
Flow Networks:
Max Flow = Min Cut

Admin
• No pending problem set

• I will hand out an activity that I encourage you use for practice

• (Most) TA hours will still be held this weekend

• Ask TAs any questions about the course

• Ask TAs about the activity (Ford-Fulkerson Algorithm)

• Questions about pre-registration?

• Lab usage?

Relationship between
Flows and Cuts

Recall: Cut Capacity
Recall. A cut in a graph is a partition of vertices such that

 , and are non-empty.

• Definition. An -cut is a cut s.t. and .

• Capacity of a -cut is the sum of the capacities of
edges leaving :

(S, T)
S ∪ T = V S ∩ T = ∅ S, T

(s, t) (S, T) s ∈ S t ∈ T

(s, t) (S, T)
S

c(S, T) = ∑
v∈S,w∈T

c(v → w)

Recall: Flows and Cuts
• Cuts represent "bottlenecks" in a flow network

• For any -cut, all flow needs to “exit” to get to

• We will now formalize this intuition

(s, t) S t

s t

Claim. Let be any flow and be any cut then

• There are two cuts for which this is easy to see (which ones?)

f s-t (S, T) s-t
v(f) ≤ c(S, T)

s-t

Flows and Cuts

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

Claim. Let be any flow and be any cut then

• There are two cuts for which this is easy to see (which ones?)

f s-t (S, T) s-t
v(f) ≤ c(S, T)

s-t

Flows and Cuts

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

To prove this for any cut, we first relate the flow value in a
network to the net flow leaving a cut

• Lemma. For any feasible -flow on and
any -cut , , where

•
 (sum of flow ‘leaving’)

•
 (sum of flow ‘entering’)

• Note: and

(s, t) f G = (V, E)
(s, t) v(f) = fout(S) − fin(S)

fout(S) = ∑
v∈S,w∈T

f(v → w) S

fin(S) = ∑
v∈S,w∈T

f(w → v) S

fout(S) = fin(T) fin(S) = fout(T)

Flows and Cuts

Proof.

= [by definition]

fout(S) − fin(S)

∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

= ∑
v,w∈S

f(v → w) − ∑
v,u∈S

f(u → v) + ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

ts

Flows and Cuts

These are the same sum:
they sum the flow of all edges

with both vertices in S

Adding zero terms

Proof.

fout(S) − fin(S)

= ∑
v,w∈S

f(v → w) − ∑
v,u∈S

f(u → v) + ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

= ∑
v,w∈S

f(v → w) + ∑
v∈S,w∈T

f(v → w) − ∑
v,u∈S

f(u → v) − ∑
v∈S,u∈T

f(u → v)

= ∑
v∈S

(∑
w

f(v → w) − ∑
u

f(u → v))

= ∑
v∈S

fout(v) − fin(v)

= fout(s) = v(f) ∎

ts

Flows and Cuts
Rearranging terms

Cancels out for all except ,
which has no

s
fin

Flows and Cuts
• We use this result to prove that the value of a flow cannot exceed

the capacity of any cut in the network.

• Claim. Let be any flow and be any cut then

• Proof.

f s-t (S, T) s-t
v(f) ≤ c(S, T)

v(f) = fout(S) − fin(S)

≤ fout(S) = ∑
v∈S,w∈T

f(v → w)

≤ ∑
v∈S,w∈T

c(v, w) = c(S, T)

When is v(f) = c(S, T)?

fin(S) = 0, fout(S) = c(S, T)

Sum of capacities leaving S

• Suppose the is the capacity of the minimum cut in a network

• What can we say about the feasible flow we can send through it

• cannot be more than

• In fact, whenever we find any flow and any cut such
that, we can conclude that:

• is the maximum flow, and,

• is the minimum cut

• The question now is, given any flow network with min cut , is it
always possible to route a feasible flow with

cmin

cmin

s-t f s-t (S, T)
v(f) = c(S, T)

f

(S, T)

cmin
s-t f v(f) = cmin

Max-Flow & Min-Cut

Max-Flow Min-Cut Theorem
There is a beautiful, powerful relationship between these two
problems in given by the following theorem.

• Theorem. Given any flow network , there exists a feasible
-flow and an -cut such that,

• Informally, in a flow network, the max-flow = min-cut

• This will guide our algorithm design for finding max flow

• (Will prove this theorem by construction in a bit.)

