppose the  is the capacity of the minimum cut in a network 

• What can we say about the feasible flow we can send through it 

• cannot be more than  

• In fact, whenever we find any  flow  and any  cut  such 
that,  we can conclude that: 

•  is the maximum flow, and,  

•  is the minimum cut 

• The question now is, given any flow network with min cut , is it 
always possible to route a feasible  flow  with 

cmin

cmin

s-t f s-t (S, T )
v( f ) = c(S, T )

f

(S, T )

cmin
s-t f v( f ) = cmin

Max-Flow & Min-Cut



Max-Flow Min-Cut Theorem
There is a beautiful, powerful relationship between these two 
problems in given by the following theorem. 

• Theorem.  Given any flow network , there exists a feasible 
-flow   and an -cut   such that, 

 

• Informally, in a flow network, the max-flow = min-cut 

• This will guide our algorithm design for finding max flow 

• (Will prove this theorem by construction in a bit.)

G
(s, t) f (s, t) (S, T )

v( f ) = c(S, T )



Network Flow History
• In 1950s, US military researchers Harris and Ross wrote a 

classified report about the rail network linking Soviet Union 
and Eastern Europe 

• Vertices were the geographic regions 

• Edges were railway links between the regions 

• Edge weights were the rate at which material could be 
shipped from one region to next 

• Ross and Harris determined: 

• Maximum amount of stuff that could be  
moved from Russia to Europe (max flow) 

• Cheapest way to disrupt the network by  
removing rail links  (min cut) 



Network Flow History

Image Credits: — Jeff Erickson’s book and T[homas] E. Harris and F[rank] S. Ross. Fundamentals of a method for 
evaluating rail net capacities. The RAND Corporation, Research Memorandum RM-1517, October 24, 1955. United States 

Government work in the public domain. http://www.dtic.mil/dtic/tr/fulltext/u2/093458.pdf



Ford-Fulkerson Algorithm



Towards a Max-Flow Algorithm
We will design a max-flow algorithm and show that there is a  
cut s.t. value of flow computed by algorithm  capacity of cut 

• Let's start with a greedy approach: 

• Pick an  path  and push as much flow as possible 
down it 

• Repeat until you get stuck

s-t
=

s-t

Note: This won't actually work, but it gives us a sense of 
what we need to keep track of to improve it



Towards a Max-Flow Algorithm
Greedy strategy: 

• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck 

• Let’s explore an example

f(e) = 0

s ↝ t P f(e) < c(e)

P
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Towards a Max-Flow Algorithm

s t
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• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck
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Towards a Max-Flow Algorithm
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Towards a Max-Flow Algorithm

max-flow value = 19
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Why Greedy Fails
Problem: greedy can never “undo” a bad flow decision 

• Consider the following flow network 
 
 
 
 
 

• Greedy could choose  as first  

• Takeaway:  Need a mechanism to “undo” bad flow decisions 

s → v → w → t P

s

t

w

v

1

2

2

22



Ford-Fulkerson 
Algorithm



Ford Fulkerson: Idea
Goal: Want to make “forward progress” while letting ourselves 
undo previous decisions if they’re getting in our way 

• Idea: keep track of where we can push flow  

• Can push more flow along an edge with remaining 
capacity  

• Can also push flow “back” along an edge that already 
has flow down it (undo a previous flow push) 

• Need a way to systematically track these decisions



Residual Graph
Given flow network  and a feasible flow  on , the 
residual graph  is defined as follows: 

• Vertices in  same as  

• (Forward edge) For  with residual capacity
, create  with capacity  

• (Backward edge) For  with , create  
  with capacity 

G = (V, E, c) f G
Gf = (V, Ef , cf )

Gf G

e ∈ E
c(e) − f(e) > 0 e ∈ Ef c(e) − f(e)

e ∈ E f(e) > 0
ereverse ∈ Ef f(e)

u v

flow

6 / 17

capacity

original flow network G

u v

residual
capacity

residual network Gf

11

6

reverse edge



Flow Algorithm Idea
• Now we have a residual graph that lets us make forward 

progress or push back existing flow 

• We will look for  paths in   rather than  

• Once we have a path, we will "augment" flow along it similar to 
greedy 

• find bottleneck capacity edge on the path and push that 
much flow through it in  

• When we translate this back to , this means: 

• We increment existing flow on a forward edge 

• Or we decrement flow on a backward edge

s ↝ t Gf G

Gf

G



Augmenting Path & Flow
• An augmenting path  is a simple  path in the 

residual graph  

• The bottleneck capacity  of an augmenting path  is the 
minimum capacity of any edge in .

P s ↝ t
Gf

b P
P

AUGMENT( f, P)                          


  ← bottleneck capacity of augmenting path P.

FOREACH edge e ∈ P :

IF (e ∈ E, that is, e is forward edge )  

               Increase f(e) in G by 

ELSE          
              Decrease f(e) in G by 

RETURN  f.
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

b

b

b

Some  path  in s ↝ t P Gf

If/else update flow in 
, not G Gf

Path that repeats
no vertices



Ford-Fulkerson Algorithm
• Start with  for each edge  

• Find a simple  path  in the residual network  

• Augment flow along path  by bottleneck capacity  

• Repeat until you get stuck

f(e) = 0 e ∈ E
s ↝ t P Gf

P b

FORD–FULKERSON(G)                          

_____

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.



Ford-Fulkerson Example
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Analysis: Ford-Fulkerson



• Feasibility and value of flow: 

• Show that each time we update the flow, we are routing a 
feasible  flow through the network 

• And that value of this flow increases each time by that amount 

• Optimality: 

• Final value of flow is the maximum possible  

• Running time: 

• How long does it take for the algorithm to terminate? 

• Space: 

• How much total space are we using?

s-t

Analysis Outline



• Claim.  Let  be a feasible flow in  and let  be an 
augmenting path in  with bottleneck capacity .  Let  

, then  is a feasible flow. 

• Proof. Only need to verify constraints on the edges of   
(since  for other edges).  Let  

• If  is a forward edge:    

 

• If  is a backward edge:   

  

• Conservation constraint hold on any node in : 

• , therefore  for both cases

f G P
Gf b

f′ ← AUGMENT( f, P) f′ 

P
f′ = f e = (u, v) ∈ P

e f′ (e) = f(e) + b
≤ f(e) + (c(e) − f(e)) = c(e)

e f′ (e) = f(e) − b
≥ f(e) − f(e) = 0

u ∈ P
fin(u) = fout(u) f′ in(u) = f′ out(u)

Feasibility of Flow



• Claim.  Let  be a feasible flow in  and let  be an 
augmenting path in  with bottleneck capacity .  Let  

, then . 

• Proof.  

• First edge  must be out of  in  

• (  is simple so never visits  again) 

•  must be a forward edge (  is a path from  to ) 

• Thus  increases by , increasing  by   

• Note.  Means the algorithm makes forward progress each time!

f G P
Gf b

f′ ← AUGMENT( f, P) v( f′ ) = v( f ) + b

e ∈ P s Gf

P s

e P s t

f(e) b v( f ) b ∎

Value of Flow:  Making Progress
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