G
(s, t) f (s, t) (S, T)

v(f) = c(S, T)

Network Flow History
• In 1950s, US military researchers Harris and Ross wrote a

classified report about the rail network linking Soviet Union
and Eastern Europe

• Vertices were the geographic regions

• Edges were railway links between the regions

• Edge weights were the rate at which material could be
shipped from one region to next

• Ross and Harris determined:

• Maximum amount of stuff that could be
moved from Russia to Europe (max flow)

• Cheapest way to disrupt the network by
removing rail links (min cut)

Network Flow History

Image Credits: — Jeff Erickson’s book and T[homas] E. Harris and F[rank] S. Ross. Fundamentals of a method for
evaluating rail net capacities. The RAND Corporation, Research Memorandum RM-1517, October 24, 1955. United States

Government work in the public domain. http://www.dtic.mil/dtic/tr/fulltext/u2/093458.pdf

Ford-Fulkerson Algorithm

Towards a Max-Flow Algorithm
We will design a max-flow algorithm and show that there is a
cut s.t. value of flow computed by algorithm capacity of cut

• Let's start with a greedy approach:

• Pick an path and push as much flow as possible
down it

• Repeat until you get stuck

s-t
=

s-t

Note: This won't actually work, but it gives us a sense of
what we need to keep track of to improve it

Towards a Max-Flow Algorithm
Greedy strategy:

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

• Let’s explore an example

f(e) = 0

s ↝ t P f(e) < c(e)

P

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

s t

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

value of flow

0 / 10

flow capacity

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

0 / 10

s t

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

0 / 10

+ 8 = 8—

8
—

—
8

8
s t

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

0 / 6

0 / 4

8 / 8

0 / 10 8

0 / 100 / 2
8 / 1

0

8 / 100 / 9s t

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 2 = 10

0 / 6

0 / 4

8 / 8

0 / 10 8

0 / 100 / 2
8 / 1

0

8 / 100 / 9

—
10 2 —

2
—

10
—s t

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

0 / 4

8 / 8

10

2 / 2
10 / 1

0

10 / 10

0 / 6

0 / 10

0 / 10

2 / 9s t

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Is this the best we can do?

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

max-flow value = 19

3 / 4

7 / 8

19

0 / 2
10 / 1

0

10 / 10

6 / 6

9 / 10

9 / 10

9 / 9s t

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

Towards a Max-Flow Algorithm

max-flow value = 19

3 / 4

7 / 8

19

0 / 2
10 / 1

0

10 / 10

6 / 6

9 / 10

9 / 10

9 / 9s t

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

Why Greedy Fails
Problem: greedy can never “undo” a bad flow decision

• Consider the following flow network

• Greedy could choose as first

• Takeaway: Need a mechanism to “undo” bad flow decisions

s → v → w → t P

s

t

w

v

1

2

2

22

Ford-Fulkerson
Algorithm

Ford Fulkerson: Idea
Goal: Want to make “forward progress” while letting ourselves
undo previous decisions if they’re getting in our way

• Idea: keep track of where we can push flow

• Can push more flow along an edge with remaining
capacity

• Can also push flow “back” along an edge that already
has flow down it (undo a previous flow push)

• Need a way to systematically track these decisions

Residual Graph
Given flow network and a feasible flow on , the
residual graph is defined as follows:

• Vertices in same as

• (Forward edge) For with residual capacity
, create with capacity

• (Backward edge) For with , create
 with capacity

G = (V, E, c) f G
Gf = (V, Ef , cf)

Gf G

e ∈ E
c(e) − f(e) > 0 e ∈ Ef c(e) − f(e)

e ∈ E f(e) > 0
ereverse ∈ Ef f(e)

u v

flow

6 / 17

capacity

original flow network G

u v

residual
capacity

residual network Gf

11

6

reverse edge

Flow Algorithm Idea
• Now we have a residual graph that lets us make forward

progress or push back existing flow

• We will look for paths in rather than

• Once we have a path, we will "augment" flow along it similar to
greedy

• find bottleneck capacity edge on the path and push that
much flow through it in

• When we translate this back to , this means:

• We increment existing flow on a forward edge

• Or we decrement flow on a backward edge

s ↝ t Gf G

Gf

G

Augmenting Path & Flow
• An augmenting path is a simple path in the

residual graph

• The bottleneck capacity of an augmenting path is the
minimum capacity of any edge in .

P s ↝ t
Gf

b P
P

AUGMENT(f, P)
__

 ← bottleneck capacity of augmenting path P.

FOREACH edge e ∈ P :

IF (e ∈ E, that is, e is forward edge)

 Increase f(e) in G by

ELSE
 Decrease f(e) in G by

RETURN f.
__

b

b

b

Some path in s ↝ t P Gf

If/else update flow in
, not G Gf

Path that repeats
no vertices

Ford-Fulkerson Algorithm
• Start with for each edge

• Find a simple path in the residual network

• Augment flow along path by bottleneck capacity

• Repeat until you get stuck

f(e) = 0 e ∈ E
s ↝ t P Gf

P b

FORD–FULKERSON(G)
__

FOREACH edge e ∈ E : f (e) ← 0.

Gf ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf)

f ← AUGMENT(f, P).

Update Gf.

RETURN f.

Ford-Fulkerson Example

s t

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 9

network G and flow f

0 / 10 0

value of flow
0 / 10

flow capacity

residual network Gf

s t

2 6

10

4

910

residual capacity

 10
 10 8

Ford-Fulkerson Example

s t

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

0 / 10

flow capacity

P in residual network Gf

2 6

4

910

 10

s t

 10

10

8

network G and flow f

value of flow

Ford-Fulkerson Example

s t

0 / 2
8 / 1

0 0 / 6

8 / 10

0 / 4

8 / 8

0 / 90 / 10 8

0 / 10

flow capacitynetwork G and flow f

value of flow

4

10

8

8

8

9s

2
2

 10 6

2 t

residual network Gf

Ford-Fulkerson Example

s t

0 / 2
8 / 1

0 0 / 6

8 / 10

0 / 4

8 / 8

0 / 90 / 10 8

0 / 10

flow capacity

4

10

8

8

8

9s

2
2

 10 6

2 t

network G and flow f

value of flow

P in residual network Gf

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 0 / 6

10 / 10

0 / 4

8 / 8

2 / 90 / 10 8+2 = 10

0 / 10

flow capacitynetwork G and flow f

value of flow

4

8

2

2

10

 10

10 7s

 10 6

t

residual network Gf

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 0 / 6

10 / 10

0 / 4

8 / 8

2 / 90 / 10 10

0 / 10

flow capacity

4

8

2

2

10

 10

10 7s

 10 6

t

network G and flow f

value of flow

P in residual network Gf

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10+6 = 16

6 / 10

flow capacitynetwork G and flow f

value of flow

8

8

10

 10

1

6

6

 6

4

4s

 4

t

2

residual network Gf

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 16

6 / 10

flow capacity

8

8

10

 10

1

6

6

 6

4

4s

 4

t

2

fixes mistake from
second augmenting path

network G and flow f

value of flow

P in residual network Gf

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

2 / 4

8 / 8

8 / 98 / 10 18

8 / 10

flow capacitynetwork G and flow f

value of flow

8

10

 10 6

 8

2

2

8

1

2

s

 2

t2

8

residual network Gf

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

2 / 4

8 / 8

8 / 98 / 10 18

8 / 10

flow capacity

8

10

 10 6

 8

2

2

8

1

2

s

 2

t2

8

network G and flow f

value of flow

P in residual network Gf

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

nodes reachable from s

Capacity of cut?

Analysis: Ford-Fulkerson

• Feasibility and value of flow:

• Show that each time we update the flow, we are routing a
feasible flow through the network

• And that value of this flow increases each time by that amount

• Optimality:

• Final value of flow is the maximum possible

• Running time:

• How long does it take for the algorithm to terminate?

• Space:

• How much total space are we using?

s-t

Analysis Outline

• Claim. Let be a feasible flow in and let be an
augmenting path in with bottleneck capacity . Let

, then is a feasible flow.

• Proof. Only need to verify constraints on the edges of
(since for other edges). Let

• If is a forward edge:

• If is a backward edge:

• Conservation constraint hold on any node in :

• , therefore for both cases

f G P
Gf b

f′ ← AUGMENT(f, P) f′

P
f′ = f e = (u, v) ∈ P

e f′ (e) = f(e) + b
≤ f(e) + (c(e) − f(e)) = c(e)

e f′ (e) = f(e) − b
≥ f(e) − f(e) = 0

u ∈ P
fin(u) = fout(u) f′ in(u) = f′ out(u)

Feasibility of Flow

• Claim. Let be a feasible flow in and let be an
augmenting path in with bottleneck capacity . Let

, then .

• Proof.

• First edge must be out of in

• (is simple so never visits again)

• must be a forward edge (is a path from to)

• Thus increases by , increasing by

• Note. Means the algorithm makes forward progress each time!

f G P
Gf b

f′ ← AUGMENT(f, P) v(f′) = v(f) + b

e ∈ P s Gf

P s

e P s t

f(e) b v(f) b ∎

Value of Flow: Making Progress

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

